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Abstract

Background

Prostate cancer (PCa) diagnosis by means of multiparametric magnetic resonance imaging

(mpMRI) is a current challenge for the development of computer-aided detection (CAD)

tools. An innovative CAD-software (Watson Elementary™) was proposed to achieve high

sensitivity and specificity, as well as to allege a correlate to Gleason grade.

Aim/Objective

To assess the performance of Watson Elementary™ in automated PCa diagnosis in our

hospital´s database of MRI-guided prostate biopsies.

Methods

The evaluation was retrospective for 104 lesions (47 PCa, 57 benign) from 79, 64.61±6.64

year old patients using 3T T2-weighted imaging, Apparent Diffusion Coefficient (ADC) maps

and dynamic contrast enhancement series. Watson Elementary™ utilizes signal intensity,

diffusion properties and kinetic profile to compute a proportional Gleason grade predictor,

termed Malignancy Attention Index (MAI). The analysis focused on (i) the CAD sensitivity

and specificity to classify suspect lesions and (ii) the MAI correlation with the histopatholog-

ical ground truth.

Results

The software revealed a sensitivity of 46.80% for PCa classification. The specificity for PCa

was found to be 75.43% with a positive predictive value of 61.11%, a negative predictive

value of 63.23% and a false discovery rate of 38.89%. CAD classified PCa and benign

lesions with equal probability (P 0.06, χ2 test).
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C, Hadjidemetriou S, Winzler S, Malich A, et al.

(2017) Computer aided detection in prostate

cancer diagnostics: A promising alternative to

biopsy? A retrospective study from 104 lesions

with histological ground truth. PLoS ONE 12(10):

e0185995. https://doi.org/10.1371/journal.

pone.0185995

Editor: Tone Frost Bathen, Norges teknisk-

naturvitenskapelige universitet, NORWAY

Received: March 7, 2017

Accepted: September 22, 2017

Published: October 12, 2017

Copyright: © 2017 Thon et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185995
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185995&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185995&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185995&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185995&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185995&domain=pdf&date_stamp=2017-10-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185995&domain=pdf&date_stamp=2017-10-12
https://doi.org/10.1371/journal.pone.0185995
https://doi.org/10.1371/journal.pone.0185995
http://creativecommons.org/licenses/by/4.0/


Accordingly, receiver operating characteristic analysis suggests a poor predictive value

for MAI with an area under curve of 0.65 (P 0.02), which is not superior to the performance

of board certified observers. Moreover, MAI revealed no significant correlation with Gleason

grade (P 0.60, Pearson´s correlation).

Conclusion

The tested CAD software for mpMRI analysis was a weak PCa biomarker in this dataset.

Targeted prostate biopsy and histology remains the gold standard for prostate cancer

diagnosis.

Introduction

Prostate cancer (PCa) is the third most common cancer in the total population, representing

approximately 11% of all cancer diagnoses [1]. 55–60% of prostate cancer patients are men

over 65 years of age. The disease has an excellent survival rate of 94% in the 1st year, 85% in 5

years and 84% in 10 years [2]. The relative survival rate reaches 100% in the first 5 years and

95% in 15 years [1], provided that cancer will be diagnosed at the local (stage I, II) or the

regional stage (stage III), as occurs with more than 80% of the cases [1]. A 5-year survival rate

at stage IV (distant disease) of 28–30% renders the importance of early stage clinical diagnosis

indisputable [1,2].

In spite of being faced with criticism [3–6], the prostate-specific antigen (PSA) assay [7,8]

has been, and continues to be the most popular and widely applied PCa screening method in

practice for the last 30 years. However, invasive methods such as prostate biopsy still prevail as

the gold standard for preoperative evaluation, risk-assessment and decision-making between

active surveillance, new evolving tissue-preserving strategies and more radical approaches for

aggressive disease such as whole-gland radiation, chemotherapy and radical prostatectomy [7–

12]. Due to the low PSA specificity and a large number of false positives, there is an increasing

need for a non invasive imaging PCa biomarker [9,10].

A promising list of laboratory non invasive PCa-biomarkers is currently under validation

but none of them are a part of the clinical routine [5,9,10]. Prostate magnetic resonance imag-

ing (MRI) is, on the other hand, a promising biomarker already in clinical routine for diagno-

sis and preoperative evaluation of prostatic lesions in patients with elevated PSA [13–17]. MRI

is superior to other diagnostic methods for providing information about the size, localization

and spread of the disease. Furthermore, the available multiparametric MRI-sequence battery

(mpMRI), including high-resolution T2-weighted imaging (T2w), diffusion-weighted imaging

(DWI) with apparent diffusion coefficient (ADC) maps and dynamic contrast-enhanced

(DCE) sequences, allows for precise localization and detailed anatomical and functional

description of prostatic lesions and their neighboring structures [13,18–21]. The non invasive

character and the high negative predictive value of mpMRI combined with minimal invasive

MRI-guided biopsy [22], justify them as attractive diagnostic tools that obviate more invasive

diagnostic methods such as the multicore (not lesion-targeted or systematic) mapping biopsy

[10].

Although the sensitivity of mpMRI is constantly increasing, especially in line with technical

advances in diffusion imaging (16), it does not yet qualify for the accurate differential diagnosis

of PCa from indolent alterations with similar MRI features, such as benign prostate hypertro-

phy [14]. Moreover, the interpretation of mpMRI requires highly qualified, board-certified
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staff, the supply of which is disproportionally low compared to the increased diagnostic

demand of the second most common cancer in males. An increasing body of evidence sup-

ports the role of automated mpMRI analysis in the form of Computer-Aided Detection (CAD)

methods. CAD systems approach MRI modalities quantitatively and allow for information

convergence into statistical pipelines that are adjusted to predict malignancy [13].

A recently commercialized, automated analysis tool for the assessment of prostate cancer in

mpMRI (Watson Elementary™, Watson Medical, Den Ham, The Netherlands) has achieved

high sensitivity and specificity in its first evaluation [23]. The Watson Elementary™ method is

tuned up to predict the malignancy grade with an mpMRI-based Gleason score correlate,

termed Malignancy Attention Index (MAI). In this study, Watson Elementary™ was retrospec-

tively assessed in our hospital´s database of 104 prostate lesions with histological ground truth

after MRI-guided biopsy, and showed a low sensitivity for PCa detection, which was not supe-

rior to the observational diagnosis. Our results are compared with previous related studies.

Materials and methods

Ethics

All patient data were derived from the prostate database of the Suedharz Hospital Nordhausen.

Data were analyzed retrospectively, fully anonymized, in accordance with the ethical standards

laid down in the 1964 Declaration of Helsinki and its amendments as well as with the guide-

lines of the Ethical Committee for clinical studies of the University of Jena. Due to the retro-

spective character of the study, the ethical committee has waived the mandate for obtaining a

legally effective informed consent from the included subjects. Accordingly, therapeutic deci-

sions were not influenced by the outcome of this study.

Study design

The evaluation was retrospective for 104 histologically characterized biopsy cores obtained

with MRI-guided prostate biopsy (47 malignant, 57 benign) from 79 patients aged 48–80 years

(average±σ 64.62±6.64 y.o.), 35 with malignant and 44 with benign lesions, scanned in our

department between 10/2013 and 4/2016 (Table 1, Fig 1). All patients were examined with sus-

picion for prostate cancer based on elevated PSA assay after a negative systematic biopsy and

none of them had previously received chemotherapy for prostate cancer treatment. From a

total of 122 patients, 43 patients were excluded from this study due to protocol mismatch with

the software´s technical requirements: in 27 patients, rejection was due to static field strength

inconsistencies (1.5T excluded); in one patient, due to anatomic malposition of the prostate; in

eight patients, the arterial reference curve in the DCE sequences was insufficient; three patients

were rejected due to motion artifacts; in two cases, the fusion step failed (see later); and in one

case the arterial input curve could not be defined. Images from a single patient were not

accepted by the software for an unknown reason. No patient- or lesion-related inclusion/

exclusion criteria applied.

All lesions were graded by 2 radiologists; one with intermediate experience, and one board-

certified radiologist, according to the Prostate Imaging Reporting And Data System (PI-R-

ADS™) v1 and -v2. MRI-guided transrectal needle biopsies were always performed in less than

3 months post diagnosis. Histological characterization and Gleason grading on H&E stained

sections followed.

Watson Elementary™ (installed on 11.5.2016 by Watson Medical, Den Ham, The Nether-

lands) was tested with a manual generation of regions of interest (ROI) in diagnostic MRI

series encompassing targeted biopsy cores. The diagnostic accuracy hypothesis tested the abil-

ity of CAD to detect known, manually drawn lesions. Therefore all lesions without histological
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ground truth, including new lesions identified by the software, were neglected and did not

influence the statistics of the current study.

Evaluation of the diagnostic accuracy followed with estimation of the sensitivity, specificity,

Positive Predictive Value (PPV) and False Negative Rate (FNR). Implementation of Receiver

Operatic Characteristic (ROC) analysis and estimation of the Area Under the Curve (AUC)

allowed for the definition of optimal cut-off diagnostic values using Youden statistics (see also

Statistics).

MRI-guided prostatic biopsy

Malignancy suspect lesions according to PI-RADS™ scoring were transrectally biopsied under

stereotactic MRI-guidance with a Philips Ingenia 3.0T MR system using a dStream Torso body

coil with Flex Coverage anterior and posterior coils that allow for a 32-channel, 60 cm body

coverage (Philips North America Corporation, Andover, MA USA).

Briefly, a stereotactic needle-frame with x-y-z freedom was fixed onto the patient table. Tar-

get lesions were (re-)allocated and the sampling position was planned with the frame-dedi-

cated software (DynaCAD, Invivo Corporation, Gainesville, FL, USA). The accurate position

of the biopsy needle-tip was confirmed with a T2w TSE HR sequence.

Image acquisition for mpMRI

Both biopsies and diagnostic imaging were performed on the same Philips Ingenia 3.0T MR-

system within a time interval of 3 months. The following axially orientated image set was used

for CAD analysis (Table 2):

1. T2 weighted high-resolution Turbo Spin Echo imaging (T2 TSE HR) (Fig 2Ai, 2Bi and 2Ci)

Table 1. Patient demographics and database description.

Age

(y)

N n Classified

(%; n)

PIRADS V01

(%; n)

PIRADS V02

(%; n)

Histology

3 4 5 2 3 4 5

Total 64,61±6,64 79 104 35; 36

Malignant 61,64± 0 1 2 0; 0 0; 0 50; 1 50; 1 0; 0 0; 0 50; 1 50; 1 Gleason 5

65,70± 6,01 6 7 14; 3 0; 0 43; 3 57; 4 0; 0 0; 0 43; 3 57; 4 Gleason 6

64,67± 5,12 18 25 55; 12 0; 0 40; 10 60; 15 0; 0 0; 0 64; 16 36; 9 Gleason 7

65,97± 10,57 5 6 14; 3 0; 0 17; 1 83; 5 0; 0 0; 0 67; 4 33; 2 Gleason 8

69,06± 5,32 4 5 18; 4 0; 0 0; 0 100; 5 0; 0 0; 0 0; 0 100; 5 Gleason 9

62,54±0 1 2 0; 0 0; 0 50; 1 50; 1 0; 0 0; 0 100; 2 0; 0 Gleason 10

Total malignant 65,38±6,18 35 47 61; 22 0; 0 34; 16 66; 31 0; 0 0; 0 55; 26 45; 21

Benign 63,79± 4,77 10 15 21; 3 0; 0 73; 11 27; 4 7; 1 7; 1 60;9 27; 4 Prostatitis

62,78± 8,75 15 20 36; 5 15; 3 55; 11 30; 6 0; 0 10; 2 80; 16 10; 2 BPH

67,52± 6,23 4 6 14; 2 0; 0 50; 3 50; 3 0; 0 0; 0 83; 5 17; 1 Prostatic tissue

65,99± 8,90 2 2 7; 1 0; 0 100;2 0; 0 0; 0 50; 1 50; 1 0; 0 Atrophy

63,61± 0 1 1 0; 0 0; 0 100;1 0; 0 0; 0 0; 0 100; 1 0; 0 FMD

64,25± 7,40 12 13 21; 3 0; 0 54; 7 46; 6 8; 1 8; 1 70; 9 15; 2 ASAP

Total benign 64,01±6,73 44 57 39; 14 5; 3 61; 35 33; 19 4; 2 9; 5 72; 41 16; 9

Software evaluation was based on a series of 104 histologically confirmed prostatic lesions from 79 patients. Multiparametric MRI evaluation was performed

in diagnostic series acquired within 3 months before the biopsy. Lesions have been scored according to the Prostate Imaging Reporting And Data System

(PI-RADS™) v1 and -v2. All values are reported in mean, σ. N, patients; n, lesions; BPH, Benign Prostate Hyperplasia; FMD, Fibromuscular Dysplasia;

ASAP, Atypical Small Acinar Proliferation.

https://doi.org/10.1371/journal.pone.0185995.t001
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2. Diffusion weighted Echo Planar Imaging (DWI EPI) at 5 different b-values (b0-100-500-

800-1000)

3. T1 weighted Fast Field Echo (T1-FFE) with dynamic contrast enhancement (DCE) in 25

repetitions with 13.35 s temporal resolution and 7 s delay, which corresponded to at least

two baseline (zero contrast) points. A body weight-adjusted bolus of gadoteridol 0.1 mmol/

kg (ProHance1, Bracco S.p.A., Milan, Italy) was injected at 3 ml/s flow rate. Watson Ele-

mentary™ provides only visual access to the DCE curve in.pdf format, which is not indicated

for publication purposes. Therefore, for demonstration purposes, example DCE curves from

selected lesions were manually exported (Fig 2Aiii and 2Aiv, 2Biii and 2Biv, 2Ciii and 2Civ).

Description of Watson Elementary™
Watson Elementary™ software implements a fully automated 3-step-method, previously

reported in detail [23]. Below is a brief description of its image processing steps:

Fig 1. Flow of participants though the study. STARD diagram to demonstrate the flow of participants

though the study. Downstream of the “Index test” the analysis is lesion-based due to detection of multiple

lesions in some patients. PSA, Prostate Specific Antigen; CAD, Computer-Aided Detection; TP, True Positive;

TN; True Negative; FP, False Positive; FN, False Negative.

https://doi.org/10.1371/journal.pone.0185995.g001
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Table 2. Sequences used for multiparametric magnetic resonance imaging.

Parameter/Sequence T2 TSE HR DWI EPI 20 T1 FFE with DCE

TR(ms)/TE(ms) 4811/120 4227/63 5.5/1.93

Flip angle (˚) 90 90 15

EPI factor single shot technique

Number of averages 1 4 1

b values s/mm2 0-100-500-800-1000

Slice thickness (mm) 3 3 3

FOV AP×FH×RL (mm) 260×75×160 256×75×256 262×120×262

Voxel size AP×RL×FH (mm3) 0.65×0.65×3 1.8×1.8×3 1.02×1.41×3

Aquisition time (min:s:ms) 3:12 5:25 0:13:35 pro sequence, 25 dynamic sequences 5:31 in total

Enhancer Gadoteridol (ProHance®) 0.1 mmol (0.2 ml)/kg, injection rate 3 ml/s

Imaging was performed at 3T field strength. TR, repetition time; TE, echo time; EPI, Echo-Planar Imaging factor and number of k-spaces collected in a

single shot; FOV, Field Of View; AP, Anterior to Posterior; FH, Foot to Head; RL, Right to Left.

https://doi.org/10.1371/journal.pone.0185995.t002

Fig 2. Sequences used for multiparametric MRI (mpMRI) imaging according to PI-RADS™. Sample images from lesions (white ROIs in

A-C) histologically characterized as (A) prostatitis (B) hyperplasia (BPH) and (C) adenocarcinoma (PCa). (i) T2w TSE images, (ii) apparent

diffusion coefficient (ADC) tables based on DWI b0-100-500-800-1000 s/mm2 (iii) T1w FFE with enhancement and (iv) sample Dynamic

Contrast Enhanced (DCE) curves of the lesion core, defined as red colored ROI in the T1w FFE images. Scale bar 3cm. For MRI sequence

parameter details see Table 2.

https://doi.org/10.1371/journal.pone.0185995.g002
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1. Affine image co-registration

2. Pixel detection step for feature extraction and non linear processing, such as ADC maps

from DWI sequences (Fig 2Aii, 2Bii and 2Cii), kinetic parameters of the DCE-profile such

as Ktrans, Ve and Kep according to Tofts´ pharmacokinetic model [24,25] and normalization

of T2w images based on a rectangular prostatic reference volume for calculation of first and

second order texture features.

3. Feature classifier with 3 logical steps: Step 1 defines the dimension of predictor space and

the transformation parameters. Step 2 is a linear summation parameter that integrates step

1 information to construct a scalar map. Step 3 features an error-feedback method, which

has been trained by a supervised learning process to achieve a congruence of the scalar

value (step 2) with the Gleason grade.

The final output of the feature classifier is a pixel-based malignancy prediction score, rang-

ing from 0 to 1, termed as Malignancy Attention Index (MAI). Watson Elementary™ con-

structs a malignancy prediction heatmap with high MAI values represented in warm colors.

This map is projected onto T2w images, thus anatomically highlighting suspect lesions. More-

over, MAI pixel values of each manually defined lesion are automatically sorted in a histogram

(malignancy prediction histogram). Histogram shape, mean and median MAI have been sug-

gested as PCa biomarkers [23].

Lesion definition and evaluation of the volume of interest

Target lesions, i.e. lesions that have been selected for MRI-guided biopsy based on their PI-R-

ADS score, were evaluated retrospectively, after PI-RADS scoring and after the histological

report of the biopsy. Lesions were manually defined in T2w images (for the transitional zone)

and ADC maps (for the peripheral prostate zone) according to the biopsy needle position by a

third radiologist (IEP) blinded to the PI-RADS scoring and the histological identity to avoid

bias in sampling. Data analysis was performed by a medical student (AT) and a radiologist

(IEP), both blinded to the PI-RADS scoring and histological identity to avoid bias in lesion

classification. Watson Elementary™ allows for definition of consecutive ROIs in 2D planes to

form a 3D lesion volume of interest. The system generates a probabilistic heatmap (with the

MAI values) for each section, which is projected onto the corresponding T2w image. The pre-

defined ROIs were copied from the imaging series to the probabilistic map and the system gen-

erated for each predefined lesion (sum of ROIs) a feature summary in a.pdf including (i) a

histogram of MAI values, (ii) the average DCE curve (iii) the lesion volume [26]. User access

to the ground data is possible only for the probabilistic histograms for each region and not for

the intermediate meta-data such as DCE curves, which are only graphically displayed in.pdf

format. The classification of lesions was performed visually, by evaluating (i) whether the heat-

map of the lesion is distinguishable from the background and (ii) the skewness of the MAI his-

togram (Fig 3). Classification was performed by a radiologist (IEP) and a medical student

(AT), both blinded to the PI-RADS scoring and histological identity of the lesions. In the first

classification step observers made no assumption about the histological identity. After classifi-

cation, the histological identity was unmasked to calculate the specificity and the sensitivity of

the software for malignant lesions.

Statistics

The Statistical Package for the Social Sciences (SPSS Version 21, IBM, Armonk, NY, USA) was

used for statistical analysis and graphical plotting. Data were screened for normality using the

Shapiro-Wilk test. Values are expressed as median/IQR (interquartile range) and rounded up
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Fig 3. Automated mpMRI classification and histological ground truth. Target lesions were manually

drawn by human observers. Sample images for (A-C) classified and (D, E) non classified PCa and benign

biopsy cores. (A) Prostatitis, (B) adenocarcinoma (PCa) Gleason grade 6, (C) PCa Gleason grade 9, (D)

atypical small acinar proliferation (ASAP) and (E) PCa Gleason grade 7. From left to right: (i) T2w with MAI-

heatmap and outlined lesions (white line), (ii) Hematoxylin-Eosin histopathology of the corresponding biopsy

cores and (iii) MAI histograms. Warm colors in MAI heatmaps (i) represent higher values in a scale 0–1.

Classified lesions revealed a “warm-colored” MAI-map and a left-skewed histogram.

https://doi.org/10.1371/journal.pone.0185995.g003

Computer aided detection of prostate cancer: A retrospective study of diagnostic accuracy

PLOS ONE | https://doi.org/10.1371/journal.pone.0185995 October 12, 2017 8 / 21

https://doi.org/10.1371/journal.pone.0185995.g003
https://doi.org/10.1371/journal.pone.0185995


to the second decimal place unless otherwise stated. Statistical significance was tested using the

t-test or the ranksum Mann-Whitney test for unpaired data. MAI score between groups were

compared with Kruskal-Wallis ANOVA on ranks with Dunn´s posthoc test. Linear correla-

tions were tested with the Pearson product moment correlation coefficient. Continuous proba-

bility distribution, as well as independence of nominal data, was tested by means of the chi-

squared test. ROC curves were calculated for MAI median, MAI mean and MAI median-to-

mean ratio as skewness index as well as for ADC values and PI-RADS reading scores. Statisti-

cal significance was set at P<0.05.

Results

Automated feature extraction: Detection of the arterial input function

The first step in image processing by Watson Elementary™ is feature extraction. For the DCE

kinetic analysis, the tissue signal is normalized on the perfusion curve of the common femoral

artery (arterial input function). Arterial detection is semi-automated and has to be manually

confirmed. The correct artery position was automatically defined in 61 (77.22%) patients; in

the remaining 18 (22.78%), it had to be manually reassessed.

CAD-sensitivity and specificity

All 104 biopsy cores from 79 patients were scored according to PI-RADS™ in the initial diag-

nostic dataset (Table 1). Datasets acquired prior to the establishment of PI-RADS™ v2 were re-

scored post hoc so that PI-RADS™ v1 and -v2 scores were available for all included cores.

Switching between PI-RADS versions, as a consequence, over- or underscored some lesions.

Although PI-RADS 2 lesions were not subjected to a biopsy, some were included in the ana-

lyzed database. Those lesions were biopsied as PI-RADS 3 or 4 according to PI-RADS™ v1 and

then underscored to PI-RADS 2 after the introduction of PI-RADS™ v2 (Table 1).

In the joined MAI/T2w images (Fig 3A–3E, left panels), we evaluated whether the heatmap

of our target lesions was visually distinguishable from the background, i.e. whether the lesion

could be detected in the MAI/T2w heatmap without the use of ADC maps. Warm-colored

ROIs with a characteristic left-skewed MAI histogram were evaluated as classified (detected)

lesions (Fig 3A–3C), in sharp contrast to the flat or right-skewed MAI histogram shape of the

non classified (cold-colored) ROIs (Fig 3D and 3E). In previous work, a MAI-max cut-off

value of 0.6 was used as criterion for malignant lesion classification, based on the assumption

that MAI linearly correlates with the Gleason score [23]; this method was not applicable in our

study because almost all lesions, regardless of their histogram shape and histological identity,

showed a maximum MAI value higher than 0.6 (Supporting information, S1).

From 47 histologically confirmed malignant (PCa) and 57 benign lesions, 22 PCa and 14

benign lesions were classified (Fig 4A and Table 3). The deduced CAD-sensitivity for prostate

malignancy in our series was 46.81% with a specificity of 75.44% and a PPV of 61.11%

(Table 4).

The hypothesis whether CAD preferentially classifies malignant over benign cores was

tested with a chi-squared test, which revealed independent classification of benign and malig-

nant biopsy cores, albeit with a slight trend towards the classification of malignancy, P 0.06

(Table 3). Furthermore, we questioned whether CAD sensitivity leaned towards a particular

histological identity, a particular Gleason malignancy grade or a specific benign condition. All

malignant lesions (n 47) were typified as acinar adenocarcinoma of various Gleason grades

from 5 to 10. As graphically demonstrated in (Fig 4B), CAD-sensitivity was not influenced by

the malignancy grade, P 0.713 R 0.193 Pearson correlation. Among false positives (i.e. benign

cores falsely classified) (Fig 4C), 5/14 lesions (35.71%) corresponded to benign prostate
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Fig 4. Classification of malignant and benign biopsy cores. (A) Proportion of classified to non classified

malignant and benign lesions. From 104 mixed type cores 36 were classified, from those (classified/total) 14/

57 were benign and 22/47 malignant. (B) The classification was independent of the Gleason grade, P 0.713 R

0.193 Pearson correlation (C) Classification of benign lesions. ASAP, Atypical Small Acinar Proliferation;

FMD, Fibromuscular Dysplasia; BPH, Benign Prostatic Hyperplasia.

https://doi.org/10.1371/journal.pone.0185995.g004
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hyperplasia, followed by prostatitis and atypical small acinar proliferation with 3/14 lesions,

21.43% each.

Malignancy attention index as biomarker

In a previous study [23], MAI was proposed as a potential PCa biomarker and MAI heatmaps/

histograms as potential core malignancy profiles (Fig 3).

In the database used in our study, malignant lesions showed the expected ADC dip com-

pared to benign ones, with an ADC (median/IQR) of 650/295 (x10-6) mm2/s for malignant

and 950/340 (x10-6) mm2/s for benign foci, P< 0.001 Mann-Whitney U-test (Fig 5A). This is

important because ADC values are widely accepted as the most relevant malignancy feature,

especially for the peripheral zone, and are thus highly ranked by CAD-classifiers [27–32].

Median MAI values were selected as the most representative descriptive parameter of skewed

histograms. The comparison between all observed (classified and non classified) benign and

malignant biopsy cores indeed revealed a significantly lower MAI score for benign lesions,

with (median/IQR) 0.39/0.18 compared to malignant ones 0.56/0.24, P 0.023 Mann-Whitney

U-test (Fig 5B).

MAI score was, as expected, significantly higher in classified compared to non classified

lesions regardless of identity, P< 0.05 Kruskal-Wallis ANOVA on ranks with Dunn´s post

hoc test. However, classified PCa and benign cores did not show any significant MAI differ-

ence, P< 0.05 Kruskal Wallis ANOVA on ranks with Dunn´s post hoc test (Fig 5C).

Furthermore, we tested whether MAI score qualifies for a Gleason´s grade predictor using

the Pearson´s test. Within the 22 classified PCa biopsy cores, MAI did not show any significant

correlation with Gleason grade, P 0.52 R 0.14 Pearson product moment correlation (Fig 5D).

ROC analysis of median and mean MAI as malignancy predictors revealed rather poor

results with an area under curve ± standard error of the mean (AUC±SEM) 0.63±0.06 (95% CI

0.52–0.74), P 0.02 for MAI median and 0.64±0.06 (95% CI 0.53–0.75), P 0.02 for MAI mean.

The predictive outcome of the median/mean ratio as skewness index was not significant with

Table 3. Identity of classified and non classified lesions.

Patient N = 79 Classified Non-classified Total

Malignant (PCa) 22 25 47

Benign 14 43 57

Total 36 68 104

P = 0.06, Chi square test

The classified malignant cores are the true positives (TP), the non classified malignant cores are sorted as false negatives (FN), the classified benign cores

as false positives (FP) and the non classified benign cores as true negatives (TN). Chi square test returns equal occurrence of the outcomes for the two

groups, P 0.06, χ2 test.

https://doi.org/10.1371/journal.pone.0185995.t003

Table 4. CAD sensitivity and specificity for PCa detection.

False negative rate (FNR) 0.53 lesions/patient

Sensitivity 46.81%

Specificity 75.44%

Positive predictive value (PPV) 61.11%

Negative predictive value (NPV) 63.24%

False positive rate (FPR) 24.56%

False detection rate (FDR) 38.89%

https://doi.org/10.1371/journal.pone.0185995.t004
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Fig 5. MAI as malignancy biomarker and MAI correlation with the Gleason grade. (A) Average ADC

values (x10-6 mm2/s) of observed lesions, 650/295 (median/IQR) for malignant and 950/339.5 for benign, N

(malignant/benign) 47/57, P < 0.0001 Mann-Whitney U-test (B) MAI of observed lesions, 0.56/0.23 (median/

IQR) for malignant and 0.39/0.18 for benign lesions, N (malignant/benign) 47/57, P 0.023 Mann-Whitney U-

test. (C) MAI in benign, malignant, classified and non classified biopsy cores, P < 0.001 Kruskal-Wallis
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AUC 0.59±0.06 (95% CI 0.47–0.70), P 0.12 (Fig 6, Table 5). MAI did not significantly improve

the board certified reader´s accuracy using the American College of Radiology (ACR) and

European Society for Uroradiology (ESUR) standards PI-RADS™ v1 (AUC 0.67±0.05 with

95% CI 0.58–0.76, P 0.003) and PI-RADS™ v2 (AUC 0.68±0.04 with 95% CI 0.59–0.76, P
0.002). The optimal MAI median cut-off point estimated with Youden statistics was 0.54 with

a sensitivity of 61.7% (95% CI 46.38–75.49%) and specificity of 68.42% (95% CI 54.76–80.09%)

(Fig 6 and Table 5). By setting an optimized cut-off point for MAI mean, however, we could

improve the sensitivity and specificity up to 70.21% / 61.4% (95% CI 55.11–82.66% and 47.57–

74%, respectively) (Fig 6 and Table 5). Moreover, analysis of the ADC value alone showed a

stronger predictive behavior compared to the software-calculated MAI with AUC 0.79±0.05

(95% CI 0.70–0.88) and P 0.04 compared to MAI, chi-squared test (Fig 6).

Guided by the hypothesis that Watson Elementary™ might be more specific for particular

lesion locations and sizes, we tested for possible predilection towards the peripheral or the cen-

tral zone of the prostate gland. In the transitional prostate zone CAD has classified 10 out of 25

histologically confirmed PCa; whereas in the peripheral zone, 12 out of 22, hence with no

apparent influence on the performance (P 0.481 chi-squared test). The lesion volume, how-

ever, had a significant influence on the CAD-performance. Amongst lesions smaller than

0.5ml (Fig 7A) the vast majority was not classified (sensitivity 27.27% and FNR 31.37%). For

intermediate size cores of 0.5ml-1.0ml, the CAD revealed an improved performance (sensitiv-

ity 53.33% and FNR 18.42%) and false negatives were minimized for lesions larger than 1.0 ml

(sensitivity 80%, FNR 13.33%). As expected, lesion volume was independent of Gleason grade,

R 0.18 P 0.15 Pearson´s correlation. It´s worth noticing that it is more crucial to eliminate the

number of FN than the number of FP because the therapeutic consequence for the patient

would be an undiagnosed PCa in the first case, compared to an unnecessary biopsy in the sec-

ond case. In this context, CAD-performance is satisfactory for lesions larger than 1.0ml (Fig

7A). In Fig 7B, the MAI score of classified and non classified cores is plotted with the lesion

volume. There is a strong trend for a positive correlation between lesion size and MAI-score

for TP lesions (P 0.057 Pearson´s correlation) but not for any other category (TN, FP and FN,

P> 0.1 Pearson´s correlation). We questioned the clinical significance of lesions smaller than

0.5 ml, which make up 49.04% of our database. Interestingly, the malignancy incidence

between lesions smaller than 0.5 ml, and those that were larger, was identical (Fig 7Ci and

7Ciii) with approximately 43% probability of malignancy in both groups. Moreover, within

malignant lesions, we observed comparable PCa aggressiveness in terms of Gleason grade (Fig

7Cii and 7Civ), with high-grade cancers being equally possible in both small and larger lesions.

In summary, MAI is a weak PCa biomarker, especially for lesions smaller than 0.5ml in

either the transitional and peripheral zone, regardless of lesion aggressiveness.

Discussion

This study aims to emphasize the growing necessity for commercialized prostate mpMRI

CAD-software tools for the radiological, and perhaps urological, praxis. By retrospectively test-

ing 104 lesions (47 malignant, 57 benign) in a series of 79 patients, a commercialized prostate

CAD, Watson Elementary™, revealed a sensitivity of 46.81% for prostate malignancy, with a

specificity of 75.44% and a PPV of 61.11%. Our results considerably differ from previous

reports on the same software. Roethke et al. [23] have tested Watson Elementary™ in a cohort

of 45 patients with 1102 MR/TRUS acquired biopsy cores (76 malignant/1026 benign) and

ANOVA on ranks, * P < 0.05 Dunn´s post hoc test (D) No significant correlation between MAI and Gleason

grade, P 0.522, N 22, R 0.144, Pearson´s product moment correlation; n.s., non significant.

https://doi.org/10.1371/journal.pone.0185995.g005
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Fig 6. Receiver operating characteristic (ROC) trade-off curve for ADC, MAI and PI-RADS. ADC mean

(black), MAI median (dark green), MAI mean (light blue) and MAI median/mean ratio (green). MAI is

compared with the ADC performance alone and with the observer´s performance according to PI-RADS™ v1

(dark blue) and PI-RADS™ v2 (violet). The area under the curve (AUC) is 0.64±0.057 (mean, SEM) with 95%

CI 0.53–0.75 and P 0.02 for MAI mean, 0.63±0.058 with 95% CI 0.52–0.74 and P 0.02 for MAI median and

0.59±0.058 with 95% CI 0.47–0.70 and P 0.13 for the MAI median/mean ratio. Corresponding values for the

mean ADC lesion value are AUC 0.79±0.05 with 95% CI 0.70–0.88, P < 0.0001. Observer´s performance for

PI-RADS™ v1 was AUC 0.67±0.05 with CI 0.58–0.76, P 0.003 and for PI-RADS™ v2 AUC 0.68±0.04 with CI

0.59–0.76, P 0.002. N malignant/benign cores 47/57. MAI and PI-RADS (v1, v2) reveal comparable

performances in malignancy detection, P 0.60 for MAI vs PI-RADS v1 and P 0.53 for MAI vs PI-RADS v2, chi-

squared test. ADC is superior to MAI in malignancy prediction, P 0.04, chi-squared test.

https://doi.org/10.1371/journal.pone.0185995.g006

Table 5. Receiver operating characteristic (ROC) analysis for MAI and PI-RADS.

Area under the curve (AUC) P Cut-off Sensitivity at cut-off Specificity at cut-off

AUC SEM 95% CI Sensitivity 95% CI Specificity 95% CI

MAI mean 0.64 0.06 0.53 0.75 0.02 0.435 70.21 55.11 82.66 61.4 47.57 74

MAI median 0.63 0.06 0.47 0.7 0.02 0.535 61.7 46.38 75.49 68.42 54.76 80.09

PIRADS v1 0.67 0.05 0.58 0.76 0.003

PIRADS v2 0.68 0.04 0.59 0.76 0.002

Sensitivity and specificity for MAI and PI-RADS as estimated with Receiver Operating Characteristic (ROC) curve analysis and Youden statistics. MAI mean

and MAI median correspond to the mean and median values of the MAI histogram describing each lesion. PI-RADS v1 and -v2 are evaluated as malignancy

prediction indices compared to MAI. N malignant/benign cores 47/57. AUC, Area Under Curve; SEM, Standard Error of Mean; CI, Confidence Interval;

PI-RADS, Prostate Imaging Reporting And Diagnosis System.

https://doi.org/10.1371/journal.pone.0185995.t005
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achieved a sensitivity of 85.71% and specificity of 87.50% when setting an optimal MAI mean

cut-off threshold for malignancy detection. By setting an optimized cut-off value of MAI mean

in our study, we could improve the sensitivity and specificity up to 70.21%/61.4%, which is

inferior to the previously reported values but comparable in terms of methodology [23]. This

considerably differs from previous promising studies that have established custom-made soft-

ware tools for mpMRI analysis with high stand-alone accuracy for malignancy detection [33–

36]. The group of Litjens et al. [26] achieved a stand-alone accuracy of AUC = 0.89 in a

remarkably large database of 347 patients.

Fig 7. CAD performance is reliable for lesions larger than 1 ml. (A) Counts of classified and non classified cores in relation to their

volume. Volume distribution of all lesions (number, %): 0–0.5ml (51, 49.04), 0.5–1.0ml (38, 36.54) and larger than 1.0ml (15, 14.42). True

positive (TP, blue) lesions include classified PCa, true negatives (TN, cyan) are the non classified benign cores, false positives (FP, yellow)

are the classified benign cores and false negatives (FN, red) the non classified PCa. The CAD-sensitivity increases and the number of FN

decreases towards larger lesion volumes: (sensitivity % / FNR %) 27.27/31.37 for 0–0.5ml lesions, 53.33/18.42 for 0.5–1.0ml lesions and

80.00/13.33% for lesions larger than 1.0ml. (B) MAI score with lesion volume. A strong trend for a positive correlation between lesion size

and MAI-score was found for TP lesions (P 0.057, Pearson´s correlation) but not for any of the remaining categories (TN, FP and FN,

P > 0.1, Pearson´s correlation). (C) Lesions smaller than 0.5 ml show the same malignancy incidence and comparable aggressiveness

compared to larger lesions (Ci) Lesions smaller than 0.5 ml (number, %) benign (29, 56.86) malignant (22, 43.14), (Cii) Gleason histogram

for malignant lesions smaller than 0.5 ml, (Ciii) Lesions larger than 0.5 ml (number, %) benign (28, 57.14) malignant (21, 42.86), (Civ)

Gleason histogram for malignant lesions larger than 0.5 ml.

https://doi.org/10.1371/journal.pone.0185995.g007
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The outcome discrepancy between our series and previous testing of the same software [23]

could be attested to a variety of causes. In terms of methodology, a previous study applied a

combination of systematic and MRI-guided transperineal biopsies, ending up with more

probes per patient (approximately 25) compared to the current study, which was based exclu-

sively on MRI-guided transrectal biopsies (approximately 2 probes per lesion) [23]. Neverthe-

less, regardless of the number of biopsies per patient/core, both studies define a confirmed

lesion by at least one positive biopsy. Roethke et al. [23] report their results in patient-based

percentages, in contrast to our study which is needle-based. Taking into account the different

reporting methods, our results are technically comparable with the needle-based results of

Roethke et al., i.e. sensitivity/specificity 54.67%/97.76%.

Another methodological variation that might have influenced the discrepancy from previ-

ous work is that Roethke et al. implement a MAI-max cut-off value of 0.6 as criterion for

malignant lesion classification [23]. This method, though more objective than visual classifica-

tion, was not applicable in our study because almost all lesions showed a maximum MAI value

higher than 0.6 (Supporting information, S1).

A prerequisite of the high CAD-accuracy is the training of the classifier on a database with

similar characteristics to the testing database [13]. An important limitation of this study is the

lack of interaction with the classifier of the commercially available tested CAD-software [23].

Despite the classifier having been trained on scanner data with the same (3T) field strength,

factors such as the different technical characteristics, coils, static magnetic field inhomogenei-

ties and protocols for the resonance frequency adjustment led to contrast differences that

could sufficiently affect the outcome. In a thorough review by Wang et al. [13], numerous

studies with databases varying between 15 and 100 patients were compared, not only in terms

of performance but also in terms of the analyzed modalities, field strength, ground truth, the

method for candidate lesion generation and applied classifier, revealing a broad heterogeneity.

Implementation of different receiver coils, such as the use of endorectal coil [33,34], increases

the methodological variation.

Moreover, variations in the applied DWI b-values, i.e. b 0–800 s/mm2 in a previous study

[23] compared to b 0–1000 s/mm2 in our study, could affect the ADC computation and inject

a significant classification error probability [32,34]. ADC values are widely accepted as the

most relevant malignancy feature and rank highly in CAD-classifiers [27–32]. Interestingly,

previous reports [37–40] have suggested the superiority of b values of 1000 and 1500 s/mm2

compared to either 300, 500 or 2000 s/mm2.

The lesion volume should be considered as an independent factor. The current study had,

as a single exclusion criterion, technical data incompatibility with Watson Elementary™. In ca.

86% of the cases, the sampled lesion´s volume was smaller than 1.0 ml; and in 49%, smaller

than 0.5 ml, in keeping with early PCa diagnosis. Watson Elementary™ showed promising per-

formance only in lesions larger than 1.0 ml, which might explain differences with previous

studies where volume inclusion criteria might have differed. In the studies of Roethke et al.

[23,41], lesions smaller than 0.5 ml were not considered clinically significant cancer, in line

with ESUR guidelines 2012 [17]. However, lack of methodological definition on volume selec-

tion criteria does not allow for a more elaborated comparison. It is remarkable that both the

malignity and Gleason grade of smaller, „clinically insignificant”lesions do not differ com-

pared to larger lesions, as shown in Fig 7C. This result supports the existing body of evidence

that small cancers can significantly affect a patient´s outcome and encourages biopsy and treat-

ment according to guidelines [42].

Furthermore, lack of access to whole-mount prostate pathology was a limitation of this

study with possible influence on the results. The classifier of Watson Elementary™ has been

regularized to create congruence with malignity grade, a.k.a. Gleason grade [23]. Nonetheless,
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MAI did not significantly correlate with the pathological outcome, which is the Gleason score

in our database. Inter-observer differences in Gleason grading between the training and the

testing database could already contribute to this discrepancy, albeit minimally, as previous

studies have shown negligible inter-observer variation mostly at the upper and lower limit,

namely 4 and 8–10 of the Gleason scale [43,44]. Another possible variability factor may rely on

the classifier´s training on whole slide pathology specimens, whereas the grading process in

the current study was based on needle biopsies [45,46]. Moreover, the unequal sample distri-

bution with the majority of patients revealing Gleason 6 or 7 (3+3 or 3+4) at the time of diag-

nosis may bias Pearson´s correlation coefficient negatively [47]. However, such an unequally

weighted Gleason distribution is the typical occurrence pattern in population screening and

should be taken into account in the training process of a detection method [48,49].

The ROC—analysis of the observer´s performance reveals a reduced accuracy of our study

compared with previously published results on PI-RADS [16,41]. Kasel-Seibert et al. In a

recent study, compared the performance of PI-RADS version 2 to version 1, showing a high

accuracy of AUC of 0.88 and 0.91 for v1 and v2, respectively, in the hands of experienced MRI

readers [50]. However, considerable differences in the methodology and database selection

should be taken into consideration. Patients with PI-RADS 1 or 2 were not subjected to biopsy

and therefore not included in our study. The majority of PI-RADS 3 patients was also not

biopsied in our hospital, and were therefore excluded from this study. A limited number of

included PI-RADS 2 and 3 lesions derived mostly by downgrading PI-RADS v1 4 lesions in

the re-evaluation process after the introduction of PI-RADS v2. On the other hand, Kasel-Sei-

bert et al. [50], as well as other previous studies [26] included PI-RADS 3 lesions in their offi-

cial selection criteria. Another considerable bias-introducing factor, as the authors also

acknowledge, is the patient selection criteria (systematic biopsy was not performed) and the

relative low (29%) malignancy rate within the selected population [50]. In the current study,

almost all patients were subjected to a (non conclusive or negative) systematic biopsy and the

malignancy rate was ca. 45%, thus considerably higher compared to previously published data

[50].

Recently, studies that evaluate the role of CAD implementation in improving the radiolo-

gist´s performance have been gaining ground on those evaluating stand-alone performance,

such as our study [51,52]. Large scale approaches (n = 89 [51] and n = 107 [52]) implemented

different methodologies to show that CAD implementation improved radiologists’ sensitivity

from 80.9% to 87.6% [51]. Accuracy without and with CAD-combined reading for differentia-

tion between benign and malignant (AUC 0.81 versus 0.88), indolent and aggressive lesions

(AUC 0.78 versus 0.88) was improved, respectively [52]. In both original research works, the

CAD classifier has been previously established and trained on a comparable database, in con-

trast to our study where interaction with the classifier was not possible.

This study shows that a carefully designed commercialized CAD software (Watson Elemen-

tary™) does not perform satisfactorily when tested with a different instrumentation and imag-

ing configuration, despite using almost double the number of patients compared to previous

studies [13,23,33–35]. Lack of whole-mount prostate pathology, the low number of PI-RADS 2

and 3 lesions and the challenging character of the database including small lesions, not neces-

sarily encountered as significant in previous studies, should be encountered as possible limit-

ing factors. It is worth mentioning that the scanning parameters applied in our department

fulfill the recommendations for diagnosis as defined by the American College of Radiology in

PI-RADS™ v2. In line with previous observations reviewed by Wand et al. [13], the results of

this study support that super-optimistic CAD-performances might be dataset-bound. Alto-

gether, while being in the right framework, the tested software is not satisfactory yet. A neces-

sary requirement of a CAD-software is the ability to apply and generalize to different scanning
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settings. A broader, optimally multicenter pool of datasets for broader and maybe interactive

classifier training should be implemented to improve the general applicability of CAD systems

[13].

Supporting information

S1 File. Original data and metadata in.xlsx spreadsheets.

(XLSX)

Acknowledgments

Authors thank Joachim Feger, Claudia Kurrat and Arnhild Kott for PI-RADS scoring as

board-certified radiologists. Rachel Wong deserves special acknowledgements for proofread-

ing the manuscript as native English speaker.

Author Contributions

Conceptualization: Ansgar Malich, Ismini Papageorgiou.

Data curation: Cornelia Tennstedt-Schenk, Sven Winzler, Ansgar Malich, Ismini

Papageorgiou.

Formal analysis: Anika Thon.

Investigation: Anika Thon, Sven Winzler, Ansgar Malich, Ismini Papageorgiou.

Methodology: Ansgar Malich, Ismini Papageorgiou.

Project administration: Ansgar Malich, Ismini Papageorgiou.

Resources: Cornelia Tennstedt-Schenk.

Supervision: Ulf Teichgräber, Ansgar Malich.
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