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Exploiting the origins of Ras mediated squamous cell carcinoma
to develop novel therapeutic interventions
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The small GTPase Ras is activated in
a high proportion of human can-

cers. Attempts to clinically block Ras
activity through pharmacological means
has proven largely ineffective thus far. We
employed an inducible mouse model of
squamous cell carcinoma (SCC) to study
the effect of Ras activation and show that
hair follicle stem cells (HFSCs) are a cell
of origin for SCC, whereas their more
restricted progeny cannot serve as cancer
cells of origin and are refractory to Ras
activation. We propose that by identify-
ing the unique mechanisms by which
HFSCs are mobilized to initiate Ras
mediated tumorigenesis, the molecular
process behind SCC can be more com-
pletely elucidated and context dependent
activities for Ras more clearly defined.
Here, we summarize our recent results
and point to future experiments designed
to create novel therapeutics by exploiting
the differential sensitivities of various cells
within the epidermis to Ras activation.

Introduction

Small GTPases in skin cancers. Squamous
cell carcinoma (SCC) of the skin is a
highly prevalent cancer with a predisposi-
tion to metastasize. Risk factors for this
cancer include high lifetime UVB radi-
ation due to sun exposure and a compro-
mised immune system.1,2 Specifically,
organ transfer recipients with chronically
suppressed immune systems have a 65–
250-fold increase in SCC risk.3 The high
prevalence and significant morbidity of
SCC demonstrates a need for orally or
topically administered therapies to prevent

or halt progression of this cancer. Previ-
ous work on murine SCC suggested that
activating mutations in the small G-
protein Ras are able to drive SCC.4,5 In
fact, Ras is mutated in 30% of all human
cancers including a small percentage of
SCC.6-9 The high mutation rate for Ras
has led to significant effort to develop
small molecule inhibitors, with little
success thus far. Instead, many groups
are now focusing on developing inhibitors
for effectors of Ras signaling, such as the
Raf family of small GTPases.10 However, a
new high-risk group for cutaneous SCC
has emerged in individuals taking the
B-Raf inhibitor PLX4032 as a treatment
for melanoma, a cancer which is thought
to be unrelated to SCC despite sharing
an anatomical target.11 As of now, it is
unclear why this drug sensitizes patients
to SCC or promotes its initiation, but
there is evidence for crosstalk and aberrant
feedback within the Ras/Raf circuit.12-14

Numerous questions remain about how
events downstream of Ras/Raf activation
initiate various types of tumors, and how
manipulation of these events could be
exploited to treat cancer. Several groups,
including our own, take advantage of
murine models of various cancers initiated
by constitutive Ras activity. Recently, we
used Ras activation in specific cell types
in the epidermis to identify cancer cells of
origin, and to determine whether different
types of cells exhibit unique molecular
responses to Ras activation.15,16

To initiate tumorigenesis in vivo, we
bred mice harboring the widely-used LSL-
KrasG12D knock-in allele to animals con-
taining a floxed version of the p53 tumor
suppressor gene.17,18 The LSL-KrasG12D
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allele, when combined with Cre recombi-
nase, creates a Ras isoform that lacks
GTPase activity, and is therefore continu-
ously able to stimulate downstream path-
ways. To target expression of Cre to a
skin stem cell population, the K15-CrePR
allele was used for expression in the hair
follicle (HF) stem cell niche, and the Shh-
CreER knock-in allele was used to target
the immediate descendants of the hair
follicle stem cells, the matrix transit ampli-
fying cells.19,20 Comparison of the same
tumorigenic insult to these two stages of
the same lineage led to the conclusion that
hair follicle stem cells were able to gener-
ate SCCs, whereas their Shh-expressing
transit-amplifying descendants could not.
From this in vivo, inducible, genetically
engineered mouse model, the natural
history of this cancer can be traced from
its origins to its end-stage. This model
provides the ability to analyze a wide
variety of time-points that can be assessed
for responses to Ras activation and for the
development of potential interventions
specific to cancer cells of origin. This
model system can be also exploited as a
pre-clinical testing ground for target valid-
ation of prospective SCC therapeutics.

Prevention of SCC Initiation

Targeting signaling pathways down-
stream of Ras. Given that patients taking
PLX4032 and similar B-Raf inhibitors as
a treatment for melanoma often develop
SCCs, targeted therapeutics are needed
in order to prevent this unfortunate side
effect. Our mouse model provides a
means to understand the intrinsic factors
unique to HF stem cells that are necessary
for SCC initiation, and thereby allows
for the determination of potential targets
downstream of Ras/Raf signaling for
chemoprevention.

To screen for signaling pathways down-
stream of Ras that could be activated
during the initiation of hyperplasia and/or
during epithelial to mesenchymal trans-
ition (EMT) in K15-CrePR; KrasG12D and
K15-CrePR; KrasG12D; p53ff mice, candi-
dates were selected based on known
downstream effectors (Fig. 1). We exam-
ined several signaling pathways down-
stream of Ras, including Map Kinases
(Erk and p38) and Akt.

First, Erk1/2 activation was examined
by IHC for phosphorylated Erk (p-Erk).
This signaling effector of the Ras pathway
was found at high levels in hyperplastic
hair follicles and the basal cells of the
epidermal cyst structures of skin with
KrasG12D expression originating from HF
stem cells. This indicates that administra-
tion of an inhibitor of MEK, an upstream
regulator of Erk1/2 activity, might provide
a preventative response to KrasG12D induced
tumorigenesis. AZD6244 is one such inhib-
itor that may prove useful.21 This potential
target is further supported by previous
transgenic animal studies that manipulated
MEK activity.22,23 We also examined the
p38 arm of the Ras signaling by p-p38
staining. Though this marker was detected
during hyperplasia and in epidermal cysts, it
was also found throughout the hair follicle in
control skin. This indicates that attempting
to inhibit this pathway may not be useful, as
it may affect normal skin homeostasis.

Second, we examined the Akt arm of
Ras signaling. Using IHC for p-Akt, it
was determined that Akt signaling was
indeed found in some hyperplastic hair
follicles and in epidermal cyst structures.
Further downstream of Akt, we examined
both phosphorylated mTor and phos-
phorylated NFkB. Phospho-mTor was
evident in hyperplastic hair follicles and

cyst structures at low levels compared with
the robust activity of p-Akt. Rapamycin, a
potent inhibitor of mTor signaling, has
been suggested as a potential chemopre-
ventative agent by studies in head and
neck squamous cell carcinomas and mur-
ine chemical carcinogenesis.24-26 Rapamy-
cin, or a similar analog, may have some
preventative effect in the initial stages in
tumorigenesis in our model and in patients
with Kras-inducing SCC. To examine
another output of Akt signaling, we
examined p-NFkB. NFkB signaling has
been implicated in a wide range of
tumorigenesis processes, including EMT
and inflammation.27 p-NFkB was also
detected during tumorigenesis initiation
in this model system. Bortezomib and
Bay-117082, inhibitors of NFkB signal-
ing, have recently been shown to be
effective in inhibiting tumorigenesis in a
model of lung cancer.28 Notably, this lung
cancer model utilizes the same genetic
insults we used in our mouse model
system. Additionally, bortezomib has been
shown to have some limited effect on
human cases of head and neck squamous
cell carcinomas.29 This suggests that these
inhibitors may also be useful in our model
of cutaneous SCC.

This examination of Ras signaling indi-
cates that the inhibition downstream of

Figure 1. Ras signaling pathways examined in SCC prone KrasG12D induced hair follicle stem cells
and in SCC resistant KrasG12D induced hair follicle transit amplifying cells. P-Erk, p-Akt, p-S6 and p-
p38 stained hair follicle hyperplasia and cyst structures at high levels when KrasG12D was induced in
hair follicle stem cells. P-mTor, p-Ikkα/β and p-NFkB were also present, albeit at lower levels. In
contrast, only p-p38 was found in the Shh-expressing hair follicle transit amplifying cells following
KrasG12D induction. Darker shadings of gray represent higher activity levels. (Image adapted from
White et al.15).
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Kras at the level of MEK, mTor or
NFkB individually, or in combination,
may represent a chemopreventative therap-
eutic regimen that can be administered
simultaneous with tumor initiation in our
mouse model of SCC. If successful, this
may represent a potentially useful method
to inhibit SCC formation in patients
taking B-Raf inhibitors or in patients with
compromised immune systems. However,
activation of ERK, AKT and mTor (p-
Erk1/2, p-Akt and p-mTor) was not
detected in cells of the bona fide SCC,
suggesting that these downstream path-
ways are not required to sustain the
dedifferentiated state. This striking obser-
vation indicates that inhibition of these
pathways may not be therapeutically useful
following the onset of SCC in our model
or in patients presenting with high grade
Kras-derived SCCs. How the cancer cells
evolve to shed the necessity for activity
of pathways downstream of Ras or utilize
alternate Ras signaling pathways warrants
further investigation.

Identifying the molecular basis of
sensitivity to Ras activity. In an alternate
approach, since the direct descendants of
the hair follicle stem cells are completely
refractory to KrasG12D and KrasG12D;
p53KO induced tumorigenesis, a mole-
cular comparison between transit amplify-
ing cells and the parental stem cells could
point toward new targets for tumorigenesis
prevention. Though very closely related
in hierarchy, the intrinsic properties that
facilitate tumorigenesis have been lost
during the transition to the transit amp-
lifying cell type. To reveal the nature of
these intrinsic properties, cell populations
purified just following induction of
KrasG12D expression alone and/or with
p53KO could be compared in detail on
the genetic, epigenetic, transcriptome and

proteome levels. Novel or known mediators
of Kras signaling not found in the transit
amplifying population could provide target-
ing candidates for further exploration.

Targeting EMT to SCC progression.
The K15-CrePR; KrasG12D and K15-CrePR;
KrasG12D; p53ff mouse models are excellent
systems to study KrasG12D induced epithe-
lial to mesenchymal transition (EMT).
EMT is thought to be a necessary pre-
cursor to invasiveness and metastasis, and
this process results in the spindle shaped
cells of the SCC produced in K15-CrePR;
KrasG12D; p53ff mice.30 In both K15-CrePR;
KrasG12D and K15-CrePR; KrasG12D; p53ff

skin, hair follicle stem cells undergo EMT
following a brief phase of hyperplasia.
This has been concluded by antibody
staining of ectopic Tenascin-C, high levels
of Vimentin, ectopic Keratin 8 and more
recently, by ectopic N-cam staining
(unpublished data). By purifying these
cells from initiation of hyperplasia through
induction of EMT, a detailed transcrip-
tome and proteome profile can be gener-
ated. Since our model system can also
incorporate a LSL-Yfp allele that generates
YFP expression exclusively in KrasG12D

expressing cells, we can be confident that
cells expressing these markers were once
epithelial cells. This is important in order
to distinguish them from nearby cancer
associated fibroblasts, which express many
of the same markers. These data could
yield a wealth of information from an in
vivo cancer that is undergoing crosstalk
with its naturally occurring microenviron-
ment, which contrasts to traditional xeno-
graft studies, which creates an unnatural
environment with crosstalk cues that
may or may not be truly representative.
Theoretically, if EMT can be pharmaco-
logically blocked, the tumor cells may
revert to a more keratinocyte-like nature,

which could thus be redirected from the
path toward squamous cell carcinoma and
instead become terminally differentiated
skin cells.

Finally, though EMT is found in K15-
CrePR; KrasG12D skin, these cells do not
proliferate into bona fide SCC. Only in
K15-CrePR; KrasG12D; p53ff skin do trans-
formed cells undergo a switch to high
proliferation and then to SCC develop-
ment. A comparison between these two
mouse models may inform on how this
switch occurs. The nature of the pathways
induced by KrasG12D in the context of
p53KO in hair follicle stem cells may
further provide novel targets for reversion
back to a non-proliferating cell.

Conclusion

The methodologies outlined here provide
a basis for determining potential therap-
eutic interventions through the detailed
molecular understanding of the events
that occur in squamous cell carcinoma
from genesis to end-point. Squamous cell
carcinomas found in patients fall under
numerous sub-types, and determination
of the human sub-type that most closely
resembles that found in K15-CrePR;
KrasG12D and K15-CrePR; KrasG12D; p53ff

mice will be necessary, so that promising
therapeutic strategies developed in this
preclinical model translate more precisely
to the clinic.
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