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Abstract
Fecal transplants are increasingly utilized for treatment of recurrent infections (i.e., Clostrid-
ium difficile) in the human gut and as a general research tool for gain-of-function experi-

ments (i.e., gavage of fecal pellets) in animal models. Changes observed in the recipient's

biology are routinely attributed to bacterial cells in the donor feces (~1011 per gram of

human wet stool). Here, we examine the literature and summarize findings on the composi-

tion of fecal matter in order to raise cautiously the profile of its multipart nature. In addition to

viable bacteria, which may make up a small fraction of total fecal matter, other components

in unprocessed human feces include colonocytes (~107 per gram of wet stool), archaea

(~108 per gram of wet stool), viruses (~108 per gram of wet stool), fungi (~106 per gram of

wet stool), protists, and metabolites. Thus, while speculative at this point and contingent on

the transplant procedure and study system, nonbacterial matter could contribute to changes

in the recipient's biology. There is a cautious need for continued reductionism to separate

out the effects and interactions of each component.

Introduction
A fecal transplant—the transfer of stool or portions of stool from one organism into the gastro-
intestinal tract of another—is rapidly gaining attention as a treatment for human gut infections
and as a tool for functional "knock-in" studies of the microbiota in animal models. In humans,
the procedure is referred to as fecal microbiota transplantation because the microbial compo-
nents are typically enriched, and in animal models, the transfer of unprocessed stool is com-
monly achieved by feeding or oral gavage of fecal matter. For the purposes of this essay, we will
use the catch-all phrase of “fecal transplants” to refer to all types of procedures. Fig 1 shows the
very recent growth of the term in PubMed references involving both human and model system
studies.

Several analyses report clinical resolution of Clostridium difficile infection (CDI) [1–5],
though the long-term effects of the transplants are unknown [6]. Preliminary results also dem-
onstrate positive outcomes for insulin sensitivity [7], multiple sclerosis [8], and Crohn’s disease
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[9]. The presumptive element connecting these conditions is the gut’s bacterial community,
and thus the treatment’s success enthusiastically revolves around intestinal bacteria that are
assumed mostly viable in feces. There are a few studies in mice and humans that validate the
positive effects of cultured bacteria on CDI [10,11] and mucosal barrier function [12]. Addi-
tionally, the microbial portion of human stool can be highly enriched from other fecal material
through microfiltration [13,14], spore fractionation [15], and density gradients [16].

Here, we tentatively emphasize that viable bacteria may not be the only player in donor
feces that affect the recipient's biology, a fact that is well appreciated by experts. Viruses,
archaea, fungi, animal colonocytes, protists, and a number of metabolites that commensal bac-
teria make or are dependent upon can potentially occur in unprocessed feces. Here, we accen-
tuate the patterns seen in fecal composition analyses and various experiments that illuminate
functional effects of individual components of fecal matter. We also highlight important and
tractable questions for which further reductionism could help deconstruct the benefit of con-
stituent parts of fecal matter.

Fecal Composition
Human fecal composition has not been intensively studied. The studies that have examined
composition are mostly from the 1970s and 1980s and report varying results, perhaps because
of variation in diet and health. On average, adult fecal matter is estimated to be 75% water and
25% solid matter [17]. The vast majority of solid matter is organic material, whose makeup
consists of 25%–54% microbial cells (with a slight portion likely consisting of viruses) that may

Fig 1. The growth of fecal transplants as reflected in references in PubMed and the estimated composition of human feces. The charts show
(A) the rapid rise in publications on fecal transplants in the National Library of Medicine's search service (PubMed), particularly between 2012 and
2015, and (B) the estimated upper concentration of the biological entity per gram of unprocessed human feces, as cited in the text. Estimates do not
necessarily reflect the viable number of the biological entity, and the concentration of the archaea is estimated from a methanogen breath test that is
not solely based on the presence of archaea. Concentrations of metabolites, protists, and other entities were not identified.

doi:10.1371/journal.pbio.1002503.g001
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be alive or dead [18]. As microbial counts were based on light microscopy and a modification
of the Gram stain, the microbial cells were presumed to be mostly bacteria [18], but quality evi-
dence is lacking. Several other components are found in significant concentration, including
archaea, fungi, and microbial eukaryotes. One particular methanoarchaeon species,Methano-
brevibacter smithii, was detected in 95.7% of patients spanning infants, adults, and the elderly
[19], and it can comprise up to 10% of all fecal anaerobes [20]. Viable colonocytes are also
readily isolated from newborn and adult feces [21–23]. No analysis of their potential contribu-
tion to the success of fecal transplants has been reported. Independent validations of these esti-
mates are needed, particularly measurements that consider all of the entities at once.

While transplants can be highly effective treatment in certain cases, concerns remain about
the hypothetical co-transfer of pathogenic microbes [24]. Contamination by environmental
microbes is also a risk during the collection, storage, and handling of donor stool, as seen in the
early periods of blood storage for transfusions [25,26]. To standardize laboratory protocols and
enhance stability of fecal matter, one option is to use frozen donor material from rigorously
screened volunteers. Several studies compared the efficacy of frozen versus fresh stool on recur-
rent or refractory CDI and reported little to no difference [14,27,28]. Extensive longitudinal
screening of stool donors is essential to track the long-term success of treatment, and further
metagenomic studies of the transferred fecal material and transfer proficiency to recipients are
warranted.

Bacteria
It is well established that the gut contains the highest density of microbes in the human body,
with the bacteria-to-human cell ratio recently estimated to be 1.3:1 [29]. In feces, bacteria consti-
tute 25%–54% of solid matter [18] and thus between 6.3% and 13.5% of total fecal matter. Aver-
aged estimates from 14 studies yield a mean bacterial concentration of nearly 1011 bacteria per
gram of wet stool [29]. Yet, a clear distinction was shown in a study between the viable (49%),
injured (19%), and dead (32%) bacterial cells collected from fresh fecal samples under anaerobic
conditions [30]. These statistics indicate that only 3.0%–6.6% of total fecal matter may be com-
posed of viable bacteria. The percentage could conceivably be even lower if samples are handled
in aerobic conditions for lengthy amounts of time, although frequent aerobic preparation of
fecal material has resulted in high cure rates. Furthermore, and as previously noted, transplants
with frozen fecal samples that may have reduced viable bacteria can lead to an almost identical
resolution of CDI to transplants with fresh samples [27,31]. It should be noted, however, that
even bacterial DNA or dead cells might retain some immunostimulatory functions, as colitis
symptoms in a dextrose sodium sulfate–induced mouse model were strikingly alleviated by
introduction of probiotic DNA and unviable irradiated bacterial cells [32,33].

Other studies suggest that interactions between the host genotype and microbiota can
potentially affect transplant outcomes. Across a collection of studies, human fecal donations
from related donors showed slightly higher resolution in CDI cases (93%) compared to unre-
lated donors (84%) [34]. This observation is notable in light of the recent finding that human
genetic variation is significantly correlated with variation in bacterial community composition
[35,36]. However, a recent meta-analysis demonstrated no significant difference in efficacy
between related and unrelated donors [37]. Furthermore, a placebo-controlled trial resulted in
the successful treatment of seven of nine people who received a transplant from a single, unre-
lated, donor [38]. Thus, the evidence to date suggests that relatedness either has little or no
effect on treating CDI.

To demonstrate that bacteria directly contribute to disease resolution, several research
groups have tested whether enriched bacterial portions of fecal material can be effective in
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treating CDI in mice and humans. Use of a six-species cocktail therapy suppressed recurrent
CDI in 92% of mice [10] when approximately 1010 cells per bacterial species were gavaged into
recipients. In another mouse study, 108 colony-forming units of a single bacterium isolate,
LachnospiraceaeD4, caused over a 10-fold reduction in the number of C. difficile colony-form-
ing units per gram of cecal contents [39]. A cocktail of nontoxigenic C. difficile spores was also
successfully used in suppressing CDI recurrence in a human trial [40]. At 26 weeks of treat-
ment, only 0%–5% of patients from various treatment groups had toxigenic C. difficile remain-
ing in feces. These studies indicate that cultured bacteria can, in certain cases, be effective
contributors to CDI disease resolution.

Viruses
Viruses from eukaryotes, bacteria, and archaea are less studied components of the gut micro-
biota than bacteria. From five fecal samples, count estimates indicate that the viral abundance
ranges from 108 to 109 viruses per gram of feces (wet weight), and the average virus-to-bacte-
rium ratio is 0.13 [41]. These estimates are comparably low to those reported in other environ-
ments where the virus-to-microbial cell ratios range from 1.4 to 160 [42], which supports the
emerging view that viruses exhibit a more temperate lifestyle in the gut [43,44]. Additionally, a
recent metagenomic study demonstrated that numerous temperate phages are transferred dur-
ing fecal transplants [24]. Prophages often assist in controlling invading pathogens, modulating
community structure, and maintaining gut homeostasis [44]. The dominance of temperate
viruses is, however, typical of healthy control feces, as patients suffering from bowel diseases
can have increased amounts of virulent phages [45]. One of the most abundant, conserved, and
prevalent bacteriophages in the human gut is crAssphage [46], a finding that suggests some
phages may be highly conserved in the human population.

The impact of bacteriophages on human health is under active consideration. Phage therapy
entails the isolation and inoculation of phages (or their antibacterial enzymes) that target a spe-
cific bacterium. While not all phage treatments are effective [47], several in vitro and in vivo
experiments have been successful. As a treatment for CDI, 108 plaque-forming units per mL of
a specific phage were introduced into a human colon model. Over a period of 35 days, the treat-
ment caused a significant decrease in vegetative C. difficile cells (albeit there was an increase in
C. difficile spores) as well as toxin production to levels below the detection threshold of the
assay [48]. Control replicates contained high concentrations of both vegetative cells and toxin.
Phage therapy of CDI in a hamster model also significantly delayed bacterial colonization and
the onset of symptoms [49]. Specific phage cocktails could, in theory, allow commensal bacte-
ria that are in competition with C. difficile to reflourish in the gut [50]. While C. difficile phages
may eventually be developed into therapeutic agents, there is yet no evidence that phages spe-
cific to C. difficile are transferred in fecal transplants.

There have been several concerns about the safety of phage therapy. To alleviate the appre-
hension, a recent human clinical trial orally inoculated a group of 15 subjects with a high dose
of 17 phage groups targeting Escherichia coli and Proteus infection and found no adverse effects
[51]. Phage therapy cocktails have continuously demonstrated potential to target and eliminate
specific virulent bacteria while avoiding adverse effects typical of antibiotics (e.g., resistance,
diarrhea, etc.) [52–54]. However, a potential drawback is the risk of evolution of bacterial resis-
tance to phages [55,56], though phages can potentially evolve counter-resistance mechanisms.
Furthermore, human studies involving phage therapy are relatively small-scale thus far. Larger
patient cohorts and further studies of phage dosages, evolution of phage host ranges and bacte-
rial resistance [56], and the stability of phage-based drugs are needed.
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Archaea and Fungi
Archaea are well-recognized but relatively understudied members of the human gut microbiota
[57], with methanoarchaeon comprising up to 10% of fecal anaerobes [20]. Based on the con-
centration of methane in breath, estimates suggest a minimum presence of 107–108 methano-
gens per gram of both dry and wet stool [58,59], though it is unresolved what percentage of
these methanogens are from archaea versus bacteria. Higher than normal concentrations of
intestinal archaea are associated with Crohn’s disease and multiple sclerosis [60]. Similarly,
fungi in the gut have been cultured in 70% of healthy adults [61]. They occur in estimated con-
centrations of up to 106 microorganisms per gram of feces [62] and appear to comprise only
0.03% of all microbes in feces [63]. Candida albicans is the most common and studied yeast,
but it is kept in check by competitive commensal bacteria in a healthy gut. When bacterial
homeostasis is disturbed, however, C. albicans increases its numbers drastically [64,65]. These
fungi may also help induce intestinal diseases by penetrating the intestinal colonocyte barrier
and driving inflammation [66]. Indeed, high concentrations of C. albicans occur in individuals
with inflammatory bowel diseases [67,68]. The contribution of archaea and fungi to changes in
function will be an important area of future research.

Human Colonocytes
Interestingly, viable epithelial cells of the large intestine, or colonocytes, can be isolated at a
concentration of up to 107 per gram of wet fecal material [23]. Viable colonic cells have effec-
tively been isolated from newborn fecal samples (>80% viable) [21] and biopsy specimens
from colonic crypts (>98% viable) [22]. Isolation is possible due to the resilient ability of colo-
nocytes to take on a globular shape and survive once exfoliated into the fecal stream [69]. Thus,
their viability and partial functionality is likely retained in the course of some transplant treat-
ments, especially in animal models that utilize feeding or oral gavage of fecal material.

By acting as the physical barrier between bacteria and the host’s internal tissues and organs,
colonocytes allow host tolerance of the intestinal microbiota [70]. When high levels of colono-
cyte death occur, their mediating role disintegrates because of increased intestinal permeability
[71]. Indeed, major pathological conditions of the bowel are associated with changes in the
growth and functions of the colonic epithelium [22,72], similar to changes frequently observed
in microbiota studies. Their restoration is key in successful recovery from such conditions. A
recent study transplanted healthy viable colon stem cells into an immunodeficient mouse model
with superficial colon damage and found that cells readily integrated, and a single layer of epi-
thelium fully covered areas lacking colonocytes [73]. The presence of colonic stem cells in feces
has yet to be recorded, although one study recovered stem cells from the colonic epithelium that
often sheds into the fecal stream [74]. Should colonic stem cells be identified in feces in human
or animal models, they may affect the success of transplants if they can engraft in recipients.

In addition to colonocytes, molecules such as immunoglobulin A (IgA) can act as the first
line of defense for the intestinal epithelium [75]. IgA reinforces the intestinal barrier and pro-
tects host cells against pathogens and enteric toxins in the gut [75]. For instance, IgA signifi-
cantly inhibited C. difficile toxin binding to hamster intestinal brush border membranes
compared to the control [76]. Likewise, human epithelial cell lines with IgA added to their sur-
face showed a decrease in C. difficile–associated pathology compared to cells lacking IgA [77].
It remains to be seen if introducing IgA directly into human subjects will be beneficial.

Metabolites
It is well known that fiber is metabolized by intestinal bacteria to produce short-chain fatty
acids (SCFA) that have prominent anti-inflammatory and T cell–inducing properties in the
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colon [78–80]. Fiber strongly contributes to fecal weight, and low fiber diets in mice can lead to
an irreversible loss in bacterial diversity [81]. While direct reintroduction of missing fiber in
this study did not restore the diversity, transplants from mice with a high fiber diet did. Fur-
thermore, low fiber diets lead to “microbial starving,” whereby once-commensal bacteria attack
the intestinal lining [82]. Fiber supplements used in a study with C. difficile–infected hamsters,
however, managed to significantly modulate onset time of systemic symptoms [83]. Fiber
intake has also been linked to increased microbial diversity and reduced obesity in humans
[84,85].

Butyrate-producing bacteria or butyrate concentrations in feces can be lower in patients
with colorectal cancer and ulcerative colitis [86–88]. Preliminary studies of enemas with buty-
rate or SCFA cocktails (acetate, butyrate, and propionate) show some resolution in patients
with distal ulcerative colitis [89–93]. Following these treatments, 35%–67% of patients exhib-
ited improvement. Furthermore, oral administration of sodium butyrate in a colitis mouse
model alleviated inflammation and mucosal damage [94], and propionate led to improvement
of symptoms in a multiple sclerosis mouse model by promoting regulatory T cell differentia-
tion [95]. No adverse side effects were noted in any of these studies, though some metabolite
enemas are malodorous. One review, however, cautions against the use of such metabolites
[96]. While butyrate acts as an energy source, increases colonocyte growth, and decreases apo-
ptosis of colonocytes under healthy conditions [97], excess butyrate accumulation around
human colonic carcinoma cells has been connected with increased apoptosis [98]. Finally, esti-
mates suggest there are nearly 900 gene clusters in human gut–associated bacteria that make
small molecules [99]. Determining functions may be important in understanding the compos-
ite nature of feces and its effects on fecal transplants in humans and/or animal models.

Summary
Here, we cautiously note that bacteria, either viable or unviable in transferred fecal material,
may not be the only player in donor feces that affects the recipient's biology. On the one hand,
the effects of bacteria on CDI or animal model traits such as obesity [100] and toxin tolerance
[101] appear well justified thus far. On the other hand, in a broader context where fecal trans-
plants are solely utilized in animal model studies and other human diseases, judicious reduc-
tionism seems warranted in light of a limited understanding of the complex nature of feces.
Deconstructing the benefit and interactions of constituent parts of fecal matter will clarify the
relative importance and causality of each of these components and the potential development
of specific therapies.

Key Points and Future Directions

• A few studies using cocktails of bacteria in animal models and humans show suppres-
sion of CDI. However, these studies are preliminary and limited.

• Through bacterial targeting, phage therapy can potentially eliminate virulent bacteria
in a diseased gut and allow commensal bacterial to reflourish.

• Colonocytes prevent bacterial translocation into internal tissues and organs; trans-
plants of healthy viable colon stem cells into mouse models result in repair of superfi-
cial colon damage.
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