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Mycobacteria are members of the Actinomycetales order, and they are classified into one
family, Mycobacteriaceae. More than 20 mycobacterial species cause disease in humans.
The Mycobacterium group, called the Mycobacterium tuberculosis complex (MTBC), has
nine closely related species that cause tuberculosis in animals and humans. TB can be
detected worldwide and one-fourth of the world’s population is contaminated with
tuberculosis. According to the WHO, about two million dies from it, and more than nine
million people are newly infected with TB each year. Mycobacterium tuberculosis (M.
tuberculosis) is the most potential causative agent of tuberculosis and prompts enormous
mortality and morbidity worldwide due to the incompletely understood pathogenesis of
human tuberculosis. Moreover, modern diagnostic approaches for human tuberculosis
are inefficient and have many lacks, while MTBC species can modulate host immune
response and escape host immune attacks to sustain in the human body. “Multi-omics”
strategies such as genomics, transcriptomics, proteomics, metabolomics, and deep
sequencing technologies could be a comprehensive strategy to investigate the
pathogenesis of mycobacterial species in humans and offer significant discovery to find
out biomarkers at the early stage of disease in the host. Thus, in this review, we attempt to
understand an overview of the mission of “omics” approaches in mycobacterial
pathogenesis, including tuberculosis, leprosy, and other mycobacterial diseases.
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INTRODUCTION

Mycobacterial disease such as tuberculosis (TB) continues to be one of the world’s leading infectious
diseases, claiming over 1.5 million lives annually or 4000 lives each day, and the Global TB Report
2020 predicts that 10 million new cases and 1.4 million fatalities occurred in 2019 (Chakaya et al.,
2021; Parvez, 2022). Antimicrobial drug resistance (AMR) is accountable for 3.4 percent of new TB
infections worldwide and up to 50% of earlier treated patients in certain parts of the globe (Goff
et al., 2020; Harding, 2020). The Mycobacteriaceae family includes the genus Mycobacterium,
composed of more than 200 species with diverse host reservoirs, varying degrees of pathogenicity in
animals and humans, epidemiology, and management despite sharing some basic features
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(Kanabalan et al., 2021). Mycobacterium can be classified into
two distinct categories based on their growth rates: slow-growing
Mycobacteria and fast-growing Mycobacteria. For instance, fast-
growing bacteria, such as Mycobacterium smegmatis, are
recognized as opportunistic or non-pathogenic bacteria, while
slow-growing Mycobacteria, including M. bovis, M. tuberculosis
(Mtb), and M. leprae, cause bovine tuberculosis (BTB), human
TB, and leprosy, respectively (Forrellad et al., 2013).
Mycobacterium tuberculosis complex (MTBC) group causes
various diseases such as TB and leprosy, skin infections,
contributing to increased mortality and morbidity globally.
The Mycobacterial species has long been recognized as holding
a substantial influence on various sectors, including trade and
health, notably TB in humans and other animals. These species
can be distinguished from one another through insertional or
deletional mutations; however, they are considered to share a
common ancestor under evolutionary biology (Pereira
et al., 2020).

The discovery of new biomarkers and drugs to treat
mycobacterial diseases such as TB and leprosy is very
challenging. Multiple factors, including bacterial phenotypes,
the lipid-rich Mtb cell wall as a defense barrier to drug uptake,
a slow-growing pathogenic bacterium, drug resistance, drug
penetration into bacterial sites, heterogeneity of the clinical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
disease, the insufficient number of approved drug targets, the
demand for the combination of drug therapy, and the length and
expense of clinical trials contribute to the difficulty of this task
(Goff et al., 2020). Multi-omics techniques are critical in the early
disease investigation for novel biomarkers and anti-tuberculosis
medicines. Omics methods measure and analyze a class of
biological components including DNA, RNA, protein, and
metabolites to discover novel targets in druggable pathways for
target-based research and characterize the mechanism of action
of lead compounds obtained from high-throughput screens. The
benefit of multi-omics methods is that they are unsupervised and
impartial, making them valuable tools for confirming
pharmacological action, elucidating new insights into the
compound’s function, and identifying novel biomarkers and
pathways for future study (Figure 1) (Hasin et al., 2017; Goff
et al., 2020).

In this complete review article, the use of multi-omics
techniques, such as genomics (DNA), transcriptomics
(mRNA), proteomics (proteins), metabolomics (metabolites),
and lipidomics (lipids), will be discussed as a framework for
developing biomarkers for mycobacterium disease. Multi-omics
may provide a comprehensive view of dynamic protein-protein
interactions and host-bacterial defense regulation. These insights
could significantly contribute to the identification of host
FIGURE 1 | Potentials and suggestions for using different “omics” methods to discover prospective host biomarkers to develop mycobacterial illness diagnostics.
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biomarkers. Multi-omics approaches have the potential to
identify precise host response biomarkers efficiently. These
biomarkers may be well-defined biosignatures unique to Mtb
and M. leprae infections.
MYCOBACTERIA, HOSTS AND DISEASES

The mycobacterium genus possesses a slightly curved or straight
rod morphology (0.2-0.7 x 1.0-10 µm); however, the
mycobacterial shape within alveolar macrophages changed
from shorter ovals measuring about 0.5 to 1 µm to traditional
rods of around 2-4 µm in length and long filamentous forms
measuring over 6-7 µm in length (Ufimtseva et al., 2019).
Mycobacterium is non-spore producing, aerobic to
microaerophilic, and show the actinomycetes group
characteristics such as complex cell wall envelope and
differential staining procedure known as Zhiel-Neelsen acid-
fast stain (Forrellad et al., 2013). The genus includes obligate
parasites, opportunistic pathogens, and saprophytes. Based on
mycelia type colonies, Lehman and Newman coined the term
‘Mycobacterium’ that exhibits different nutritional requirements
and ranges of virulence. Aerobic and chemo-organotrophic
mycobacteria show prolonged growth and form visible colonies
at optimal temperature in 2-60 days, which may be pink, orange,
or yellow depending on light exposure and pigment. Some
species show fastidious, require special supplements and take
more culture-time to grow than others, e.g.,M. avium subspecies
paratuberculosis (Singh et al., 2013) and non-cultivable (M.
leprae and M. lepromatosis); however, it closely resembles Mtb
(Singh et al., 2015b). Mycobacteria have high, 62-70%, G+C
DNA content and a lipid-rich cell wall composed of mycolic acid
(C60-C90) and dehydrated menagenunones. Around 40 species
of mycobacteria are associated with human diseases that usually
produce slow disease, especially slow-developing destructive
granuloma that many undergo necrosis with cavitation or
ulceration. Genus Mycobacterium is generally non-motile and
produces no endospores. Although M. marinum is motile inside
macrophages, and M. marinum and M. bovis produce spores
(Brennan and Nikaido, 1995; Parish and Stoker, 1998).

In the present situation, Mtb, M. bovis, M. leprae, and M.
lepromatosis are the most common and causative agents of
human TB, bovine TB, leprosy (Hansen’s disease), and diffuse
lepromatous leprosy, respectively (Singh et al., 2015b). TB
infection generates various host immunological responses that
are potentially reliant on host genetic factors and are the primary
source of disease susceptibility (Sinha et al., 2014). Other non-
tuberculosis mycobacteria, M. leprae, a remarkably non-toxic
bacteria, cause leprosy, a severely debilitating and stigmatizing
nerve disease such as demyelination of the nerve. Anti-myelin
basic protein (MBP) autoantibodies generated against peripheral
nerves are responsible for pathological degradation of the myelin
sheath. The host’s immunological response to M. leprae causes
most tissue and neurological damage in leprosy patients result in
M. leprae-specific hypersensitivity responses, such as type-1
(reversal) reaction (T1R) and erythema nodosum leprosum
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(ENL) (Singh et al., 2015a; de Macedo et al., 2018).
Furthermore, M. bovis, a zoonotic bacterium that causes
incurable tuberculosis in animals and humans, represents
severe global health threats as multi-drug and pan-drug
resistance strains grow more frequently in the host (McNees
et al., 2015; Olea-Popelka et al., 2017)

Hosts and pathogens have evolved new strategies for their
growth and survival. Fundamentally, bacterial pathogens search
for food or energy for their growth, survival, and reproduction.
Mtb uses an altered metabolic pathway as a weapon to survive for
a prolonged period within the host. In contrast, the host actively
depletes nutrients from the intracellular space and pathogen-
containing vacuole. This process is called nutritional immunity
(Berney and Berney-Meyer, 2017).

Consequently, the host undergoes several changes during
infection at the genomic, transcriptomic, and proteomic levels.
In addition, the host has developed many metabolic strategies to
limit nutrients during infection and bacterial growth. In
addition, amino acid and cofactors metabolism are the primary
requirements for the virulence of Mtb and other pathogenic
mycobacteria. Such pathways could potentially be suitable
targets for antimicrobial therapies (Figure 2).
MULTI-OMICS APPROACHES IN THE
PERSPECTIVE OF HOST-PATHOGEN
INTERACTION

Current diagnostics for understanding complicated host-Mtb
interactions are insufficient, while omics-based techniques are
more accurate in predicting a more comprehensive picture of
mycobacterial disease outcomes. Research advancing related to
genomics, transcriptomics, proteomics, metabolomics,
lipidomics, glycomics, and glycoproteomics provide additional
pathways for investigating the fundamental biology of Mtb
infection. Earlier studies reported that a systems-level approach
based on a two-way proteome microarray strategy could quickly
provide useful proteome-wide information and identify novel
Mtb-Human interactions using 1H nuclear magnetic resonance
(NMR) spectroscopy, proteome microarray and mass
spectrometry (MS) (Zhou et al., 2013; Lau et al., 2015). Specific
Mtb-derived glycolipids, mycolic acids and resolvins like
metabolites are attractive diagnostic markers for MTBC
infection and may modulate host-pathogen interactions,
pathogenesis, and resolution (Frediani et al., 2014). Moreover,
microRNAs (miRNAs) are a class of highly conserved, single-
stranded RNA signatures that correspond to novel biomarkers
for TB disease and regulate the expression of target mRNAs
(Miotto et al., 2013). Researchers investigated protein N-
glycosylation regulation in macrophages and their secreted
microparticles useful in intercellular communication during
MTBC infection. The modulation of glycosylation enzymes,
their receptors and the N-glycome in in-vitro differentiated
macrophages during Mtb infection can be studied using LC-
MS/MS-based proteomics and glycomics techniques (Hare
et al., 2017).
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MULTI-OMICS APPROACHES TO STUDY
MYCOBACTERIAL DISEASES

Previously, the culture technique was the gold standard for
diagnosing TB patients, although it is time-consuming and
labor-intensive and other techniques for diagnosing TB possess
low sensitivity and specificity (Pandey et al., 2016). Furthermore,
the aforementioned mycobacterial species discovered several
strategies to build a viable human habitat, including
modulating host immunological response. Current diagnostic
techniques for detecting these invaders are insufficient and have
numerous flaws (Thomas et al., 2021). However, all of the
knowledge on the pathways and components responsible for
these microbes’ detrimental effects has come from pure culture
strain studies, which provides little insight into positive results
(Lagier et al., 2015). There is an urgent need to create innovative
multi-omics technologies that can represent the abilities and
activities that those particular microbes can do. “Multi-omics”
strategies such as genomic, transcriptomic, proteomic, and
metabolic could be a broad strategy to investigate the
pathogenesis of mycobacteria in humans and animals
(Table 1). Multi-omics approaches could offer significant
discovery at the early stage of disease in the host.

Genomics Approaches for Pathogenic
Mycobacterium genus
The biological system relies on a central dogma (DNA-RNA-
Protein) that determines the characteristics and phenotype of any
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
cell species (Franklin and Vondriska, 2011). The first efforts at
molecular typing of Mtb focused on finding Mtb-specific nucleic
acids using amplification methods and discovering gene
mutations through sequencing. Early investigations employed
probe-based typing approaches such as IS6110-RFLP (genetic
fingerprint) and PFGE typing to distinguish Mtb and M. bovis
(BCG strain) strains. Second-generation genomic techniques for
Mtb molecular typing include mixed-linker PCR (ML-PCR), fast
ligation-mediated PCR (FliP), and ligation-mediated PCR (LM-
PCR) (Jagielski et al., 2014). Furthermore, spoligotyping based on
direct repeats loci and MIRU-VNTRs based on mycobacterial
interspersed repetitive units have been utilized for phylogeography
of the Mtb complex (Bouklata et al., 2015). Other technologies,
such as GeneXpert (cartridge-based nucleic acid amplification
assay), may identifyMtb genetic alterations linked with rifampicin
resistance (Bunsow et al., 2014). Third-generation sequencing
technologies evolve a series of steps incorporated with DNA
extraction, its amplification, sequencing, structural and
functional annotation of the genome, which is now successfully
used to identify prospective products derived from the genetic
code and their viable pathways (Heather and Chain, 2016).
Comparative genomic research between the generic pathways of
available Mycobacterium species provided information about the
unique functional capabilities of the particular species strain with
special reference to the substructure of potential drug targets (Ilina
et al., 2013). High-throughput gene expression technologies have
revolutionized medical research and are mainly driven
by technological advances that have positively impacted the
FIGURE 2 | A proposed multi-omics framework and novel biomarker discovery for disease/progression control.
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cost-efficient, high-throughput analysis of biological molecules
(Goff et al., 2020). Moreover, Array-based comparative genomics
demonstrated the potential approach for retracing microbial
evolution, molecular epidemiology, and pathogenesis. A study
based on high-density oligonucleotide microarray demonstrated
that epidemiologically and clinically characterized Mtb can be
utilized for genetic variability among the natural population and
detect trim-level genomic deletions (Kato-Maeda et al., 2001).

Comparative Genomics of Vaccines
by Whole-Genome DNA Microarray
The Behr group investigated the genomic compositions of M.
bovis, Mtb, and several BCG (Bacille Calmette-Guerin) daughter
strains utilizing comparative hybridization on a DNA
microarray. With the aid of sequencing across the missing
section of the reference strain’s genome, deleted regions from
BCG vaccinations were established relative to Mtb H37Rv
reference strains. In this study, eleven H37Rv regions were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
absent from one or more virulent M. bovis strains; however,
five moreM. bovis regions were missing from some BCG strains,
indicating that BCG strains have been evolving since their
inception. This thorough understanding of genetic diversity
across closely related mycobacterial species gives reasonable
ways for developing the groundwork for improved diagnostic
approaches and vaccines (Table 2) (Behr et al., 1999). Expression
quantitative trait loci (eQTL) were verified as significant in
explaining genome-wide association studies (GWAS) to
identify single nucleotide polymorphisms (SNPs), genes at
GWAS loci, and investigate drug resistance-related mutations
(Nica and Dermitzakis, 2013). An Illumina whole-genome
sequencing study revealed the minimum inhibitory
concentration (MIC) for 12 anti-TB drugs when tested
together on 1452 clinical Mtb isolates and the genome-wide
associations between mutations in the non-coding region ofMtb
genes and resistance. This study was verified using a data
collection of 792 patient isolates, and the findings revealed
TABLE 1 | Advantages and disadvantages of the analytical techniques employed in omics research.

Omics
approaches

Strengths Weaknesses Recent improvement References

Genomics and
Epigenomics

High throughput sequencing
technique
Provide static link to the
organism
Reference genome databases
are obtained for
reconstruction
Gene of interest can be
represented in the form of
static image

Activity of sequenced genetic
element cannot be determined
Reconstruction of genome found
difficult using bioinformatic software
Short read sequencing produce
“hard to sequence” intervals

Third generation sequencing
Facilitate genome sequencing along
with epigenetic determination
Higher throughput for shotgun meta-
genomics

(Bovee et al., 2008; Sims et al.,
2014; van Dijk et al., 2018)

Transcriptomics Provide effective combination
with single cell techniques
Ample information about data
is produced
Broad information about
environment specific
requirement of microbe

Handling errors are accepted
during RNA isolation and
sequencing
RNA restricted technique which
provides only snapshot for
requirement of the organism
RNA’s existence does not strictly
forecast the translation into
proteins

Higher throughput Next Gen
Sequencers (NovaSeq 6000)
Provide meta-transcriptomics
approach for large systems
More reliable software for variant
determination and integration

(Lohse et al., 2012; Vogel and
Marcotte, 2012; Dagogo-Jack and
Shaw, 2018)

Proteomics known protein database
predict its relatable
functioning
provide direct link between
organism phenotypic
characteristics and proteomic
profile
provide more stable snaps of
organism requirement than
comparatively other omics
approaches

throughput capabilities do not keep
pace with other omics technologies
protein research with MS
machinery is quite expensive
vast array protein analysis get
exemption as splitting large protein
molecule into small one to facilitate
MS analysis

Orbitrap Mass Spec recently added to
provide ionization of immensely
complex proteins
liquid chromatography in combination
with multiple MS’s facilitate accurate
description of specific groups of
proteins
PECAN evolved as powerful analytical
tool to facilitate accurate predictions
specifically from untargeted
proteomics

(Pascal et al., 2008; Michalski et al.,
2012; Consortium, 2015; Ting et al.,
2017; Monaci et al., 2018)

Metabolomics Interlink phenotypic
characters with metabolomic
profile of organism
Provide snapshot for already
studied metabolite
simultaneously
Provide variety of applications
across many fields

Sampling artifacts are accepted
due to transient nature of
metabolites
Machine processing is expensive
(LC/GC and MS)

High resolution of specific groups is
attained with LC or MS
High Temperature-Ultra High-
Performance LC (LC-MS/MS) are
facilitating detection of previously
complex metabolites
single cell sorting advances are
presenting hope for robust and more
accurate single-cell metabolomics in
the nearest future

(Wang et al., 2014; Chetwynd et al.,
2015; Rebollar et al., 2016; Ferrocino
and Cocolin, 2017; Zhang and
Vertes, 2018)
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correlations at 13 non-canonical loci with two non-coding areas
(Farhat et al., 2019).

Most GWAS are conducted on African populations; however,
there is potential to discover new targets in genetically different
populations that might be beneficial for conducting multi-stage
GWAS in an Indonesian cohort (Peprah et al., 2015). Initially,
DNA microarrays were helpful in mapping the fluctuating
abundance of transposon (Tn) mutants and transposon site
hybridization (TraSH), which has recently been combined with
whole-genome sequencing (Tn-seq) to achieve volumetric
genomic resolution. Tn mutant in-vitro screening is a valuable
technique for identifying genetic pathways involved in the
development of Mtb and M. bovis (DeJesus et al., 2017). Jian’s
group started a genome-wide transcriptomics approach that
provides the first insights into Mtb reaction to the coumarin
derivative Osthole (7-methoxy-8-isopentenoxycoumarin) from
medicinal plants, as well as the anti-mycobacterial effect of
Osthole (Wei et al., 2013). Previous research built phylogenetic
trees based on core proteins for 150 species, including the genus
Mycobacterium, Actinobacteria, and others, and introduced new
omics techniques known as comparative genomic analysis with
phylogenomics analyses on mycobacterial genomes to describe
their interrelationships (Gupta et al., 2018). Another research
demonstrates the first whole-genome analysis of a Mycobacterium
sp. UM CSW was isolated from a bronchiectasis patient using
comparative genomics, molecular phylogenetic, ANI, and AAI
studies (Choo et al., 2016).

Gene Chips and CRISPR Interference
(CRISPRi) Techniques for the Diagnosis of
Mycobacterial Diseases
Investigations revealed that instead of traditional methods such as
tissue inspection under a microscope, genetic profiling could
diagnose and classify leprosy infections correctly. Gene
expression profiling showed significant differences in gene
expression and classified the disease’s clinical type (King and
Sinha, 2001). Further investigation suggests that DNA
microarrays and gene chips are viable approaches for
monitoring the activity patterns of different immune-system
genes throughout various stages of the illness. As a result, gene
expression profiles define the clinical form of the illness and
provide a better knowledge of how immune responses to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
pathogens are regulated. In addition, more active genes
stimulate killer T cells, known to fight invading infections
(Bleharski et al., 2003; Zheng et al., 2020).

Moreover, single guide RNA (sgRNAs) libraries were created
using Clustered Regularly Interspaced Short Palindromic
Repeats interference (CRISPRi), a high throughput screening
method. CRISPRi (dCas9-sgRNA complex) disrupts RNA
polymerase promoter access, destabilizes the DNA duplex, and
inhibits gene transcription. Thus, gene silencing of Mtb strains
by CRISPRi can identify and validate therapeutic targets (Goff
et al., 2020). Many genes, which are CRISPRi targets and allow
for high-throughput screening techniques, were used to create
libraries comprising more than 90,000 sgRNAs and create pools
of variousMtb strains. S. thermophilus CRISPRiCas9 (Sth1Cas9)
systems have recently been used in Mtb and other NTMs to
enable gene editing and effective CRISPR interference-mediated
transcriptional regulation (Meijers et al., 2020). Hence, the
advancement of next-generation sequencing technologies,
including Illumina sequencing (short sequence reads), PacBio
(long-read sequencing), and Oxford Nanopore (structural
variation and sequencing repetitive regions), as well as
decreasing technology costs over time, have allowed for the
incorporation of whole-genome sequencing into the drug
discovery pipeline for mycobacterial diseases (Niedringhaus
et al., 2011).

Transcriptomics Approaches for
Pathogenic Mycobacterial Species
The transcriptomics approach involves collecting an RNA
expression profile, which is highly dynamic compared to
constant genome profiling and employs gene expression,
microarray, RNA sequencing (RNA-seq), digital profiling, and
serial analysis of gene expression in microbes (Lowe et al., 2017).
Transcriptomics research provides information for mycobacterial
responses and understanding the mechanism of pathogenicity and
therapeutic action. It also finds novel drug targets and assigns gene
functions. It is also an essential technique for detecting pathogenic
mycobacterium species (Boshoff et al., 2004). Furthermore,
methods such as RNA-seq, comparative microarray, next-
generation sequencing (NGS), and cDNA suppression
subtracted hybridization (SSH) are appropriate for studying the
whole transcriptome of pathogenic mycobacterial species.
TABLE 2 | Comparative genome characterization and synteny of pathogenic mycobacterial species and their strains.

Characteristics Mycobacterium
tuberculosis H37Rv

M. avium
104

M. avium subsp.
paratuberculosis

K10

M. avium subsp.
paratuberculosis S5

M. avium subsp.
paratuberculosis

MAP4

Mycobacterium
lepare

Mycobacterium
lepromatosis

Size (bp) 4,411,532 5,475,491 4,829,781 4,798,157 4,829,424 3,268,210 3,215,823
GC content
(%)

65.61 68.99 69.30 69.25 69.30 57.79 57.89

Protein coding
genes

4,018 5,120 4,350 4,288 4,326 1,614 1,477

Functional
assigned

3,507 3,547 1,231 1,657 3,193 308 143

Hypothetical 511 1,573 3,119 2,631 1,133 1,306 1,334
tRNAs 45 46 45 46 46 45 45
rRNAs 3 3 3 2 3 3 3
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Recently, RNA-seq gene expression studies have shown the ability
to capture pictures of the differential expression of transcripts seen
in mycobacterium species (Chung et al., 2021). Previous research
revealed a new transcriptomic method that used overlapping of
chromatin immunoprecipitation sequencing (ChIP-seq) RNAP
(RNA Polymerase), and NusA RNA-Seq data to detect sRNA
expression in Mtb. In addition, many sRNAs, including
ncRv11806 and DrrS, were expressed in the stationary phase,
suggesting their relevance to mycobacterial latency and long-term
pathogenicity (Ami et al., 2020). Furthermore, an in-silico study
using the INDIGO-MTB computational model revealed that Mtb
transcriptomic signatures following drug exposure were examined
in over a million potential combinations of 164 drugs that predict
antagonistic and synergistic efficacy of 35 existing potential anti-
TB drugs (Ma et al., 2019). Moreover, a single-cell transcriptomics
study of Mtb revealed phenotypic diversity, including within and
across infected individuals. For instance, a transcriptome-wide
study of Mtb-specific cells in latently infected people revealed
variations in the transcriptional phenotypes of Mtb-responsive
CD4+ T-cells within and across people. This research proposed
possible vaccine targets and disease-fighting mechanisms (Burel
et al., 2018; Kirschman et al., 2020). Furthermore, single-cell RNA
sequencing (scRNA-seq) in TB showed depletion of the natural
killer (NK) cell subset in TB patients (Cai et al., 2020).

In addition, in-vivo methods such as high-throughput RNA
sequencing coupled with hypothesis-generating methodologies
and High-Resolution Transcriptomic Analysis by Whole-
Transcriptome Sequencing may help researchers better
understand mycobacterial species’ pathogenic processes (Benjak
et al., 2015). Dual RNA-seq research investigated the etiology of
leprosy illness and discovered a link between bacterial load,
transcriptional status, and the host immune response system
inside leprosy skin lesions (Montoya et al., 2019). Blood
transcriptomic biomarkers research recently evaluated four
blood RNA signatures, including MT-ND2, REX1BD, TPGS1
and UBC collectively known as RISK4LEP, which can predict
leprosy years before clinical onset and could allow for early
diagnosis, better treatment, and the prevention of bacterial
transmission (Tió-Coma et al., 2021). Furthermore, single-cell
and spatial transcriptomics in leprosy granulomas characterize the
antimicrobial response network. The transcriptomics research
found that genes encoding proteins needed for antimicrobial
responses are differently expressed in reversal reactions (RR) vs
lepromatous leprosy (L-lep) lesions and are controlled by IFN-g
and IL-1b. A map of leprosy biopsy specimens was created
employing single-cell and spatial sequencing of primary cell
types and antimicrobial gene expression in RR and T-lep
lesions. These study methods revealed the ordered architecture
of granulomas, revealing the compositional and functional layers
through which macrophages, keratinocytes, fibroblasts, and T cells
contribute to the antimicrobial response (Ma et al., 2020).

Role of RNA Sequencing in the Diagnosis of
Mycobacterial Diseases
The present state of mycobacterial diseases has compelled global
researchers to focus on infection prevention and control,
although appropriate techniques, methodologies and the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
development of more effective vaccines are challenging. The
majority of mycobacterial illness diagnoses are based on
immunosorbent tests (ELISA) technology. Some subspecies are
closely related to one another and interact with indirect
diagnostic techniques (antibody ELISA) (Singh et al., 2016).
Transcriptomics-based genetic profiling sheds light on the
host’s response to infection, cellular function and regulatory
mechanisms that can aid in identifying novel biomarkers along
with the differentiation of disease-resistant and vulnerable
animals (Burel et al., 2019).

Transcriptomics profiling creates a transcriptome by
examining a species’ whole genome. The genome generates
both coding mRNA (messenger RNA) and non-coding RNAs.
These particular RNA segments perform a range of tasks,
including amino acid delivery to the ribosome (transfer RNA),
gene regulation (small RNA, long non-coding RNA and micro-
RNA) and enzyme-like activity (ribozymes) (Statello et al., 2021).
The mapping of these RNA strands provides valuable
spatiotemporal data on physiological cell state, RNA dynamics
and their activities. One of these large-scale methods is
microarray: available DNA probes are placed on a chip
containing all open reading frames (ORFs), which can measure
gene expression levels (Sun and Chen, 2020). RNA sequencing is
a method for generating an extensive library of RNA derived
from cDNA. RNA profiling of both the host and the pathogen
provides a foundation for understanding host-pathogen
interactions (Westermann et al., 2017). Deep sequencing has
allowed accurate mapping of transcription start, termination
sites, amplification of RNA transcription and regulatory
mechanisms such as promoter si tes (Kukurba and
Montgomery, 2015). Transcriptomics can identify possible
infectious pathogen antigens such as circulating and secreted
host RNA (miRNA, lncRNA),blood cell produced RNA and
bacterial secreted RNA (van den Esker and Koets, 2019).

In-vivo analysis of mycobacterial species, molecular dynamics
revealed that dual RNA sequencing onMtb could ontogenetically
distinguish infected macrophage lineages from other human body
cells. Mycobacterium-infected mouse lung macrophages revealed
a greater level of 180 genes than alveolar macrophages. Thus, in-
vivo dual RNA-seq revealed that the microbe’s transcriptional
response varied across alveolar macrophages (Peddireddy et al.,
2017). Comparing the genome, transcriptome and methylome of
three main Mtb lineages showed that methylation influences
genetic mutation, variance in mycobacterium virulence and
pathogenicity. Thus, identifying genes associated with drug
resistance, efflux pumps (Rv2994 or iniA and iniB), virulence
and pathogenicity (vapBC family) may reveal clade-specific
variation in ancient and contemporary strains (Pisu et al., 2020).

piRNAomics
PIWI-interacting RNAs (piRNAs) are single-stranded (23–36
nucleotide) RNAs that form the biggest category of short non-
coding RNAs which are different from siRNAs and microRNAs
(miRNAs). These piRNAs have an essential role in post-
transcriptional modification, such as mRNA silencing,
transposon silencing, epigenetic control and germline
development (Wang and Lin, 2021). All piRNAs, except piR-
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hsa-27283, were shown to be downregulated in leprosy skin
lesions. Human piRNAs, like miRNAs, undergo post-
transcriptional alteration, including mRNA silencing which are
associated with various processes, including apoptosis, epithelial-
mesenchymal transition (EMT), M. leprae identification,
engulfment, loss of neuropathic sensation pain and Schwann
cell (SC) demyelination. The piRNA sequences study revealed
the critical function of piRNAs in disease processes and offered a
novel therapeutic target for precisely controlling nerve damage.
Upregulated piRNA (PIR-has-27283) may also be used as a
disease biomarker (Pinto et al., 2020). Thus, a biomarker, any
structure, activity or substance that may predict an event or
illness must be measured and transcriptomic analysis may help
identify novel indicators for early infection.

Proteomics Studies for Mycobacterial
Species and Host Biomarkers’ Discovery
The study of proteins expressed in cells, tissues, or organisms is
termed proteomics. Proteomics involves three crucial steps:
isolation, digestion into peptides, and identification. Various
techniques can be employed for these steps, including two-
dimensional gel electrophoresis (2DGE) and various
chromatography-based procedures. MALDI-TOF or ESI
analyzes the peptides resulting from enzymatic digestion. In
addition, iTRAQ, a shotgun technique, offers improved
reproducibility and sensitivity. Proteins that accumulate or
drop in quantity across different proteomes could be potential
biomarkers (Gautam et al., 2021). The development of
proteomics has gained widespread attention since its inception
and now stands at a transitional stage from benchwork to clinical
applications. Proteomics profiling identifies target proteins that
serve as host biomarkers in disease diagnosis, treatment and
prevention (Kanabalan et al., 2021). The two strategies are
principally exercised to measure Mtb proteins. The first is
antibody-based methods, including western blotting and
ELISA, and the second is proteome discovery by mass
spectrometry (MS). Discovery-driven MS, also called shotgun
MS, is the most extensively accepted method for identifying and
quantitative measurements of proteins and maximizing
proteome coverage. However, the selected reaction monitoring
(SRM) approach is the gold standard targeting method, also
known as the multiple reaction monitoring (MRM) method.
SRM comprises an extensive dynamic range of proteins with
accurate reproducibility and has quantitated 97% of annotated
Mtb proteins (Schubert et al., 2013).

A highly multiplexed proteomic approach (such as
SOMAscan, SomaLogic, Inc, Boulder, CO) revealed
enrichment for proteins involved in a variety of processes such
as inflammation pathways, antimicrobial defense, tissue healing
and remodeling, acute phase response, coagulation cascade,
apoptosis and immunity. This proteomic approach is utilized
to identify appropriate host biomarkers in mycobacterial disease
(De Groote et al., 2013). Another research found that serum
adenosine deaminase enzymatically converts adenosine to
inosine as a possible serum proteomic biomarker for TB that
may be utilized to quickly and efficiently diagnose TB (Pandey
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et al., 2016). Proteome microarray research allowed screening of
blood serum from individuals with active TB and latent TB
infection and found that RV2031c, RV2421c,and RV1408 were
possible serum biomarkers for distinguishing active TB from
latent TB infection (Cao et al., 2018). Another serum biomarkers
study found that proteins including S100 calcium-binding
protein (S100-A9), superoxide dismutase (SOD), a-1-acid
glycoprotein 2 (ORM2) and IL-36a were significantly enhanced
in patients with acute pulmonary TB. These identified proteins
are linked to the transmission of TB and may be utilized to
distinguish between tuberculosis phases (Liu et al., 2018).

Moreover, the Label-free quantitative proteomics approach
found that patients with pulmonary TB had higher levels of
plasma proteins, including alpha-1-antichymotrypsin (ACT),
alpha-1-acid glycoprotein 1 (AGP1) and E-cadherin (CDH1)
compared to individuals with latent TB infection and healthy
controls. These plasma protein indicators can differentiate
between pulmonary TB and latent TB infection (Sun et al.,
2018). Further research found two predictive proteome
biomarkers such as TB Risk Model 5 (TRM5) signature and 3-
protein pair-ratio (3PR) signature, which may be utilized to
predict the progression to incident TB within a year of diagnosis
(Penn-Nicholson et al., 2019). Expression levels and functions of
Mtb proteins are associated with mycobacterium biology, its
infection and host-Mtb interactions. Researchers have
determined that Tropomyosin-specific peptides produced by
M. leprae in leprosy patients result in muscle weakness due to
the presence of anti-myosin antibodies generated by the host
against the peptide. This finding was made using 2-D gel
electrophoresis, western blots, and MALDI-TOF/TOF
antibody-reactive spots. Therefore, auto-reactions play a role in
muscle damage, resulting in losing muscular functioning in
leprosy patients (Singh et al., 2018). The quantification of the
Mtb proteins required in infection and host-Mtb interactions is
critically important to advance the knowledge of Mtb biology
during infection, survival and persistence (Schubert et al., 2013).
Proteome chips technology can enhance proteomics research in
prokaryotes by revealing crucial interactions between proteins
and nucleic acids that are tedious and hard to determine using
conventional approaches (Chen et al., 2008).

Recent research explored anti-Mtb drugs, including
bedaquiline (TMC207), gatifloxacin and metronidazole which
can eliminate antibiotic-resistant strains and contribute to
advancement over existing treatments (Danelishvili et al.,
2017). However, the most significant hurdles of anti-TB
therapy are that bactericidal compounds concentrations
increase the pathogen’s drug susceptibility, resistance power
and shifts into different metabolic states to survive. Early
proteomic study data revealed that Mtb upregulates the
synthesis of numerous protein enzymes during exposure to
bactericidal compounds or drugs, such as isoniazid (INH),
rifampicin (RIF), ethambutol (EMB) and pyrazinamide (PZA)
that are utilized “escape” pathways to enhance bacterial survival
(Briffotaux et al., 2019). Similarly, Mtb increases the expression
of the LpqY-SugA-SugB-SugC ATP-binding cassette transporter
during drug treatment, which is an essential virulence factor.
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Trehalose carbohydrate ABC transporters are particular for
uptake of the disaccharide trehalose sugar (not present in
mammals), which is essential for establishing infection in the
host and Mtb pathogenesis. Trehalose carbohydrate ABC
transporters associated with mycolic acid processing and
Trehalose recycling. ABC transporter and trehalose recycling
equipped the Mtb to bypass glucose phosphorylation and use
trehalose as a primary carbon and energy source under nutrient-
restricted environments (Kalscheuer et al., 2010; Grzegorzewicz
et al., 2012). Thus, the proteomics approach could translate these
biomarkers from laboratory to clinical application, and the
proteomics approach is expected to show promise as a
pract ical approach in TB diagnosis and exploring
treatment biomarkers.

Metabolomics Research for Mycobacterial
Species and Host Biomarkers’ Discovery
The metabolomics approach complements other “omic” sciences
such as genomics, transcriptomics and proteomics. The
metabolomics approach has fewer restrictions due to technical
and biological advantages which may offer a complete
understanding of cell activity compared to other omic
approaches (Mirsaeidi et al., 2015). Metabolites are low-
molecular-weight compounds produced by metabolic processes
in living things called metabolism that change over time.
Metabolomics involves categorizing and measuring these
metabolites which may be used to track disease progression
and adaptive processes. The metabolomics approach studies
biological fluids such as blood, urine, sputum, CSF and
bacterial sources such as culture medium (Mirsaeidi et al.,
2015). Previously Mtb and TB pathogenesis were described by
three terms, latency, persistence, and dormancy. Previous
observations have confirmed that “in-vivo grown” Mtb was
metabolically different from bacteria raised in vitro. The
fundamental requirement of pathogenicity of Mtb is metabolic
adjustments (Gomez and McKinney, 2004). Mycobacterium
such as Mtb physiology and pathogenesis depends on
metabolic pathways essential for their survival and infection in
the host. Recent approaches, particularly metabolomics, are a
systems biology tool explaining Mtb’s biochemical environment
that provides a detailed insight into infection in experimental
models. Thus, the metabolic approach clarifies mechanisms of
action of new and existing anti-tuberculosis drugs and opens new
doors for developing advanced drugs/interferences to counter TB
(Warner, 2014). Metabolic adaptations are crucial for Mtb
pathogenesis. Mtb survives in the microbicidal stressed
environment, including acidic/low pH, hypoxic and redox
stresses, reactive oxygen, nitrogen intermediates and shortage
of vital micronutrients within the host alveolar macrophages of
the lungs. In response to hypoxia, Mtb shows widespread
metabolic changes in various metabolic pathways, including
cholesterol catabolism, methyl-branched lipids, the metabolism
of triacylglycerides (TAG) and extensive alterations in both
intracellular and extracellular amino acid levels. Under
restricted nutrient availability, Mtb shifts to lipids and host-
derived cholesterol as primary nutrient sources (Garay et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
2015). Numerous investigations have revealed metabolic
alterations in macrophages during Mtb infection. For instance,
gas chromatography-mass spectrometry analysis explained an
abundance of amino acids such as glycine, aspartate, proline,
isoleucine, alanine, ornithine, threonine, cysteine and lysine were
reduced. In contrast, amino acids including glutamate, serine
and valine were raised in Mtb-infected macrophages (Cheng
et al., 2013). Furthermore, lepromatous patients with ENL (type
2 responses) exhibited higher nitric oxide metabolites in their
urine. When phagocytic cells such as macrophages and
neutrophils come into contact with a pathogen, they generate
reactive nitrogen intermediates (RNI) such as nitric oxide (NO)
through activation of nitric oxide synthase (iNOS) to control the
immune response and decrease inflammation. Moreover, serum
nitrite levels were significantly higher in individuals with
tuberculoid leprosy than those with lepromatous leprosy
(Mohanty et al., 2007; Dubey et al., 2020).

Che et al. utilized gas chromatography/time-of-flight mass
spectrometry (GC/TOF-MS) to identify blood serum metabolite
biomarkers associated with active TB and discovered that 5-
oxoproline levels were consistently lower in active TB patients
(Che et al., 2013). The technique of liquid chromatography high-
resolution mass spectrometry (LC-MS) is used to identify
metabolites in plasma samples from people with active TB,
their asymptomatic household contacts and identify new
pathophysiologic pathways involved in the progression and
resolution of TB infection. This research discovered that
metabolite clusters such as anti-TB medications, glutamate,
choline derivatives, Mtb-derived cell wall glycolipids (trehalose-
6-mycolate and phosphatidylinositol) and resolvins were mainly
raised in TB patients and could be used as biomarkers (Frediani
et al., 2014). Moreover, the metabolomics study utilized
ultrahigh-performance liquid chromatography-electrospray
ionization-quadrupole time of flight mass spectrometry
(UHPLC-ESI-QTOFMS) to identify potential biomarkers for
diagnosing TB and discovered that four metabolites including
ceramide, 12R-hydroxy-5Z, Z,10E,14Z-eicosatetraenoic acid [12
(R)-HETE], cholesterol sulfate and 4-formyl-4-methyl-5-
cholesta-8-en-3-ol. These new plasma biomarkers, particularly
12(R)-HETE and 4-formyl-4-methyl-5-cholesta-8-en-3-ol may
be suitable for fast and non-invasive detection of TB (Lau et al.,
2015). Furthermore, the Collins et al. group developed high-
resolution metabolomics (HRM) techniques that use liquid
chromatography and ultra-high-resolution mass spectrometry
(LC-MS) to detect putative biomarkers in plasma metabolites
and other biosamples of TB patients. This research discovered
that patients with active TB had a significantly higher level of
Mtb-associated metabolites, including acylphosphatidylinositol
mannoside (Ac1PIM1), lysophosphatidylinositol (Lyso-PI) and
phosphatidylglycerol (PG) than their household contacts
(Collins et al., 2018).

Mass-spectrometry-based metabolomics research showed
that drug-susceptible (DS), multi-drug-resistant (MDR) and
extensively drug-resistant (XDR) Mtb strains possess different
metabol ic profi les . Ultra-High-Performance Liquid
Chromatography and High-Resolution Mass Spectrometry
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studies showed that amino acids, including isoleucine, betaine,
proline, and pantothenic acid, altered significantly between
strains with different drug susceptibility profiles (Rêgo et al.,
2021). A targeted metabolomics profiling was performed using
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
followed by multivariate and univariate analysis to search for
potential biomarkers in patients with active TB, latent TB
infection (LTBI), and healthy controls. According to the
findings of this study, active TB patients had higher blood
levels of aspartate, glutamate, methionine and sulfoxide while
lower serum levels of asparagine, glutamine and methionine were
observed compared to LTBI patients or healthy controls. As a
result, new serum biomarkers including glutamate, sulfoxide
methionine, aspartate, glutamine, methionine and asparagine
may help detect adjunctive, quick and non-invasive pulmonary
TB (Cho et al., 2020). Genome-scale metabolic models explain the
correlation between genes, proteins, and enzymes in the organism
and process the information from both computationally predicted
biochemical processes and experimentally validated processes
within the animal. Flux balance analysis (FBA) predicts a network
of metabolic capabilities at a steady-state and predict gene
knockouts’ metabolic phenotype, metabolite uptake and secretion
rates over time (Orth et al., 2010).An extendedFBAmethods called
E-Flux andE-Flux-MFCmethods translate geneexpressiondata. E-
Flux method has been used to predict the consequence of drugs on
Mtb mycolic acid biosynthesis. E-Flux-MFC has been used to
precisely predict variations in the generation of both external and
internal metabolites by combining gene expression data and
prophesying alterations in lipids and metabolites during hypoxia
over the time course (Garay et al., 2015). A new Probabilistic
Regulation of Metabolism (PROM) method enables automated,
straightforward, and quantitative integration of high-throughput
data into soft constraints onmodel reaction rates. E-Flux is used to
predict terminal, or sink metabolites, whereas PROM is flexible for
studying those samemetabolites (Chandrasekaran andPrice, 2010).

Consequently, metabolomics has enhanced our understanding
of many mycobacterial diseases molecular processes and offered a
platform for discovering novel biomarkers. Metabolites from
different biological samples may be potentially fast,
complementary, and non-invasive biomarkers in diagnosing and
monitoring mycobacterial diseases. However, comprehensive
metabolite assessment demands highly specialized and skilled
scientific approaches and excellent bioinformatics investigations,
which remains a significant hurdle in low-resource areas where TB
is common.

Lipidomic Investigations for Pathogenic
Mycobacterial Species
Lipids are small molecules like other significant biomolecules,
including nucleic acids, polysaccharides and proteins. Lipids are
produced from anabolic and catabolic reaction pathways and
digested by enzymes affected by the environment of a particular
biological system, such as food, temperature and pressure
(Wenk, 2010). Lipidomics, a lipid-targeted metabolomics
approach focusing on a comprehensive investigation of all
lipids, gives insights into the precise functions of lipid species
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
in health and disease conditions and recognizes potential
biomarkers for the development of preventive or therapeutic
programs for mycobacterial infection (Zhao et al., 2015). Because
of the complexity of lipids and a lack of reliable instruments for
their study, understanding lipidomics is incomparable to
genomics and proteomics research. Novel lipid analysis
techniques, such as liquid chromatography and mass
spectrometry, have been extensively utilized in lipidomics
research (Wenk, 2005). For instance, fatty acids such as
Mycolic acids (MAs), a-alkyl, b-hydroxy long-chain fatty acids
modulate host innate immune responses and create an effective
permeability barrier. MAs are abundant in the cell envelope of
MTBC and are the targets of many anti-tuberculosis medicines.
According to mass spectrometry studies, there are substantial
differences in MA patterns across various MTBC strains and
lineages (Portevin et al., 2014).

Moreover, Omega-3 and omega-6 fatty acids generate lipid
mediators such as cysteinyl leukotrienes, leukotriene B4,
prostaglandin E2 and D2, lipoxin A4 and resolvin D1. These
lipid mediators are involved in regulating M. leprae-specific
inflammatory and immunological responses. The levels of lipid
mediators may be determined using liquid chromatography-
mass spectrometry-mass spectrometry (LC-MS-MS) or enzyme
immunoassay (EIA) kits, which are both highly sensitive but
have varying degrees of cross-reactivity (Amaral et al., 2013; de
Macedo et al., 2018). Ultra-performance liquid chromatography-
mass spectrometry (UPLC-MS) study found altered host lipid
metabolism and changed high-density lipoproteins (HDLs)
compositional and functional profiles in Multibacillary (MB)
leprosy patients. MB pre-MDT patients have shown an altered
Apoprotein A-I (ApoA-I), the primary HDL protein compared
to a healthy and a post-MDT recovered individual (Lemes
et al., 2020).

The single-stage and tandem mass spectrometry approaches
showed that amphiphilic lipids, including glycerophospholipids,
sterols and sphingolipids, constitute human cell membranes where
they are unevenly distributed. In addition, particular lipids are
supplied in specific organelles, such as lysobisphosphatidic acid
(LBPA)/bis (monoacylglycerol) phosphate (BMP) is primarily
enriched in endosomal/lysosomal membranes and cardiolipin
(CL) a phospholipid, which is exclusively located in mitochondria
(Wenk, 2010). Mycobacterial species are unique and possess a
unique capability for synthesizing a wide array of hydrophobic
lipids and secondary metabolites. Earlier investigations validated
that the Mtb genome contributes a powerful lipid biosynthetic
capacity to the bacterium, resulting in abundant lipids on the
surface, forming a complex cell wall that provides defensive
functions to the bacterial cell. Alterations in lipid content enable
the bacteria to adjust to diverse stresses and infections (Chow and
Cox, 2011). After entry into the host cell,Mtbutilizes host lipids as a
primary nutrient source. Mtb infection regulates TB patients lipid
metabolism and favors the degradation of phospholipids and
accumulation of cholesterol esters, resulting in cavities with
caseous necrosis in the lungs (Han et al., 2021). Mtb also utilized
lipids in the development of multi-drug resistance (MDR). The
importance of Mtb’s lipid profile could be understood by the
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bacterial genome, which has a 30% genome dedicated to encoding
the lipid. Electron microscopy research has shown that drug-
resistant Mtb strains have thicker cell walls than non-resistant
Mtb strains (Pal et al., 2017).

The gold standard for diagnosingmycobacterial diseases such as
leprosy is a skin biopsy, which is invasive and has poor sensitivity.
The more sophisticated direct-infusion electrospray ionization
high-resolution mass spectrometry (ESI-HRMS) approach was
utilized to detect lipid markers in leprosy patients directly from
skin impressions (Amaral et al., 2013; Lima et al., 2015). Matrix-
assisted laser desorption-ionization imagingmass spectrometry is a
powerful technique for localizingandcharacterizing lipids inbiopsy
tissues (de Macedo et al., 2015). The high-resolution mass
spectrometry (MS) or liquid chromatography-mass spectrometry
(LC-MS) approach provides a lipidomic profile ofMtb with some
limitations, includingmass spectra peak overlap, some lipid species
are not detected and lack of a lipid database synthesized by
mycobacteria. However, the LIPID MAPS consortium of
lipidomics researchers has created a robust database including
common lipids such as glycerophospholipids and triacylglycerols.
Although, these databases do not comprise the unique
mycobacterial lipids data, such as sulfolipids and phenolic
glycolipids (Chow and Cox, 2011). MycoMass, a potent lipid
database for the study ofMtb, is established by Layre et al. group,
which is like LIPIDMAPS. MycoMass database supports detecting
the dynamic shifts of mycobacterial species lipids during infection
and understands lipids’ role in virulence (Layre et al., 2011).
Another ultra-high-performance liquid chromatography-tandem
mass spectrometryapproachallows for screeningofplasma lipids in
TB patients that provides different analyses, including principal
component analysis, orthogonal partial least squares discriminant
analysis andK-meansclusteringalgorithmanalysis to identify lipids
with differential abundance. This approach demonstrated that TB
patients had increased cholesterol levels and decreased plasma
phospholipid levels. This study confirms that lipids such as
phosphatidylcholine, cholesteryl ester and sphingomyelin are
promising biomarkers for the early detection of TB (Han
et al., 2021).

In addition to nutrients, Mtb needed micronutrients from the
host. These micronutrients such as iron are essential for the growth
and pathogenesis of bacteria. Conventional TLC and advanced
mass spectrometry-based LC–ESI–MS techniques were used to
discover changed lipidome patterns. Lipidome analysis reported
alterations in lipid profiles significant for pathogenicity and
exhibited the necessity of micronutrients such as iron to sustain
metabolic, genotoxic andoxidative stresses (Pal et al., 2019). Thus, a
comprehensive lipidomicapproachcouldprevent theMtb turn into
MDR. The high-throughput mass spectrometry-based lipidomic
approach can differentiate the lipidome profile of drug-sensitive
(DS) and resistant (DR) strains ofMtb and has been declared that
lipids including fatty acyls (FA), glycerophospholipids (GPL), and
glycerolipids (GL) play significant roles inMtb drug resistance (Pal
et al., 2017). High-performance liquid chromatography (HPLC)
and thin-layer chromatography (TLC) were early lipidomics
methods that were time-consuming and lacked sensitivity.
Although these methods may describe global alterations across
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
lipid classes, they cannot detect precise remodeling of specific
molecular species within a single lipid class. Several appropriate
novel techniques, including gas chromatography–MS (GC-MS),
liquid chromatography–MS (LC-MS) and NMR are widely
employed to profile lipid repositories (Layre et al., 2014).
Undoubtedly, more new features and functionalities are needed
to add-in currently utilized in lipid MS analysis. For example, ion
mobility mass spectrometry (IM-MS) can identify lipids directly
from tissue slices usingMALDI. ICPmass spectrometry is a suitable
technique for imaging lipids that bind to cations such as Ca2+ and
Mg2+ through their charged head groups (Becker and Jakubowski,
2009). Coherent anti-stokes Raman scattering (CARS) microscopy
is a fascinating new method for lipid imaging that has just been
created. As a result, CARS is fast, does not require external labeling
and may be utilized for real-time imaging (Wenk, 2010). The
composition of Mtb lipidome is still unknown. Consequently,
new technologies could enhance our understanding of the
lipidomics approach to understand many mycobacterial diseases
and provide a platform for discovering novel lipid biomarkers.
CONCLUSION AND FUTURE PROSPECTS

This review focused on current mycobacterial omics technologies
and their application to determining mycobacterial signatures
during the disease’s early stages. Mycobacterial signatures such
as proteins, metabolites, and transcript biomarkers are more
likely to identify active TB. Current multi-omics techniques
suggest that leveraging the host response to detect
mycobacterial diseases like TB and leprosy may be feasible
despite the ineffectiveness of prior diagnostics. Additionally,
this review addressed omics techniques and their applications
for resolving the complexity of proteins, metabolites and
transcript networks involved in infection and bacterial
physiology. When combined with an understanding of
bacterial gene regulation, metabolism, adaptability, and
pathogenicity, the power of omics technologies is multiplied,
resulting in a practical approach to novel biomarker
development. This includes establishing and maintaining
bioinformatics tools, data sources, networking platforms, and
visualization platforms. The increasing availability of large-scale
datasets and increased collaboration among scientists to share
data will accelerate the understanding of mycobacterial networks
to explain the complexity of replication, transcription, and
translation during host-pathogen interactions and thus provide
new insights into mycobacterium biology. Increased accessibility,
combined with significant cost reductions for omics technologies
and advancements in data analysis platforms, both for data
management and convenience ensures that omics are common
in biomarker, drug discovery, preclinical and clinical
development. Due to the applied nature of omics approaches,
omics technologies play a critical role in disease diagnosis and
prevention. Omics methods have developed into valuable tools
for discovering novel antimicrobial agents that are increasingly
important to find. New omics are emerging to offer future
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biomarkers, and drug development and advancement of omics
technologies can permit interpretations of metabolic
rearrangements during infection and provide a more reliable
understanding of pathogen physiology in-vivo. New omics
techniques may open up unique opportunities for biological
discovery and target identification as methodologies develop to
improve sensitivity and overcome complexity.
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