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Abstract

Multiple genetic variants influence the risk for development of primary biliary cirrhosis (PBC). To 

explore the cumulative effects of known susceptibility loci on risk, we utilized a weighted genetic 

risk score (wGRS) to evaluate whether genetic information can predict susceptibility. The wGRS 

was created using twenty-six known susceptibility loci and investigated in 1840 UK PBC and 

5164 controls. Our data indicate that the wGRS was significantly different between PBC and 

controls (P=1.61E-142). Moreover, we assessed predictive performance of wGRS on disease status 

by calculating the area under the receiver operator characteristic curve (AUC). The AUC for the 

purely genetic model was 0.72 and for gender plus genetic model was 0.82, with confidence limits 
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substantially above random predictions. The risk of PBC using logistic regression was estimated 

after dividing individuals into quartiles. Individuals in the highest risk group disclosed 

demonstrated a substantially increased risk for PBC, compared to the lowest risk group (OR: 9.3, 

P=1.91E-084). Finally, we validated our findings in an analysis of an Italian PBC cohort. Our data 

suggested that the wGRS utilizing genetic variants was significantly associated with increased risk 

for PBC with consistent discriminant ability. Our study is a first step toward risk prediction for 

PBC.
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Introduction

Primary biliary cirrhosis (PBC) is the most common autoimmune liver disease, characterized 

by chronic nonsuppurative destructive cholangitis and the presence of anti-mitochondrial 

antibody, eventually resulting in cirrhosis and liver failure1. Although the etiology of PBC 

remains unclear, there has been increasing evidence that genetic, epigenetic and 

environmental factors contribute to the risk for breaking tolerance2.

PBC is highly heritable, with a sibling relative risk of ~10, but the underlying genetics is 

complex3. Over the past number of years, major efforts have been made to uncover genetic 

causes of PBC, aiming to elucidate disease pathogenesis and improve therapeutic 

interventions. Before the advent of genome wide association studies, the risk loci within the 

major histocompatibility complex (MHC) were the only well-established candidates 

associated with PBC4–7. Recently, genome-wide association studies (GWAS) and related 

study designs not only confirmed the predominant role of the HLA region, but also 

identified additional 27 risk loci outside the MHC8–13. While these findings have 

considerably expanded our understanding of the genetic architecture of PBC, a gap remains 

between genetic information and clinical utility. Moreover, the associated variants have 

relatively modest effects on disease risk and may not be the disease-causing variants, and 

may instead be the proxies for them. A genetic risk score (GRS), which combines effects of 

multiple loci, has been demonstrated to be able to predict disease risk better than single loci 

in several autoimmune diseases14–18. Therefore, the GRS might become a prospective 

means of translating GWAS findings into clinical practice.

In this study, we utilized a weighted genetic risk score (wGRS) of twenty-six known risk 

loci identified in GWAS of PBC. We applied our model to two independent cohorts to 

evaluate the cumulative effects of known variants to the disease susceptibility, and to 

investigate how well it can discriminate between PBC cases and controls. We also 

demonstrate that inclusion of non-genetic factors in the model can markedly improve the 

discriminatory capacity.
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Results

Association between selected SNPs and PBC

Twenty-six known SNPs identified at genome-wide level of significance were investigated in 

the discovery cohort. All the loci were significantly associated with PBC and shared the 

same risk allele as in the original studies. The SNP rs7774434 in the HLA region showed the 

strongest association (P=1.57E-026), whereas rs34536443 had the largest effect (OR=0.52, 

95% CI: 0.39–0.70), albeit with very low minor allele frequency (1.9% in cases and 3.4% in 

controls). Table 1 lists the details of allele frequencies and statistical analysis results for each 

SNP. The ORs were used in the subsequent wGRS analysis.

Evaluation of the weight genetic risk score

We created a weighted genetic risk score utilizing 26 disease susceptibility loci, to assess the 

polygenic effect of PBC. For each individual, a wGRS was calculated to evaluate the risk of 

the disease. We compared the distribution of wGRS between PBC cases and controls and 

found PBC patients had a significantly greater risk score than normal controls (median 7.85 

versus 7.16, Wilcoxon test P =1.61E-142, Figure 1).

To assess the ability of wGRS to discriminate correctly between cases and controls, we used 

receiving operating characteristic (ROC) curves and calculated area under curve (AUC). The 

wGRS composed of 26 SNPs showed good ability to identify individuals who are at the 

increased risk for developing PBC (AUC: 0.72, 95% CI: 0.706–0.735, Table 2). Comparing 

the wGRS model including all 26 SNPs and the model without the HLA tag SNP rs7774434, 

we found that removal of HLA SNP from the wGRS only slightly decreased the AUC to 

0.70 (95% CI: 0.689–0.719). However, the AUC for rs7774434 alone decreased to 0.58 

(95% CI: 0.566–0.597, Table 2). When taking gender into account, the AUC for 26-locus 

wGRS markedly increased to 0.82 (95% CI: 0.813–0.833, Figure 3).

To explore the effect of wGRS in more detail, we divided the wGRS into quartiles. The odds 

ratio increased with the increasing wGRS groups, using the first quartile as reference. 

Individuals in the top quartile have a 9.31 times higher risk than those in the reference group 

(95% CI: 7.44–11.66, P = 1.91E-84, Table 3).

Validation of wGRS in independent samples

To evaluate whether the genetic risk model is applicable to an independent population, we 

next examined the wGRS in an Italian cohort, which was generated by weighting the same 

26 SNPs using the natural log of ORs from the discovery data. In the replication data set, the 

wGRS index was also significantly higher in patients with PBC, with median score of 7.83, 

compared to controls with a median score of 7.15 (Wilcoxon test P =9.88E-29, Figure 2). 

There was little difference between the wGRS model containing all the SNPs and the model 

with only non-HLA SNPs (AUC: 0.72 versus 0.69, Table 2). The AUC including gender 

showed better discriminatory ability than the one with genetic information alone (AUC 0.81 

versus 0.72, Figure 3). As before, the wGRS were divided into quartiles. The individuals in 

the fourth quartiles had significantly increased risk compared to the individuals in the 

reference group (OR: 8.14, 95% CI: 4.97–13.31, P=6.85E-017, Table 3).
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Measurement of the genetic variance

To estimate the cumulative fraction of genetic variance explained by the SNPs included in 

the wGRS, we used the liability threshold model. We found that no single locus accounted 

for more than 1.0% of the genetic variance in either the discovery or validation set. The 

percentage of genetic variance explained by each locus in the discovery set is listed in Table 

1. It was estimated that together the twenty-six SNPs could explain 5.3% of genetic 

susceptibility to PBC in the discovery set. The validation set (Supplemental Table 2) showed 

similar results with the same set of SNPs explaining 6.2% of genetic susceptibility.

Discussion

Here, we present the first genetic risk score for PBC in two large cohorts, using recently 

established genetic variants from GWAS and Immunochip studies. We found that the 26-

locus wGRS was significantly associated with the increased risk of PBC, with the odds ratio 

of ~9.3 in the highest risk group when compared to the lowest risk group. The wGRS 

displayed good discrimination between individuals with PBC and healthy controls. In 

addition, taking gender into consideration allows better prediction of the risk than genetic 

factors alone. Notably, our findings in the discovery data set were replicated in an 

independent sample. Like many previous studies, we developed the genetic risk score model 

in the same population used to test the score, an approach that risks over-fitting the model 

and yielding inflated results14, 19, 20. Here, we addressed this issue by applying the model in 

an independent population. Using the ORs derived from the discovery data, we managed to 

minimize the potential influence of over-fitting in the replication sample. Thus, our wGRS 

model is likely to accurately reflect the discriminatory ability of the twenty-six genetic loci.

To our knowledge, this is the first study exploring the combined effects of the genetic 

variants for predicting PBC risk. However, several limitations need to be considered. First, 

some SNPs used in the model were imputed rather than directly typed, which may lead to 

less accurate results. However, we only employed the SNPs imputed with high confidence. 

As a result, two SNPs were excluded in the analysis. Given that these two SNPs were 

estimated to explain a very small proportion of the heritability, exclusion of these two SNPs 

is expected to have little effect on the overall performance of the model. Second, addition of 

gender in our model enhanced the discriminatory power, and other factors such as age, age 

at disease onset and family risk may also affect the risk of PBC. However, these clinical data 

were not available in our study and therefore were not incorporated. Third, our analysis was 

restricted to individuals of European ancestry. Since PBC is a genetically heterogeneous 

disorder, caution must be taken when the model is used in other ethnic populations. Fourth, 

these studies have presumably not used the true disease risk variants but rather SNP 

surrogates that are associated with disease risk. It is likely that when the actual disease risk 

variants are defined the model will perform substantially better. Fifth, we note that the 

identification of the 26 SNPs that influence disease risk occurred using the same data sets 

that have been previously used to build genetic models and this could inflate the AUC for 

both the initial and replication data sets, a potential weakness of the current analysis. Lastly,, 

calibration of the model was not assessed in the current study. A well-calibrated genetic risk 
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score, when applied to a new population, should be able to predict the risk close to the 

observed. However, such a population was not available.

The HLA region SNP rs7774434 showed the strongest association with PBC among the 26 

SNPs evaluated in the current study. Nevertheless, the SNP rs7774434 only conferred 

relatively small increments in predictive capability of the wGRS model. It is likely that our 

model underestimated the HLA contribution since more than one independent risk loci have 

been demonstrated by further fine-mapping studies12, 21 and hierarchical effects of specific 

HLA D region determinants have been implicated5, 21. However, additional studies using 

additional HLA SNPs as well as imputed HLA-DRB1* determinants only had marginal 

effects on the replication model (data not shown).

Although the genetic variants for PBC have been identified at an unprecedented pace with 

the application of high-throughput genotyping approaches, the genetic variance of PBC 

explained by the risk loci identified so far is only ~5%. Hence, there remain additional 

genetic risk factors in PBC yet to be identified. It has been speculated that rare variants with 

larger effect and copy number variations may account for the missing heritability22. 

Moreover, complementary mechanisms, in particular epigenetic modifications have been 

suggested to be involved in the etiology of PBC23, 24. Accordingly, we assume that the 

performance of the model might be improved as novel genetic factors are included. We also 

note that other information including biomarkers, not available in the current study, could 

potentially be added to the model.

We also note that it is not clear if the risk score developed for PBC is specific for PBC. 

Future studies will address whether the risk score for PBC is specific or whether this risk 

score overlaps with several different autoimmune diseases including gluten sensitive 

enteropathy, systemic lupus erythematosus and rheumatoid arthritis. We should also note 

that it is premature for a clinician to consider genotyping a patient who may show signs 

suggestive of PBC. PBC, although clearly well-defined at the level of immunopathology and 

clinical presentation, has still remained elusive with respect to etiology and new therapies 

despite intensive genetic, molecular, immunological analysis and use of murine models25–30. 

Clearly any future model must take into account environmental risks, further definition of 

whether the risk score is specific for PBC or a generic autoimmune risk, and ultimately what 

a risk analysis would mean for a family member with PBC31.

We demonstrated that the wGRS comprising 26 PBC risk SNPs were strongly associated 

with the susceptibility to PBC and displayed good ability to discriminate between cases and 

controls in two independent samples. A better understanding of the genetic complexity of 

PBC, together with the environmental factors is warranted to improve the risk assessment of 

this disease.

Materials and Methods

Study populations

Our study included two independent genome-wide association study data sets: (1) a 

discovery data set of 1840 PBC cases and 5163 population controls drawn from Wellcome 
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Trust Case Control Consortium (WTCCC) PBC GWAS10; (2) a validation data set of 453 

cases and 936 controls from Italian PBC GWAS9. The discovery data was obtained from the 

WTCCC official website (http://www.wtccc.org.uk/). The Italian dataset was obtained from 

the database of Genotypes and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap) 

through accession number phs000444.v1.p1. Details about sample characteristics, 

genotyping and quality control can be found in the original papers.

SNP selection and quality control

We selected SNPs based on previous genome-wide association studies and Immunochip 

studies of PBC32. Twenty-eight SNPs including one SNP in the HLA region achieving the 

genome wide level of significance were selected. Of the twenty-eight SNPs, fifteen SNPs 

were genotyped directly and thirteen SNPs were imputed. All the genotyped SNPs had call 

rate>95%, Hardy Weinberg Equilibrium P > 1.0E-06 and minor allele frequency (MAF) 

>1%. The SNPs that were not directly genotyped were pre-phased by the program SHAPEIT 

and then imputed by IMPUTE2, using 1000 Genomes release 20101123 reference 

panel33, 34. Imputed genotypes with posterior probability <0.9 and SNPs with info score 

<0.8, MAF<1% were excluded. Two SNPs, rs3024921 (STAT4) and rs4979462 (TNFSF15), 

which showed low imputation confidence and for which no proxies were available, were 

excluded from the wGRS model. Therefore, twenty-six SNPs in total were taken forward for 

analysis. The genotyping and imputation rate for individual SNPs included in the analysis is 

summarized in Supplemental Table 1.

The subjects who had one or more missing genotypes for the 26 SNPs were removed from 

further analysis. Thus, 1512 cases and 4168 controls remained in the discovery dataset, and 

325 cases and 662 controls remained in the validation set. Principal components analysis 

(PCA) implemented in EIGENSTRAT was used to correct for the population stratification in 

the samples35. 89,081 and 92,802 SNPs with low linkage disequilibrium (r2<0.2) were used 

for PCA in the discovery data and the replication data, respectively. The principal 

components were selected based on leveling off the PCA screen plots. The first four 

principal components were used as covariates in the discovery cohort, whereas the first 

principal component was included as covariate in the validation dataset.

Genetic variance explained

A liability threshold model was used to estimate the genetic variance explained by the 26 

risk SNPs36, assuming a disease prevalence of 0.04% in the general population37. Risk allele 

frequencies in the control population and an effect size corresponding to OR values derived 

from our analysis were used to calculate thresholds for each SNP.

Statistical Analysis

We calculated the wGRS as the weighted sum of risk allele counts, where the weight for 

each SNP was the natural log of the OR. The OR for each SNP was derived from the 

discovery dataset. We generated a wGRS_all that included all 26 SNPs, a wGRS_noHLA 

that included 25 SNPs without the HLA region SNP rs7774434, and a wGRS_HLA that 

only included rs7774434. The difference in the distribution of wGRS between PBC cases 

and controls was tested using non-parametric Mann-Whitney test. To examine the 

Tang et al. Page 6

Genes Immun. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.wtccc.org.uk/
http://www.ncbi.nlm.nih.gov/gap


discriminant ability of the wGRS, we plotted receiving operating characteristics (ROC) 

curves and calculated the area under the curve (AUC). An AUC = 1.0 represents a perfect 

model, while an AUC of 0.5 represents a random model. In addition, we divided the 

combined cases and control subjects into quartiles based on the wGRS with 26 SNPs. 

Logistic regression test was carried out to compare the individuals in the second to fourth 

quartiles to the individuals in the first quartile. Logistic regression, OR estimation, Mann-

Whitney test and AUC calculation of the wGRS were conducted in R software v2.15 (http://

www.r-project.org/)38. Single SNP association tests in discovery dataset were performed 

using logistic regression analysis implemented in PLINK v1.07 (http://

pngu.mgh.harvard.edu/~purcell/plink/)39. All the association tests were adjusted by the 

principal components and sex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distributions of wGRS in discovery cohort (a&b); and in replication cohort (c&d). a, c: The 

histogram shows the distribution of wGRS for all individuals including PBC cases and 

healthy controls. Values smaller than 5.5 and greater than 9.5 were grouped. The black dots 

represent the percentage of PBC patients in the population of that bin (y axis on the right). b, 

d: PBC patients (red box) had a significantly higher wGRS than controls (green box) with p 

value < 1.0E-8. Boxes represent the 25th to 75th percentile across the wGRS; the median is 

shown as a thick line in the middle of the box; whiskers extend to values with 1.5 times the 
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difference between the 25th to 75th percentlies; and outliers are marked with circles. *** P < 

1E-32; ** P < 1E-16
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Figure 2. 
ROC curves comparing wGRS in different models. wGRS_all includes 26 SNPs; 

wGRS_noHLA includes 25 non-HLA SNPs; wGRS_HLA includes the HLA tag SNP 

rs7774434; and wGRS_all_G includes 26 SNPs and gender in the model.
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Figure 3. 
PBC odds ratios of wGRS quartiles compared to the first quartile (reference). Red represents 

discovery data and green represents replication data. Vertical bars are 95% confidence 

intervals.
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