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Abstract

Identifying coordinated activity within complex systems is essential to linking their structure

and function. We study collective activity in networks of pulse-coupled oscillators that have

variable network connectivity and integrate-and-fire dynamics. Starting from random initial

conditions, we see the emergence of three broad classes of behaviors that differ in their col-

lective spiking statistics. In the first class (“temporally-irregular”), all nodes have variable

inter-spike intervals, and the resulting firing patterns are irregular. In the second (“tempo-

rally-regular”), the network generates a coherent, repeating pattern of activity in which all

nodes fire with the same constant inter-spike interval. In the third (“chimeric”), subgroups of

coherently-firing nodes coexist with temporally-irregular nodes. Chimera states have previ-

ously been observed in networks of oscillators; here, we find that the notions of temporally-

regular and chimeric states encompass a much richer set of dynamical patterns than has

yet been described. We also find that degree heterogeneity and connection density have a

strong effect on the resulting state: in binomial random networks, high degree variance and

intermediate connection density tend to produce temporally-irregular dynamics, while low

degree variance and high connection density tend to produce temporally-regular dynamics.

Chimera states arise with more frequency in networks with intermediate degree variance

and either high or low connection densities. Finally, we demonstrate that a normalized com-

pression distance, computed via the Lempel-Ziv complexity of nodal spike trains, can be

used to distinguish these three classes of behavior even when the phase relationship

between nodes is arbitrary.

Introduction

Many biological systems exhibit coordinated dynamics that are thought to underlie collective

function. For example, organism-level physiological processes such as heart beats, neural activ-

ity, and circadian rhythms [1] along with population collective behaviours like quorum
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sensing [2] all exhibit patterns of coordinated activity, and the disruption of this coordination

can be detrimental to system function [1, 3]. However, the precise nature of this coordination

can take many forms, and there is no single convention for defining and characterizing the

degree of coordination in complex dynamical systems.

This problem has been extensively studied in the context of coupled oscillator models, in

which coordinated dynamics can emerge as a synchronous state of the system. In the Kura-

moto model [4], a network of phase oscillators is said to be synchronized if all oscillators

have identical phases. In networks of pulse-coupled oscillators, synchrony has been analo-

gously defined as the state in which all oscillators fire in unison, and reliably emerges in net-

works with all-to-all connectivity, regardless of initial conditions [5]. So-called ‘chimera’

states, in which synchrony and asynchrony coexist, have also been observed in networks of

identical phase oscillators with non-local connectivity [6–9], random connectivity [10], and

modular connectivity [11], as well as in networks of neurons with other intrinsic dynamics

[12–15].

Several studies have proposed methods of quantifying the degree of synchronous activity in

limit cycle oscillator networks that rely on knowing the phases of all oscillators throughout

time. These include various order parameters [4, 7, 16], measures of dispersion [9, 11], classical

indicators of chaotic behavior [17–19], and local curvature [20]. However, these methods can-

not be readily used to study spiking dynamics in pulse-coupled oscillator networks without

knowledge of oscillator phases throughout time.

This problem becomes more difficult when studying pulse-coupled oscillator networks

with varied connectivity, because the space of possible dynamical patterns is large. Several

studies have explored how network dynamics depend on various topological properties,

including connection density, network size, and degree heterogeneity. However, these

studies have used different neural intrinsic dynamics (i.e. theta neurons [21] or leaky inte-

grate-and-fire neurons [22]), different size ranges that do not overlap [23, 24], and different

methods of quantifying synchronization [21–24]. It thus remains unclear how network

connectivity shapes the space of dynamical activity patterns in networks of pulse-coupled

oscillators.

Here, we study the emergence of structured dynamical patterns in networks of pulse-cou-

pled oscillators with varied connectivity, and we show that these patterns fall into three broad

classes that we call temporally-regular, temporally-irregular, or chimeric. We first show that

these different classes can be characterized by the mean and variance of the inter-spike inter-

vals (ISIs) of individual oscillators in the network. Using this method, we identify structural

properties that influence the likelihood of finding network dynamics from each of these three

classes. We then introduce a more multivariate measure that can be used to identify groups of

coordinated oscillators and similarly classify the dynamics of the network. This new method is

inherently more robust to variation in precise spike times, and thus could be more powerful

than ISI statistics in the analysis of real neural spike trains.

Methods

We study the dynamics of undirected, binomial random (i.e., Erdös-Rényi [25]) networks of

pulse oscillators. We use the G(N, p) ensemble in which one specifies the number N of nodes

in the network and the probability p that any two nodes are connected by an edge [26]. We

constructed networks with fixed size N = 16 but varying edge probability p. For a given net-

work, the value of p was drawn from a uniform distribution on the interval [0.2, 0.9] in cases

where p is not specified. Any random network consisting of two or more disconnected compo-

nents was excluded from analysis.
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Each node in the network is a pulse oscillator with intrinsic dynamics of Mirollo-Strogatz

[5] type:

_yðtÞ ¼ � yðtÞ þ 2: ð1Þ

When an oscillator crosses unity, it “fires a spike” and resets to zero; we record these spike

times and use them to assess patterns of network activity.

Oscillators are coupled through the exchange of pulses; each time an oscillator fires, it deliv-

ers a pulse of amplitude ε to each of its network neighbors. We fix ε = 1/(N − 1). Scaling ε with

network size ensures that the largest pulse that an individual oscillator can receive in a given

time-step is equal to unity; which would occur if that oscillator were fully connected. Reducing

ε results in less firing activity, because nodes become dominated by their own intrinsic dynam-

ics. In the limit as ε approaches zero, each node fires according to its own intrinsic dynamics

and is not influenced by other nodes in the network. As we will later show, this particular scal-

ing of ε compensates for an increase in mean degree as we scale the size of binomial random

networks, and thus prevents a corresponding increase in the average pulse size to a given node

were ε held constant.

To simulate network dynamics, we use the Euler method [27] with a step size small enough

that results were unaffected by cutting the step size in half and repeating the simulation. We

initialize each network with random initial conditions drawn from a uniform distribution on

the interval [0, 1] and then simulate the dynamics for 10,000 time-steps. We restrict our analy-

sis to the final 2,000 time-steps of the simulation in order to ensure that the network dynamics

have stabilized. There is only one real timescale in the problem: the intrinsic period of a node.

For the parameter choices we make in Eq 1, the intrinsic period is 69 time-steps when inte-

grated for a total time of 100 with 10,000 time-steps. All other times in the problem could be

rescaled by the intrinsic period. The intrinsic dynamics of an individual oscillator are shown

in Fig 1.

Fig 1. Nodal intrinsic dynamics. The first 200 time-steps of Eq 1. The node spikes when the activity crosses a threshold of

1, and then resets to a baseline of 0.

https://doi.org/10.1371/journal.pone.0256034.g001
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After an oscillator fires, we allow one time-step for the emitted pulse to reach its neighbors.

For physical systems, this convention is more realistic than allowing immediate pulse trans-

mission because it eliminates the possibility of chain-firing and accounts for the time required

for signal transmission. In our simulations, it is possible to adjust the time of inter-node signal

transmission to allow delays of any duration, something we do not explore here. Algorithm 1

specifies how we simulate the network dynamics.

Algorithm 1: Oscillator Dynamics Simulation
initialization
for each time-step do
Note which oscillators are at or above threshold;
for each node do
Reset nodes above threshold to zero;
Add spike to array for given node and time-step;
Send pulses to nodes connected to those that just fired, added to

the next time-step;
Add integration step to the next time-step

end
end

Results

We propose two methods for identifying structured dynamical patterns in networks of pulse-

coupled oscillators: inter-spike interval (ISI) statistics and normalized compression distances

(NCDs). We explore how each of these methods can be used to characterize the dynamical

state space of binomial random networks, and we then investigate their potential for character-

izing the state space of other random graphs.

Inter-spike interval statistics

Using spike times to calculate the distribution of ISIs for each node in the network, we

observed that networks can be grouped into three broad classes that are defined by ISI mean

and variance:

1. Temporally-irregular: all nodes have different ISI means and variances.

2. Temporally-regular: all nodes have the same ISI mean and variance.

3. Chimeric: at least one subset of nodes has a common ISI mean and variance, while the

remaining nodes have different ISI means and variances.

To specify that two or more nodes have the same ISI statistics, we require that their ISI

mean and variance be identical out to eight decimal places. We use both mean and variance to

characterize network states because doing so results in greater similarity between the firing

patterns of oscillators within a temporally-regular group.

Fig 2 illustrates the patterns of spiking associated with these three broad classes of activity.

We find that temporally-regular behavior manifests in the form of oscillators that fire at the

same uniform intervals with different temporal offsets (Fig 2A), and not in the form of all

oscillators firing in unison. In fact, we have yet to observe this latter pattern in our simulations.

Therefore, we support the idea that coordinated activity in pulse-coupled oscillators is better

measured by communities of oscillators that share the same ISI statistics than by the existence

or absence of uniform locking to a single phase.
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Frequency of network classes

We next examine the fraction of networks and initial conditions that exhibit a given class of

dynamics as we vary the mean network connectivity p. With sparse connectivity, the network

topology begins to approximate a chain, which we found to exhibit temporally-regular dynam-

ics in 97% of the 105 network states we tested and form a chimera state in the other 3%. With

dense connectivity, the topology approaches a fully connected network, which we found to

exhibit temporally-regular dynamics in all of the 105 network states we tested. For intermedi-

ate values of p in the range [0.2, 0.8], we find that the fraction of chimera states is a convex

function of p with a minimum at p = 0.5 (Fig 3A).

We also find that the frequency of temporally-regular network states increases with network

edge density. This result agrees with previous work that found a negative correlation between

edge density and time-to-synchronization [23, 24], except that our definition of synchrony

encompasses a broader range of network dynamics beyond all oscillators firing simultaneously.

Fig 2. Spike arrays from temporally-regular, chimeric, and temporally-irregular network states. Spike arrays showing the last 150 time-steps of

three different network states categorized by ISI statistics as temporally-regular (A), chimeric (B), and temporally-irregular (C). Nodes are sorted by

increasing time to the first spike. Compare the perfect timing (all spikes occur with the exact same ISI) in A to the random spiking in C.

https://doi.org/10.1371/journal.pone.0256034.g002
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Fig 3. Effect of edge density on state frequencies. One-hundred networks with 500 different initial conditions each

were generated with edge densities (p) between 0.2 and 0.8. The frequencies fs in A represent the fraction of all 50,000

network states generated at each p value that were classified as temporally-regular, chimeric, or temporally-irregular by

ISI statistics. The frequencies fn in B are the fraction of 100 networks that produced at least one temporally-regular,

chimera, or temporally-irregular state. Temporally-regular and temporally-irregular are abbreviated “regular” and

“irregular,” respectively.

https://doi.org/10.1371/journal.pone.0256034.g003
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Conversely, we find that the frequency of temporally-irregular network states decreases with

increasing edges density.

Network size scaling of class frequencies

We repeated these same simulations, now varying both the network size and the connection

density. We varied N between 16 and 416 and p between 0.2 and 0.8. For each value of N and

p, we generated 100 binomial random networks. We again simulated network dynamics over

10,000 time-steps and categorized the final 2,000 time-steps of the simulation using ISI analysis

(as described previously).

Fig 4 shows how the frequency of each class of dynamics depends on N and p. Two features

of this data deserve mention. First, for any given N, temporally-regular network states are

found more frequently at higher values of p. To note, p = 0.8 is an exception to this trend; for

large N, we find that the frequency of chimera states peaks near p = 0.8 (detracting from the

frequency of temporally-regular states). Fig 3 also shows a monotonic increase in temporally-

Fig 4. Effect of network size on state frequencies. Panels A-C show the frequency of temporally-regular, chimera,

and temporally-irregular states with network size N and p = 0.2, 0.25, . . ., 0.45. Each point represents a fraction of 100

networks whose dynamics were generated from random initial conditions; this means that the frequency of each state

for a single value of N and p should add to one. Panels D-F show the frequency of the three dynamical classes for the

same range of N and p = 0.5, 0.55, . . ., 0.8.

https://doi.org/10.1371/journal.pone.0256034.g004
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regular states with increasing p for N = 16. Second, as N increases, the frequency of tempo-

rally-regular network states increases for all values of p. This trend is mirrored by a decrease in

temporally-irregular dynamics with increasing N for all values of p. While the increase in the

frequency of temporally-regular dynamics is preserved for all network sizes, more densely con-

nected networks generally show this increase at a faster rate.

Degree heterogeneity and network class

The dependence of dynamics on network size can also be explained by degree heterogeneity in

the network. Binomial random graphs have a binomial degree distribution by construction, so

the expected mean degree in these networks is p(N − 1), and the expected variance is p(N − 1)

(1 − p). Hence, the width of the degree distribution relative to the mean scales by 1=
ffiffiffiffi
N
p

, mean-

ing that the degree distribution becomes relatively narrower as N increases. We will now show

that larger variance in the degree distribution favors temporally-irregular dynamics.

Unfortunately, it is not possible to separately manipulate the mean and variance of the

degree distribution of Erdös-Rényi networks. To test whether the shape of the degree distribu-

tion—specifically the width—has an independent effect on the class of dynamics, we need to

generate networks in which the expected mean degree is fixed but the expected degree variance

can be systematically adjusted.

In order to do this, we use the network generation method described by Chung and Lu [28]

as modified by Olhede and Wolfe [29]. Briefly, for an N-node graph, we draw a random sam-

ple p1, . . ., pN from some probability distribution F(p) with support in the unit interval. The

probability pij that the edge between nodes i and j will exist is then equal to pij = pi pj. A random

graph generated this way will have a degree distribution that is Poisson Binomial (a Poission

mixture of binomial distributions with different success rates pi), and the expected network

degree and degree variance will be equal to

hki ¼ ðN � 1Þm2 ð2Þ

s2

k ¼ ðN � 1Þ
2
m2 s2 þ

1 � ðm2 þ s2Þ

ðN � 1Þ

� �

; ð3Þ

where μ and σ2 are respectively the mean and variance of the distribution F(p) [29]. As an

example, if pi ¼
ffiffiffipp for all i, this method will generate standard binomial random graphs.

We chose a beta distribution for F, which has probability density function

pðxja; bÞ ¼
Gðaþ bÞxa� 1ð1 � xÞb� 1

GðaÞGðbÞ
; ð4Þ

where Γ(x) is the gamma function. The mean and the variance of the beta distribution are

m ¼
a

aþ b
ð5Þ

s2 ¼
ab

ðaþ bÞ
2
ðaþ bþ 1Þ

: ð6Þ

As α and β become large, the beta distribution becomes more narrow. We fix the expected

mean degree by setting the mean of the beta distribution to
ffiffiffipp . This generates an expected

mean connectivity of (N − 1)p, the same as in a binomial random graph with edge probability
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p. When we do this, the variance of the beta distribution will be

s2 ¼
pð1 � ffiffiffipp Þ
aþ

ffiffiffi
p
p ; ð7Þ

which demonstrates clearly that the degree distribution of the resulting graph will widen as

alpha is decreased (see Eq 3). We will refer to graphs generated via this method as “beta net-

works” in what follows.

Fig 5 shows results for ensembles of 1,000 beta networks at varying values of α. All networks

are of size N = 200 and were generated with p = 0.75. For comparison, we also include the

binomial random graph with N = 200 and p = 0.75. Fig 5A shows that the empirical mean

degree changes by less than one percent as α increases, while the empirical degree variance

decreases exponentially. Fig 5B shows the frequencies of the three classes of dynamics for each

value of α. We clearly see a decline in the frequency of temporally-irregular behavior as the

expected degree distribution narrows; this is occurring while the mean connectivity changes

by less than a percent. We thus conclude that heterogeneity in network degree tends to favor

temporally-irregular dynamics.

We also find that the frequency of temporally-regular dynamics increases as the degree dis-

tribution narrows, and the frequency of chimeric dynamics reaches a maximum at an amount

of variance in the degree distribution slightly larger than the binomial variance. The frequency

of chimeric dynamics is already high for G(200, 0.75) networks as shown in Fig 4, and it can be

further increased by slightly raising the variance of the degree distribution. These findings

demonstrate that dynamical patterns are strongly influenced by the expected mean and vari-

ance of the network degree distribution.

Normalized compression distance analysis

While ISI statistics are useful for characterizing spiking dynamics, we require that they be pre-

cisely equivalent to eight decimal places in order to identify synchronized. We thus sought a

Fig 5. Effect of degree heterogeneity on state frequencies. Panel A shows the degree statistics (mean and variance) for 1000 beta

networks of size N = 200 for each α value shown. The mean connectivities were fixed at a value corresponding to p = 0.75 in the

binomial random graph model. The axis label ‘B’ indicates a binomial random graph with N = 200 and p = 0.75; otherwise, the tick

label indicates the value of α. The empirical mean degree is plotted in black (left axis) and the empirical degree variance in red (right

axis). In each case, points mark the median ensemble value, and the vertical bars range from the first to third quartiles. The empirical

degree variance was shifted slightly to the right to minimize overlap of the data. Panel B shows the frequency of each network state

generated from the 1,000 beta networks for each α value, starting with random initial conditions. As α increases, the empirical degree

variance decreases resulting in fewer temporally-irregular and more temporally-regular network states.

https://doi.org/10.1371/journal.pone.0256034.g005

PLOS ONE Structured patterns of activity in pulse-coupled oscillator networks with varied connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0256034 August 11, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0256034.g005
https://doi.org/10.1371/journal.pone.0256034


more robust measure that could be used to analyze experimental data that might be corrupted

by noise. We introduce the use of NCDs [30] as an alternative method for analyzing dynamics.

Normalized compression distance is a universal similarity metric intended to approximate

the normalized information distance, which relies on noncomputable Kolmogorov complexi-

ties. With the following formula, we can calculate the distance between two sequences x and y:

NCDðx; yÞ ¼
CðxyÞ � minfCðxÞ;CðyÞg

maxfCðxÞ;CðyÞg
; ð8Þ

where xy denotes the concatenation of the two sequences, and the function C(�) returns the

length in bytes of the compressed sequence argument. Hence, NCD(x, y) measures the differ-

ence between the compressed lengths of the concatenated sequences and the shortest com-

pressed individual sequence. If x and y are completely unrelated, then C(xy) will be much

larger than C(x) or C(y), and NCD(x, y) will be close to one. If x and y are largely redundant,

then concatenating the two adds no extra information, and the compressed length of xy will be

similar to min{C(x), C(y)}, resulting in an NCD(x, y) value close to zero.

NCDs have been used to assess the similarity of musical pieces [31], text documents [32],

and SMILES representation of molecules [33]. With its wide range of uses, the efficacy of the

NCD formula depends critically on the compatibility of the data with the compression algo-

rithm used to compute C(�). For any given application, the compressor must satisfy the follow-

ing properties [34]:

• Idempotency: C(xx) = C(x)

• Symmetry: C(xy) = C(yx)

• Monotonicity: C(xy)� C(x)

• Distributivity: C(xy) + C(z)� C(xz) + C(yz)

In order to identify the most accurate method for calculating the NCD values of spike trains

(binary sequences), we measured all of these properties in multiple compressors. We found no

violations of distributivity or monotonicity using any of the compressors. We consider idem-

potency to be the most relevant property for capturing the structure of our data because it

directly indicates the ability of a compressor to detect shared information, a hallmark of syn-

chronous activity.

We tested two different implementations of prediction by partial matching that use arith-

metic encoding [35]. We also tested the Python gzip and bz2 compressors. Python gzip uses a

variant of the Deflate algorithm that involves combining the calculation of Lempel-Ziv com-

plexity [36] with Huffman encoding [37]. Python bz2 combines a Burrows-Wheeler transform

with Huffman encoding. Finally, we tested Google’s Snappy compressor which is optimized

for performance and does not use an entropy encoder at all.

Most of the compressors demonstrated poor idempotency, as indicated by high NCD values

between a sequence and itself, especially for long sequences (Fig 6A). The gzip and bz2 Python

modules outperformed both the prediction by partial matching algorithms and Google’s

snappy library with Python bindings; however, idempotency of the NCDs measured by gzip

begins to decline for sequences longer than 215 bits (29 sequence elements). This may have to

do with the sequence length exceeding gzip’s window size.

To preserve idempotency and eliminate the need for sequences to be shorter than 215 bits,

we introduced the use of Lempel-Ziv complexity (LZC) to calculate the NCDs between

sequences [36]. This substitution forms a distance metric similar to a formula previously used

for phylogenic tree construction with DNA nucleotide sequences [38]. LZC is a well-known
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approximation of the Kolmogorov Complexity, and it has been successfully used to estimate

the entropy of binned spike trains [39]. Moreover, LZC is the basis of another compression

algorithm (LZW) [40, 41], so there is a clear link between LZC and the compressed size of a

sequence. Importantly, when we calculated NCD using LZC(�) in place of C(�), the NCD

between a sequence and itself converges to zero with increasing sequence length, which signi-

fies that the idempotency property is satisfied (Fig 6A).

We used the following expression to calculate the symmetry ΔS of compressing two

sequences xy and yx given x and y as a fraction of the maximum compressed length:

DSðx; yÞ ¼
jCðxyÞ � CðyxÞj

maxfCðxyÞ;CðyxÞg
: ð9Þ

This normalization is consistent with that of the NCD metric. Values of ΔS greater than zero

indicate symmetry violations.

Most of the compressors frequently exhibited symmetry violations, but the average extent

of those violations ΔS was not concerning (Fig 6B). Using LZC, symmetry was violated in 90%

of sequence comparisons (xy and yx for some x and y) but �DS < 0:01. Though we find that

prediction by partial matching compressors have greater symmetry while processing our data,

their lack of idempotency makes them inadequate for the rest of our study. Prediction by par-

tial matching compressors are also typically more computationally expensive than other com-

pressors, and much more so than simple LZC calculation.

Finally, we compared NCD values between binomial random and periodic sequences as the

sequence length increased. As expected, when using LZC to calculate NCD values, the NCD

values of binomial random sequences converged to unity, and the NCD values of periodic

sequences stabilized at a smaller value independent of sequence length. LZC was the only com-

pressor that exhibited this behavior (not shown).

We used LZC to compute pairwise NCD values between all pairs of spike trains produced

by nodes in a given network; Fig 7 shows examples of typical NCD matrices for the three states

shown in Fig 2. We investigated many properties of these pairwise NCD matrices—mean, vari-

ance, degree of bimodality, and singular value spectrum—with the goal of identifying proper-

ties that distinguish matrices associated with the three broad classes of network behavior that

Fig 6. Compressor idempotency and symmetry. Five different compression algorithms were tested for idempotency

and symmetry in the normalized compression distance metric: the widely used “gzip” and “bz2,” two different

prediction by partial matching implementations “ppm” and “ppmc,” and Google’s “Snappy.” The Lempel-Ziv

complexity was also used as a proxy for compressed length in NCD calculation. Panel A shows the average NCD

between ten binomial random sequences (p = 0.5) and themselves for different sequence lengths (ideally, the NCD

should be close to zero). Error bars indicate the standard error of the mean. The dashed vertical line indicates the

length of the spike trains analyzed in the rest of this study. Panel B shows size of symmetry violation (see Eq 9) against

the frequency of a violation for 1,000 different pairs of binomial random sequences (p = 0.5). Error bars indicate 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0256034.g006
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we observed. However, we conclude that the best way to use NCD values to delineate between

the three broad classes of dynamics is as follows:

1. Temporally-irregular: all pairwise NCD values are greater than the threshold of 0.3

2. Temporally-regular: all pairwise NCD values are less than or equal to the threshold of 0.3

3. Chimeric: at least one pairwise NCD value is above 0.3, and at least one pairwise NCD

value is below 0.3

The threshold value of 0.3 was chosen such that the NCD classifications had maximal over-

lap with ISI classification. 92% of 35,000 network states sampled from Fig 3 were classified the

same (Table 1). Raising the threshold value for NCD classification increases the percentage of

network states classified as temporally-regular by both methods, but decreases the number of

network states classified as temporally-irregular by both methods. The fact that we find consis-

tent classification results using NCD and ISI analyses indicates that both methods can be used

to identify dynamical patterns in our simulated spike array data. Much like ISI analysis, NCD

matrices illustrate which nodes are synchronized (low pairwise NCDs) and which are not

(high pairwise NCDs), as shown in Fig 7.

One of our main findings is that any attempt to separate these states with perfect accuracy

is a priori unachievable, because chimera states are not characterized by a single set of unique

Fig 7. NCD matrices of temporally-regular, chimeric, and temporally-irregular network states. Calculation of the pairwise NCDs for the 16 nodes

of the spike arrays shown in Fig 2 yields matrices that are indicative of three different network states. Both by ISI statistics and NCD, A is a temporally-

regular state, B is a chimera state, and C is a temporally-irregular state.

https://doi.org/10.1371/journal.pone.0256034.g007

Table 1. Network state classification by ISI statistics and NCD values.

NCD category

regular chimera irregular

ISI category regular 0.03 0.01 0

chimera 0.00 0.13 0.01

irregular 0 0.06 0.76

Comparison of categorization with ISI statistics and NCD using 35,000 network states consisting of a random sample of 50 networks and 100 corresponding

initializations for each p in Fig 3. The fraction of network states with the corresponding ISI and NCD categorizations are reported in each cell. Network states classified

the same by both methods are shown on the diagonal while network states categorized differently are on the off-diagonal. Numbers on the diagonal should be compared

to values in the same row or column, as the sample is highly unbalanced—the vast majority of states in this sample are temporally-irregular.

https://doi.org/10.1371/journal.pone.0256034.t001
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dynamics. Instead, they exhibit dynamics that smoothly transition between temporally-regular

and temporally-irregular dynamics (Fig 8).

To demonstrate this transition, we computed Jensen-Shannon distances between the NCD

distributions of 1,260 network states (420 states from each class, as determined by ISI statis-

tics). Within the chimeric class, we ensured that there was a total of 30 states that exhibited

Fig 8. NCD distributions of 1,260 different network states. Panel A shows the pairwise Jensen-Shannon distances (JSDs) between the NCD

distributions of 1,260 different network states. Thick black lines separate the three different classes of network behavior as determined by ISI statistics.

The JSDs within each block are sorted by increasing NCD distribution entropy from left to right. For the chimera states, 30 network states with each

number of synchronized nodes (2 to 15) are shown. Panel B shows the distribution of the number of NCD values for each network state in A, and panel

C shows the distributions of NCD values that are compared pairwise in the Jensen-Shannon distance matrix.

https://doi.org/10.1371/journal.pone.0256034.g008
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synchronized dynamics among n of N nodes, with n = 2, . . ., 15. Fig 8A shows the JSDs

between all pairs of network states. The large JSDs between temporally-regular and tempo-

rally-irregular states indicate the clear difference between their underlying dynamical patterns,

as captured by their NCD distributions. We find that chimera states with more synchronized

nodes have pairwise NCD patterns that are more similar to those of temporally-regular states,

while chimera states with fewer synchronized nodes exhibit pairwise NCD patterns that are

more similar to temporally-irregular states. These trends illustrate how chimera states exhibit a

range of different dynamical patterns that interpolate between temporally-regular and tempo-

rally-irregular dynamics.

Finally, high JSDs among temporally-regular states indicate that these states do not mani-

fest as a single, monolithic synchronous network state (i.e., all nodes firing at the same time-

step), but rather exhibit differences in their distributions of NCD values. The NCD distribu-

tions of temporally-regular states usually have a small number of unique values, often only one

NCD value. These NCD values differ because temporally-regular network states have different

mean ISIs, although there is not a one-to-one relationship between a set of mean ISI values

and a set of pairwise NCD values. Differences in narrow distributions of NCD values result in

large JSDs between different temporally-regular states, even though the underlying dynamics

of temporally-regular states are more similar to each other than they are to states in the two

other classes.

Behavior in other random graphs

In order to verify that the coexistence of these three dynamical states is not specific to Erdös-

Rényi graphs, we characterized the dynamical states in other well-known random graphs, Bar-

abási-Albert [42] and Newman-Watts-Strogatz [43, 44]. We find examples of all three network

states in both network topologies (Fig 9), which can be classified similarly by ISI and NCD

(Tables 2 and 3). This suggests that NCDs could be a useful strategy for analyzing real-world

networks, which often exhibit the characteristics of multiple idealized network models (i.e., the

power law degree distribution of Barabási-Albert networks and the high clustering coefficient

of Newman-Watts-Strogatz networks). Moreover, observing these states in other random

graph ensembles suggests that they can coexist in phase space even in large graphs. While for

binomial random graphs the degree fluctuations relative to the mean decay like 1=
ffiffiffiffi
N
p

as the

size of the graph increases, this is not true in graphs with power law degree distributions like

the Barabási-Albert network.

Discussion

This study introduces two methods for identifying dynamical patterns in pulse-coupled oscil-

lator networks. We find a form of structured activity (“temporally-regular”) in which nodes

fire on predictable intervals, but not necessarily in phase with one another (Fig 2A). These reg-

ular network states can also be identified by their low pairwise NCD values among nodes and

small number of unique pairwise NCDs (Figs 7A and 8B). We also identified a second form of

structured activity that is consistent with previous definitions of a chimera state. In these net-

work states, at least one group of nodes fires coherently while the rest of the nodes in the net-

work fire without any recognizable pattern (Fig 2B). These network states typically have both

high (> 0.3) and low (< 0.3) NCDs between nodes (Fig 7B), and the distribution of NCD val-

ues is correlated with the number of nodes that fire on the same interval (Fig 8C). Using ISI

statistics, we have found cases where two or more group of nodes are synchronized but exhibit

different intra-group dynamics; such states have been previously identified as “multichimera
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states” [13]. We also observe network states without any coordinated activity that can be iden-

tified by either ISI or NCD analysis, and we refer to these states as temporally-irregular.

Previous work on pulse-coupled oscillators found long, disordered transients with positive

maximum Lyapunov exponents estimated analytically [23]. This suggests that our temporally-

irregular states are likely chaotic. However, more remains to be done on this point.

While we identify three broad dynamical patterns with both ISIs and NCDs, both of these

classification methods indicate that the patterns form a continuum of dynamical behavior

rather than classes that can be perfectly separated. This is consistent with previous work that

used measures such as the order parameter [11, 13, 16] or curvature [20] to quantify the degree

Fig 9. Temporally-regular, chimeric, and temporally-irregular states in other random graph ensembles. Panels A-C show sample NCD matrices for

Barabási-Albert pulse-coupled oscillator networks with 16 nodes. The mean degree in these networks was drawn randomly from a uniform distribution

with range [3,15). According to both ISI and NCD-based categorization, A is a temporally-regular state, B is a chimera state, and C is a temporally-

irregular state. Panels D-F show sample NCD matrices for states of 16-node Newman-Watts-Strogatz networks. Each node is connected to its two

nearest neighbors and additional edges were added with probability drawn randomly from a uniform distribution with range [0.2,0.8). Similar to the

first row, (D) is a temporally-regular state, (E) is a chimera state, and (F) is a temporally-irregular state.

https://doi.org/10.1371/journal.pone.0256034.g009

Table 2. Network state classification by ISI statistics and NCD values in Barabási-Albert network states.

NCD category

regular chimera irregular

ISI category regular 0 0 0

chimera 0 0.15 0.00

irregular 0 0.01 0.84

Comparison of categorization with ISI statistics and NCD using 35,000 Barabási-Albert network states. 100 networks were generated for each m = 2, 3, . . ., 8, and 50

states were produced from each network with different random initial conditions. The overall agreement calculated as the sum of the diagonal over the total sum is

98.9%.

https://doi.org/10.1371/journal.pone.0256034.t002
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of synchronization on a continuous scale and then partition this continuum into discrete net-

work states.

There are benefits and drawbacks to using either ISIs or NCDs to characterize network

state dynamics. We proposed NCDs as a method of analyzing spike arrays that may exhibit

synchronous activity but that does not manifest as sets of nodes with precisely identical ISI sta-

tistics (potentially due to noise). However, calculating NCDs is much more computationally

expensive. Parallelizing network state analysis using either method greatly reduces runtime,

but the runtime of the NCD calculation is very sensitive to the compression algorithm and its

specific implementation. We have shown that the two methods agree on the majority of net-

work state classifications, but neither can be considered a “ground truth” synchronization met-

ric, and thus either may be useful depending on the data one wants to analyze.

We found that edge density and variance of expected degree distribution impacted the ten-

dency of Erdös-Rényi graphs to exhibit different classes of dynamical behavior (Figs 3–5).

Overall, greater variance in degree distribution and intermediate edge densities resulted in pri-

marily temporally-irregular dynamics while narrower degree distributions and high edge den-

sities resulted in primarily temporally-regular dynamics. There appears to be a range of N for

our networks that produces a higher frequency of chimera states for all p, and this range sepa-

rates the high frequency of temporally-irregular dynamics at low N and the high frequency of

temporally-regular dynamics at high N. Consequently, it can be inferred that moderate

amounts of variance in the expected degree distribution likely favor chimera states. It remains

unknown how edge density and other graph statistics impact these classes of dynamics in

other network ensembles. Barabási-Albert networks are known to be sparsely connected and

have a scale-free degree distribution, so we hypothesize that chimeric and temporally-irregular

dynamics will more frequently arise in these networks.

Another study that addresses the relationship between network size and dynamics with a

theta neuron oscillator model also found a higher frequency of temporal regularity in larger

networks [21]. This study focused on networks of 5,000 phase oscillators and used the Kura-

moto order parameter [6] to identify temporally-regular dynamics. Our methods of categoriz-

ing networks of pulse oscillators are quite different—they more intuitively identify subgroups

of synchronized nodes that make up chimera states, and they characterize discrete, rasterized

data—but they also find an increase in temporally-regular dynamics with N. Two studies that

measure the time-to-synchronization T of communities of pulse oscillators have found a

dependence of T on N. One study claims that there is a power law relationship between T and

N [24], and another claims that T increases exponentially with N [23], but this was found in

the range N = [10, 25] and with p = 0.8. We too find a sharp increase in irregular dynamics

within the range N = [16, 32], and a sharp decrease following N = 32, which agrees with both

of these findings if we consider low T congruent with temporally-regular dynamics (Fig 4).

Table 3. Network state classification by ISI statistics and NCD values in Newman-Watts-Strogatz network states.

NCD category

regular chimera irregular

ISI category regular 0.23 0.26 0

chimera 0 0.19 0.01

irregular 0 0.07 0.25

Comparison of categorization with ISI statistics and NCD using 35,000 Newman-Watts-Strogatz network states. 100 networks were generated for each combination of p
and k that resulted in an approximate connection density of 0.2, 0.3, . . ., 0.8. These combinations were (p, k) = (0.5, 2), (0.1, 4), (0.5, 4), . . ., (0.5, 8). 50 states were then

produced from each network with different random initial conditions. The overall agreement calculated as the sum of the diagonal over the total sum is 66.9%.

https://doi.org/10.1371/journal.pone.0256034.t003
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In this study, we assumed that delays in signal propagation were infinitesimal. In future

work, it would be interesting to determine how finite time delays interact with network topol-

ogy to shape collective dynamics. One study found that globally connected pulse oscillators

with the same phase resetting curve fired in unison for some range of delay values, and that

both excitatory and inhibitory networks can achieve a synchronous state where all oscillators

fire periodically in unison for a delay in that range [45]. It is not yet fully understood how

delays or inhibitory connections (we considered only excitatory) impact the distribution of

dynamical classes within this model, especially when considering that there are different ways

of identifying dynamical patterns.
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12. Zakharova A, Kapeller M, Schöll E. Chimera death: Symmetry breaking in dynamical networks. Physi-

cal Review Letters. 2014; 112:154101. https://doi.org/10.1103/PhysRevLett.112.154101 PMID:

24785041
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