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Introduction

Colonoscopy is an effective tool for detecting and 
preventing colorectal cancer, but its success depends on 
reliably detecting colorectal neoplasia (1-3). A successful 
diagnostic endoscopy requires accurate detection of various 
gastrointestinal (GI) lesions and proper characterization of 
these lesions, including differentiation between neoplastic 

and non-neoplastic types, and determination of their lateral 
borders and depth.

In order to improve accuracy, not only examination 
techniques and bowel preparation need improvement, 
but incorporating advanced imaging technologies such as 
image-enhanced endoscopy (IEE) to characterize lesions in 
real time diagnosis play an important role (1). IEE improves 
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visualization of GI lesion patterns and microvasculature, 
even in precancerous stages, through different dyes and 
technologies (4,5).

IEE can be either conventional dye-based chromoendoscopy 
(CE) or electronic (virtual CE). In dye-based CE (DCE), 
a dye is applied to the mucosa while the endoscope is 
withdrawn, which enhances the mucosal surface and aids 
in lesion resection or biopsies. However, this method is 
operator-dependent, time-consuming and requires technical 
expertise (6). Equipment-based methods, such as narrow 
band imaging (NBI) (Olympus Medical Systems, Tokyo, 
Japan), linked-color imaging (LCI) (Fujinon, Fujifilm 

Medical Co, Saitama, Japan), flexible spectral imaging 
color enhancement (FICE) (Fujinon), i-SCAN (Pentax 
Endoscopy, Tokyo, Japan), and blue light imaging (BLI) 
(Fujinon), provide detailed contrast images through optical 
filtering or software processing. These methods have an 
advantage of having a shorter overall procedural time 
compared to dye-based methods, and no special assembly or 
dye is required (7) (Table 1).

Various societies recommend incorporating IEE 
in routine colonoscopy practice (5). American Society 
for Gastrointestinal Endoscopy (ASGE) Technology 
Committee, in a systemic review and meta-analysis, 

Table 1 Image enhanced endoscopy techniques with their underlying mechanisms and launch dates

Name Underlying mechanism Date launched

Chromoendoscopy Utilizes the dyes/stains to enhances the appearance of mucosal surfaces 2003

Narrow band imaging Uses blue and green spectrum of visible light to improve the visualization of 
capillary patterns and mucosal surfaces

1st generation: creates images by using a filter mechanism for separating the 
blue and green light, however, the images were not adequately bright

First generation: 2006

2nd generation: used a xenon lamp, in addition to eliminating the filter 
mechanism to produce sharp brighter images

Second generation: 2012

3rd generation: uses color LEDs for better illumination and bypasses the use 
of filters. It also includes an expanded depth of field functionality to provide 
a broad focus. In addition, it can allow for up to 90× magnification

Third generation: 2020

Confocal laser 
endomicroscopy

A low-power laser is used to better visualize cellular and subcellular 
structures

2004

Flexible spectral imaging 
color enhancement

Images are created using a specific spectrum of visible light; images are 
later processed to enhances mucosal surfaces and microvascular patterns

2005

Blue-laser imaging Uses a blue laser light source to create brighter images which enhance the 
visibility of colonic lesions

2012

Linked-color imaging A pre- and post-processing technology is used, in addition to improved red 
color enhancement, to differentiate between normal and abnormal colon 
mucosa

2014

i-SCAN Uses a digital post-processing technology, which generates high-definition 
images using three functions: contrast enhancement, surface enhancement, 
and tone enhancement

2016

Autofluorescence endoscopy Highlights endogenous fluorescence generated by the molecules in the 
tissue; differentiates colonic lesions from normal colon by relative amount of 
fluorescence produced by each type of tissue

2001

Endocytoscopy Utilizes dyes along with a contact-type optical endoscope to create ultra-
high-resolution images of up to 520× magnification power; a method for 
“virtual histology”

2003

Full spectrum endoscopy Uses an endoscope mounted with multiple cameras and light emitting 
diodes to allow a panoramic view of 330 degrees of the gastrointestinal tract

2008 (EndoChoice)†

†, EndoChoice is the parent company which developed full spectrum endoscopy. LED, light-emitting diode.
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concluded that the histology of diminutive (<5 mm) 
colorectal  polyps can be predicted in  vivo  during 
colonoscopy by using various endoscopic techniques 
available currently, which is sometimes referred to as 
“optical biopsy”. This can allow the use of “diagnose-
and-leave” strategy for diminutive polyps in rectosigmoid 
colon, based on the in vivo real-time prediction by 
these advanced endoscopic techniques. In vivo real-
time assessment of the histology of diminutive (≤5 mm) 
colorectal polyps detected at colonoscopy can be achieved 
by means of an “optical biopsy” by using currently available 
endoscopic technologies, supporting a “diagnose-and-
leave” strategy for diminutive predicted non neoplastic 
polyps in the rectosigmoid colon (8). The European Society 
of Gastrointestinal Endoscopy (ESGE) recommends 
using advanced imaging technologies to improve mucosal 
visualization and details (9). The Asian professional group 
ANBI2G also endorses using IEE for better endoscopic 
diagnosis and early detection of colorectal neoplasia and 
polyps, as well as in patients with inflammatory bowel 
disease (IBD) to improve detection of dysplasia (10). 
Furthermore, British Society of Gastroenterology (BSG) 
and ESGE suggests that surveillance in IBD patients can 
be done using CE with targeted biopsies (11,12), while the 
American Gastroenterology Association (AGA) and ASGE 
endorse using IEE with high-definition (HD) colonoscopy 
for long-term colonic IBD patients (13,14).

This article reviews the current and recent advancements 
in the field of IEE and their applications with colonoscopy.

CE

The use of DCE helps the endoscopist identify and assess 
abnormalities in the digestive tract by using dyes or stains. 
This method enhances the color patterns and appearance 
of the mucosal surfaces, and thereby improving the 
differentiation of lesions (15). The dye is usually delivered 
through a spraying catheter that produces a fine mist on 
the surface of the digestive tract (16). The dye is sprayed 
through the tip of endoscope in a spiral motion as the 
endoscope is being withdrawn slowly. Only small sections, 
about 20 cm, should be stained at a time and then examined 
carefully, as the effect of the dye is temporary. The dyes can 
be sprayed through either whole colon CE or they can be 
applied specifically on the areas of visible abnormalities (15). 
It is necessary to have an excellent preparation of bowel 
when using DCE in the distal part of the digestive tract (5).

The dyes used for evaluating lesions in colon can be 

divided into two main types: contrast dyes and absorptive 
dyes. Absorptive dyes provide clear details of cell surfaces 
as they are taken up by specific cells (16). An example of 
this type of dye is crystal violet, which stains the epithelial 
cells of the glands in colon mucosa and makes the pits 
appear white after staining. The staining of colon mucosa 
roughly takes 3 minutes after the dye is sprayed (5). 
Another example of an absorptive dye is methylene blue, 
which stains the epithelial cells of glands in small or large 
intestine as blue, while dysplastic lesions remain unstained. 
It has shown to increase detection of smaller polyps (17). 
As an alternative, methylene blue can be consumed in oral 
tablet form, taken with agents used for bowel preparation. 
This has shown to increase the detection rate of adenomas 
compared to placebo in a phase 3 trial (18).

Contrast dyes reveal the shape of the mucosal surface 
by flowing into the spaces between cells without coloring 
cellular surfaces. Indigo carmine, as an example, improves 
the detection of neoplastic lesions by highlighting the 
surface topography. It helps differentiate benign from 
malignant lesions, outline early-stage neoplastic lesions, and 
determine cancer depth of invasion (4). The way contrast 
dyes stain pit patterns can be categorized using systems such 
as the Kudo pit pattern classification (19).

A meta-analysis of 4 randomized controlled trials (RCTs) 
showed a significant difference in favor of CE compared 
to conventional endoscopy for all detection outcomes, 
particularly, higher yield in patients with at least one 
neoplastic lesion [odds ratio (OR) 1.61; 95% confidence 
interval (CI): 1.24–2.09] and significantly more patients 
with three or more neoplastic lesions (OR 2.55; 95% 
CI: 1.49–4.36) (20). CE group had significantly slower 
withdrawal times.

With regards to lateral spreading tumors (LST), Tamai 
et al. reported improved visualization of non-granular 
LSTs with DCE for both expert and novice group, whereas 
similar improvement with electronic IEE was only seen in 
the expert group (21).

DCE has been demonstrated in several trials to have 
higher detection of dysplasia compared to standard 
definition white light endoscopy (WLE) (17,22-24). 
However, since the invention of HD endoscopy, a number 
of meta-analyses of studies in patients with IBD (endorsed 
by SCENIC international consensus) have shown that use 
of HD endoscopes, with or without DCE, have improved 
the visibility of dysplasia, such that 90% of dysplastic lesions 
are now visible compared to 80% with standard-definition 
endoscopes (25). Therefore, both AGA and European 
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guidelines consider virtual CE as a suitable alternative for 
DCE when using HD endoscopy in patients with IBD 
(14,26).

In general, DCE is effective for both detection and 
characterization of polyps, but it is not widely used due 
to longer time needed for applying the dye with a spray 
and removing any excess dye, as well as the challenge of 
identifying lesions when there is severe inflammation or 
when the view is obstructed by the accumulation of solution 
in sunken-type lesions (4). Furthermore, some dyes, such as 
crystal violet, are not widely available in some countries (27).

Electronic enhancing techniques  
(virtual chromoendoscopy)

NBI

NBI was the first narrow-image technology (developed by 
Sano et al. at the National Cancer Center Hospital East 
in 1999) that filters the light used for illumination (28). It 
removes the red component of the standard red, green, 
blue (RGB) filters and centers the bandwidth of blue and 
green light on a narrowed spectrum of 415 and 540 nm 
to 20–30 nm. The CCD signals are processed to create a 
false-color image. Hemoglobin absorbs blue light due to 
its absorption peak at 415 nm and this short wavelength 
also penetrates the mucosa less deeply than red light. This 
leads to improved contrast for small blood vessels close 
to the surface and better visibility of the structures on the 
mucosal surface, for differentiation between abnormal and 
normal tissue (29). Sano et al., for the first time, reported 
the usefulness of pit pattern and vascular classification using 
NBI in 2004, and subsequently the first classification of the 
capillary pattern using NBI magnifying colonoscopy (28). 
Hirata et al. showed that NBI could be used to assess the 
histological grade and invasion depth of colorectal tumors 
by measuring vessel thickness (30).

First generation NBI was launched in 2006 as a part of 
two endoscopic systems, EVIS LUCERA SPECTRUM 
(in Japan and UK) and EXERA II (elsewhere) (31). Images 
generated by first-generation NBI were not ideal due to low 
brightness, and studies indicated that the adenoma detection 
rate (ADR) was comparable between NBI and WLE 
(32,33). The second generation NBI was subsequently 
launched in 2012 as a built-in functionality in two more 
endoscopic models, including EVIS LUCERA ELITE (in 
Japan and UK) and EXERA III (elsewhere). These models 
used a stronger xenon lamp and a new signal processor 

which worked by elimination of filter mechanism as well 
as reduction of image noise, thereby producing brighter 
sharp images. It also allowed an optical magnification of 
×45 power with a simple press of a button (27,31). A recent 
meta-analysis of 11 RCTs involving 4,491 patients found 
that ADR for second-generation NBI was better compared 
to HD-WLE (OR: 1.28; 95% CI: 1.05–1.56; P=0.02) (34). 
Overall, the ADR for NBI (first and second generations of 
NBI combined) was 45.2% compared to 42.3% for HD-
WLE (OR for adenoma detection of 1.14 NBI vs. HD-
WLE; 95% CI: 1.01–1.29; P=0.02). Third generation NBI 
has recently been introduced in 2020 as a part of novel 
endoscopic system (EVIS X-1). This allows system uses five-
color light-emitting diodes (LEDs) as a light source and in 
contrast to previous NBI generation, it directly uses violet 
and blue LEDs for illumination instead of using an NBI 
filter. This allows for brighter images at a high frame rate. 
Some other notable improvements of this novel endoscopic 
model include expanded depth of field, which provides 
a continuous broad focus and an improved dual-focus 
functionality, which allows for ×90 magnification power. 
This system has been referred to as a “Universal Model” 
since it is compatible with all magnifying scopes including 
some specialized scopes such as power spiral motorized 
enteroscope and endocytoscope (31,35). ENDO-AID  
(OIP-1) is a computer-aided detection (CAD) device 
which works with EVIS X-1 endoscopic system. This 
allows for real-time polyp detection. Multiple studies have 
demonstrated the efficacy of ENDO-AID in improvement 
of ADR compared to standard colonoscopy (36,37). 
Gimeno-García et al. conducted an RCT comparing 
ENDO-AID with conventional colonoscopy and results 
showed ADR of 55.1% (ENDO-AID) vs. 43.8% (standard 
colonoscopy); P=0.029 (38).

Wanders et al. in a meta-analysis of 91 studies revealed 
that all virtual techniques, including NBI, FICE, i-SCAN, 
and confocal laser endomicroscopy (CLE), but not 
autofluorescence imaging (AFI), can accurately diagnose 
polyps as adenomatous or hyperplastic, when used by well-
trained endoscopists with an overall sensitivity of 91%, 
specificity of 85.6%, negative predictive value (NPV) of 
82.5% for NBI (39). In another meta-analysis of 28 studies 
(6,280 polyps in 4,053 patients), NBI for diagnosis of 
colorectal polyps showed a sensitivity and NPV >90% (40).

The accuracy of using NBI to characterize colonic 
polyps through microvascular density is similar to magnified 
chromoendoscopic assessment (41). However, there’s 
subjective variability between both the lesion color and 
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vessel thickness, leading to the development of the NBI 
International Colorectal Endoscopic (NICE) classification 
system, which helps in in vivo diagnosis of small polyps in 
colon by utilizing a criterion based on color, surface pattern, 
and vessels (42). This classification system can be used with 
or without optical magnification and has been validated with 
a sensitivity of 98%, accuracy of 89%, and NPV of 95%, 
for real-time diagnoses during colonoscopy (43). Despite its 
excellent diagnostic accuracy, NICE classification was only 
useful in a fraction of cases, and therefore Japanese NBI 
Expert Team (JNET) classification was later developed that 
further subdivides adenomatous lesions (NICE II) into type 
2A (Figure 1), for low grade adenomas, and type 2B, for 
high grade adenomas including and superficial submucosal 
invasive cancer to unify and facilitate a globally recognized 
classification (28).

Sessile serrated lesions (SSL) are precursor lesions to 
colorectal cancer, which are not specifically described in 
NICE and JNET classifications (44). “Workgroup serrated 
polyps and Polyposis” (WASP) classification was developed to 
identify these lesions with the help of IEE, based on at least 
two criteria of four SSL-like characteristics: cloudy surface, 
dark spots within the crypts, irregular shape, and indistinct 
border (5). This classification system has been validated 
with high accuracy (84%) after 6 months and a high NPV of 
91% for small neoplastic lesions (adenomas and SSL) (45). 
Despite their usefulness, the utility of these classifications 
in differentiating SSLs from hypoplastic polyps has been 
questioned in recent studies. In a multicenter prospective 
study of 217 JNET type 1 lesions from 162 patients, the 
sensitivity of magnifying colonoscopy in detecting SSLs 
was only 79.8% (95% CI: 74.7–84.4%) (46). In another 
prospective study of artificial intelligence (AI)-assisted CADx 

system developed for NBI that analyzes still NBI images and 
outputs a histopathological prediction, the sensitivity and 
specificity of differentiating SSL from hyperplastic polyps 
(HP) were 80.9% and 62.1% respectively (47).

Both ASGE and ESGE have endorsed the use of i-SCAN, 
NBI, and FICE for diagnosis of polyps ≤5 mm (8,48).

In an analysis of 2 previous studies (total of 1,658 patients) 
at 5 medical centers, three “resect and discard” strategies 
were compared: optimal strategy (using NBI examination), 
location-based strategy (classified all polypoid lesions 
proximal to rectosigmoid colon as neoplastic and all recto-
sigmoid diminutive polyps as hyperplastic), and a simplified 
optical strategy (all recto-sigmoid diminutive polyps 
were classified as hyperplastic unless confidently assessed 
as neoplastic) (49). The simplified optical and location-
based resect and discard strategy generated surveillance 
suggestions that concurred with pathology results for at 
least 90% of average-risk patients.

The use of NBI and other electronic IEE were studied in 
multiple studies in patients with IBD and was not found to 
improve neoplasia detection (50-54). One study even showed 
higher dysplasia rate (55). A meta-analysis of 4 studies on 
surveillance and management of dysplasia in IBD showed 
no significant advantage of NBI over chromoendoscopy, 
with a slight preference for chromoendoscopy (25). The 
prevalence of dysplasia detection was 0.1% to 22% higher 
with chromoendoscopy compared to NBI, however the 
difference was not significant. The study also did not 
demonstrate a significant difference with a risk ratio of 1.3 
(0.8–2.1) and an absolute risk difference of 6% (−1% to 
14%). Similar results were found in a large multi-center 
prospective RCT of 131 patients (56). All things considered, 
NBI is not recommended for IBD surveillance (57).

A B

Figure 1 Direct light microscopy (HD-WLE) of a sessile colonic polyp (A) and brown vessels surrounding tubular or branched white 
structures consistent with a tubular adenoma (B). HD-WLE, high-definition white light endoscopy.
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In order to enhance the accuracy of in vivo diagnosis 
using NBI, various training modules have been developed. 
Improving accuracy and modest agreement boost (κ=0.56 
for novices, κ=0.70 for trainees, and κ=0.54 for experienced 
colonoscopists) has been seen using still images in 
training sessions led by experts or a validated PowerPoint 
presentation (58). Short video clips of polyps were found to 
be more effective in improving diagnostic accuracy for non-
academic and community-based gastroenterologists (59).  
Several studies have shown improvement of diagnostic 
performance of CAD systems using NBI (60-62).

CLE

CLE is a technique used to image cells and structures 
within 250 micrometers of a mucosal surface (63,64). It 
uses a low-power laser that is focused on a single point to 
create an optical section image with gray tones. There are 
two types of CLE systems: integrated CLE (iCLE, Pentax), 
which is no longer commercially available, and probe-
based CLE (pCLE), which is still commercially available. 
A pCLE (Cellvizio Endomicroscopy System, Paris, France) 
system consists of a flexible mini-probe that can be inserted 
through a standard endoscope working channel (65,66). 
Fluorescence dyes can be applied topically or intravenously 
to improve the visualization of cellular, subcellular, and 
vessel structure. 

Polyp detection and characterization improvement has 
been shown in multiple studies. In the meta-analysis of  
91 studies mentioned previously, overall sensitivity of CLE 
was 93.3%, specificity was 89.90%, with negative predictive 
value of 94.8% (39).

The Mainz classification was the first system to 
categorize colonic polyps for iCLE based on normal, 
regenerative, and dysplastic epithelium, and showed overall 
accuracy of 85.6%, 95.6%, and 92.2%, respectively for 
each observer, and κ values of the intra-observer agreement 
were 0.68, 0.84, and 0.77, respectively for each observer, 
and k=0.73 for interobserver agreement (67). The Miami 
classification for pCLE, used for both upper and lower GI 
tracts, identifies dysplasia with irregular, dark and thickened 
epithelium (68).

An improvement in accuracy was observed with pCLE 
training to correctly identify benign and neoplastic 
colorectal lesions, increasing from 63% (lesions 1–20) to 
86% for the final set (lesions 61–76) (69). Several studies 
have demonstrated increase in diagnostic yield in the 
assessment of polyps in colon and identification of lesions 

in IBD, thereby reducing the need for biopsies (22,63). 
CAD-based systems have been developed to automate 
classification of colonic polyps using intravenous fluorescein 
pCLE with high performance comparable to expert 
endoscopists (70).

FICE

FICE is superior to NBI and Chromoendoscopy with 
dyes, as it provides better visualization without exposing 
the patient to the dyes. Most studies are directed towards 
establishing the efficacy of FICE in in vivo differentiation 
between neoplastic and non-neoplastic polyps (71-73). 
This differentiation is mainly done based on the surface 
capillary pattern of the adenoma using classification given 
by Teixeira (74).

Longcroft-Wheaton et al. conducted a large prospective 
study on surveillance population in UK and the results 
indicated that FICE could predict in vivo histology of 
polyps (<10 mm in size) with 86% accuracy compared 
to WLE which predicted the in vivo histology with 71% 
accuracy (71). A more recent study conducted in Vietnam 
tested the diagnostic capabilities of FICE in differentiating 
neoplastic from non-neoplastic polyps. This study showed 
that the FICE was 92.1% sensitive, 68.5% specific and 
88.3% accurate (72). This can be utilized as a basis for polyp 
resection and discard policy, thereby decreasing overall 
healthcare burden and cost.

Even though FICE is useful for endoscopic differentiation 
between neoplastic/non-neoplastic lesions, the ADR of FICE 
is comparable to WLE (75,76). One of the studies utilized 
FICE for early detection of colon dysplasia in patients with 
longstanding ulcerative colitis (UC) and concluded that FICE 
is not better than white light colonoscopy for screening of 
dysplasia (77). Compared to other imaging techniques, FICE 
is limited in predicting the extent of submucosal invasion of 
neoplastic polyps (72). 

BLI

NBI can allow the detailing of micro-vessel pattern on 
the surface of a GI mucosal lesion, but it does not allow a 
clear visualization of microstructural architecture of the 
lesions. Also, the images produced by NBI are darker and 
therefore do not allow the observation of wide mucosal 
area. To overcome this limitation, FICE was introduced 
which allows for brighter images but the microvascular 
pattern on the tumor surface is not as sharp as NBI. BLI 
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compensates for the limitations of both these techniques 
and produce bright detailed images of microvasculature 
and microstructure of these tumors (7). The light source 
used in BLI is laser instead of xenon lamps used in NBI 
and FICE. This makes BLI more cost effective as it 
used less energy and requires relatively less frequent 
replacements (78).

Yoshida et al. conducted various studies in multiple 
tertiary care centers in Japan. One of their studies 
concluded that BLI can accurately predict the histological 
diagnosis and therefore can differentiate between neoplastic 
and non-neoplastic polyps (78,79). The accuracy of the 
results was found to be 99.3% in this study (79) which is 
relatively similar to FICE (72). They also showed that depth 
of invasion by colorectal cancers can also be predicted with 
high accuracy using the same Hiroshima classification (80),  
which is also used for NBI (78). JNET classification for 
NBI was also found to be equally predictive for in vivo 
diagnosis of colorectal lesions using BLI (81).

A more recent study indicated that BLI bright mode, 
compared to WLE, can increase the visibility of colorectal 
polyps especially regarding polyp location, size and 
morphology (82). However, ADR with BLI was found to 
be comparable to WLE with multiple studies, including 
a large multicenter randomized control trial (83-85). 
Koehn et al. reported that BLI can be taught to trainee 
endoscopists with online module and the improvement in 
accuracy of polyp characterization seemed to correlate with 
the years in training. Overall diagnostic accuracy improved 
from 74.7% (before the training) to 85.4% (after the 
training), P<0.01 (86).

Even though BLI has high efficacy in characterizing and 
differentiating neoplastic polyps but there are no studies 
using BLI for other colorectal diseases. There is a need for 
more studies employing BLI for diagnosis and surveillance 
of other diseases as well.

LCI

LCI is a novel technology, introduced by Fujifilm Co., 
Tokyo, Japan. LCI involves pre-processing of narrow band 
radiation and a specific color technology during post-
processing which separates the colors into blue, green and 
red. These separated colors are reallocated to improve the 
visible color contrast. This combination of pre- and post-
processing enhances the color difference between colorectal 
lesions and surrounding normal mucosa. LCI shows polyps 
and inflammation as red while the surrounding normal 

mucosa appears white.
Yoshida et al. conducted a study which showed that LCI 

improved visibility scores of polyps compared to WLE 
and BLI-bright mode (87). However, another multicenter 
study conducted by the same group reported that LCI was 
not significantly better than BLI-bright with regards to 
mean polyp visibility scores (3.1±0.9) vs. (3.0±1.0) (P=0.19), 
however, it was significantly better than WLE (2.5±1.0, 
P<0.001) in mean polyp visibility scores (88). Both these 
studies were performed by examining pre-recorded videos 
and pictures. There is a need for more studies involving 
active utilization of LCI during colonoscopies to establish 
the superiority of LCI over BLI-bright in mean polyp 
visibility scores.

A study conducted on still images compared LCI with 
WLE and BLI-bright mode reported that LCI improved 
the visibility of non-granular flat colorectal lesions. The 
visibility scores reported as mean ± standard deviation for 
LCI, BLI-bright mode and white light were 3.36±0.72, 
2.94±0.97 and 2.74±1.08, respectively (89).

Suzuki et al. recently published the results of a large 
multicenter randomized control trial from Asia. It showed 
that LCI improves the ADR compared to WLE (58.7% vs. 
46.7%; P<0.01) (90). This has been consistently reported by 
many studies previously including multicenter, randomized 
control trials (91-94). This increase in ADR is especially 
dependent on increased detection of adenomas in right 
sided colon where adenomas adenoma miss rate (AMR) 
is higher (94). There is also an increased detection of 
diminutive polyps with LCI which is also a contributing 
factor to the increased ADR with this technique (95,96).

Sessile serrated adenomas/polyps (SSA/P) found in the 
right colon are missed frequently because they are flat, 
and they are usually precursor lesions to colorectal cancer. 
The previously mentioned large international RCT also 
reported increased detection of SSL with LCI compared to 
WLE (4.8% vs. 2.8%; P<0.01) (90). Various other studies 
have reported similar results (87,95,97). This is thought 
to be due to the ability of LCI to differentiate between 
normal and abnormal mucosa based on their color. As the 
vascular pattern of colorectal mucosa is enhanced with LCI, 
the main finding to detect SSA/P is a discontinuation of 
vascular pattern (93).

Residual fluid in the colon interferes with the detection 
of polyps in the colon with NBI and BLI as they change 
the color of this fluid to dark red which interferes with the 
visibility. LCI keeps the color of residual to yellow, similar 
to WLE, and therefore enhances the visibility and detection 
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of the polyps (93). Underwater endoscopic mucosal 
resection is becoming a new technique for polyp resection 
and LCI can aid in this by allowing more visibility under 
cloudy residual fluid (98).

Based on the efficacy of LCI in enhancing the visibility 
of polyps, improving the ADR and detection of SSA/P, 
many studies have recommended the use of LCI during 
routine colonoscopies (95) because it can contribute towards 
a decreased rate of interval cancer (93). Also, because of the 
increased detection of adenomas and polyps, LCI was found 
to shorten the recommended surveillance schedules leading 
to more frequent colonoscopies (90). There is a need for 
more extensive studies focusing on the outcome measures 
of such increased detection rates. LCI has also shown to 
improve the detection of any residual inflammation in UC 
and non-relapse rates can be strongly predicted with LCI 
classification of mucosal damage (99). 

i-SCAN

i-SCAN was introduced by Pentax Medical, Tokyo, Japan. 
It involves image enhancement by using 3 modes: surface 
enhancement (SE), contrast enhancement (CE) and tone 
enhancement (TE). The utility of these modes is different. 
SE is better for visualizing polyps as it differentiates between 
normal and abnormal mucosa. CE can aid in determining 
the depth of  mucosa involvement.  TE augments 
microvasculature abnormalities (100). Standardized factory 
settings currently available in i-SCAN processor are i-SCAN 
1 (includes SE), i-SCAN 2 (includes combination of SE 
and TE) and i-SCAN 3 (includes combination of SE, CE 
and TE), these are recommended for lesion detection, 
characterization and localization, respectively (9).

The data on reporting ADR for i-SCAN compared to 
WLE has shown mixed results. One recent meta-analysis 
published by Aziz et al. reported increased ADR with 
i-SCAN compared to HD colonoscopy (RR: 1.20; 95% CI: 
1.06–1.34, P =0.003) (101). Multiple other studies (102,103) 
have also reported an increased ADR compared to HD-
WLE, including a randomized control trial. However, 
another prospective, randomized trial compared various 
i-SCAN modes to HD-WLE colonoscopy and reported no 
improvement in ADR (104). i-SCAN was also found to have 
more efficacy in predicting right-sided diminutive polyps 
compared to HD-WLE colonoscopy (103).

There have been consistent reports of i-SCAN 
predicting the histology of colorectal polyps with relatively 
high accuracy (105,106). Multiple studies have also shown 

that i-SCAN can predict histology of diminutive colorectal 
polyps with high accuracy in real-time (107-109). Lee et al. 
compared the diagnostic accuracies of NBI and i-SCAN 
in predicting in vivo histology of intermediate to large 
colorectal polyps. The results were comparable for both 
the techniques 73.7% for NBI vs. 75.8% for i-SCAN, 
P=0.744 (110). Another study conducted in South Korea 
reported similar results for diminutive polyps (108).

Neumann et al. (111) reported that i-SCAN can improve 
the diagnosis regarding the activity and extent of disease 
in patient with IBD while Iacucci et al. (112) reported that 
mucosal inflammation detected by i-SCAN correlated 
with histological scores of acute and chronic inflammatory 
changes. Currently, DCE is used for detection of neoplasia 
in IBD and the studies comparing i-SCAN with DCE 
for surveillance of dysplasia in IBD report similar results 
(113,114). However, both studies reported shorter 
withdrawal times compared to DCE. Another study by 
Iacucci et al. reported that in patients with Mayo Endoscopic 
Scores (MES) of 0 for UC were found to have subtle 
mucosal changes which can be detected by i-SCAN (115). 
This can aid in stratifying patients with MES 0 for their risk 
of disease, without any biopsy.

There is a need for more large studies employing the 
use of i-SCAN for detection of other colorectal lesions 
such as SSP/A and right sided lesions, and their effects on 
the patient outcomes. The development of standardized 
histological classification for in vivo diagnosis of polyps with 
i-SCAN is also essential because most of the studies utilized 
the histological classification developed for NBI for in vivo 
histological diagnosis with i-SCAN.

Autofluorescence endoscopy

AFI detects changes in the colonic mucosa based on color 
differences generated by the normal and abnormal tissue. 
The molecules present in the tissues such as collagen, 
flavins and porphyrins called fluorophores emit fluorescence 
of varied colors depending on their relative concentrations 
within the tissue, and these color differences between the 
tissues allows for the detection and characterization of 
colonic lesions (116). Normal mucosa usually appears green 
with AFI, while mucosal thickening due to neoplasm or 
inflammation appears magenta (117).

ADR with AFI has shown inconsistent results across 
multiple studies. A large meta-analysis including six studies 
has shown that ADR was not significantly different from 
WLE (OR 1.01; 95% CI: 0.74–1.37) (118). Moriichi et al.  



Translational Gastroenterology and Hepatology, 2023 Page 9 of 21

© Translational Gastroenterology and Hepatology. All rights reserved. Transl Gastroenterol Hepatol 2023;8:26 | https://dx.doi.org/10.21037/tgh-23-17

reported that AFI dramatically improved ADR in less 
experienced endoscopists compared to WLE (30.3% vs. 
7.7%) (119). However, these results were not replicated in 
experienced endoscopists. Both studies also showed that 
duration of AFI was longer than conventional endoscopy 
(118,119). A recent large, multicenter, RCT demonstrated 
that AFI can detect significantly higher number of flat 
neoplastic lesions compared to white light imaging (120).

Multiple studies report reduction in AMR with AFI 
compared to WLE (118,119,121). However, a study 
conducted by van den Broek et al. reported no significant 
reduction in AMR with AFI when comparing it to high 
resolution endoscopy (122).

Rotondano et al. reported that AFI had a poor accuracy 
of 63% in differentiating neoplastic from non-neoplastic 
adenomas. However, the accuracy seemed to improve to 
84% by using AFI with NBI (123). Another study conducted 
in Netherlands showed similar accuracy of 62%, while the 
sensitivity and specificity for differentiating colonic lesions 
were 90% and 37%, respectively (124). A study utilizing 
AFI to distinguish adenoma from HPs reported 84.9% 
accuracy, while the conventional endoscopy had 75.9% 
accuracy (125). However, another study reported only 65% 
accuracy with AFI in differentiating adenoma from HPs and 
55% accuracy in differentiating sessile serrated adenomas 
from HPs (116). AFI color intensity was also correlated 
with grade of dysplasia in colorectal adenomas, and it can be 
used to predict degree of dysplasia in vivo (126).

The utilization of quantified AFI in assessing the severity 
of mucosal inflammation in UC resulted in a diagnostic 
accuracy of 84.7% vs. conventional endoscopy 78.5%, 
P<0.01 (127). Osada et al. showed that MES correlated 
with quantified green color during AFI. They also found 
an associated between green color and polymorphonuclear 
cell infiltration in patients who had mucosal inflammation 
classified as MES 0 (128). Van den Broek et al. also reported 
that AFI increased the detection of neoplasia in patients 
with long-standing UC (129).

There has also been a study utilizing AFI for differentiating 
lymphoma from lymphoid hyperplasia. The study used a 
visual classification system based on the color intensities 
generated by AFI and this resulted in an overall accuracy of 
91.5% in diagnosing lymphoma (130).

Endocytoscopy (EC)

It is a contact type optical endoscope used to visualize living 
cells in GI tract mucosa with the optical magnification 

of up to 520×, providing white light images of ultra-high 
resolution. Dye staining is essential for better visualization 
during EC, and for this purpose, methylene blue, toluidine 
blue and crystal violet are used. For detection of squamous 
cell dysplasia/cancer, 1% methylene blue is preferred. 
However, for the detection of colonic adenomas, 1% 
toluidine blue is preferred. After staining, EC allows 
detailed visualization of cellular and tissue features such as 
cell nuclei size and shape, polarity, nuclear dye intensity 
as well as papillae, crypt and gland shapes and sizes, their 
integrity. This allows for in vivo histological diagnosis, 
commonly referred to as “optical biopsy” or “virtual 
histology” (131-133).

Multiple studies have reported high accuracy of EC 
for differentiating non-neoplastic colorectal lesions from 
neoplastic lesions. Kudo et al. developed a classification 
for in vivo histological diagnosis based on endocytoscopic 
appearance of the lesions. They reported 100% specificity 
and sensitivity in differentiating non-neoplastic lesions 
from neoplastic lesions (134). Several other studies reported 
similar efficacy with EC (131,135). A recent study utilized 
EC for differentiating diminutive polyps, the accuracy, 
sensitivity, specificity, positive predictive value and negative 
predictive value were all more than 90% in differentiating 
neoplastic diminutive polyps from non-neoplastic (136).

SSA/Ps are frequently misdiagnosed because of their 
morphological appearance. EC can efficiently differentiate 
between HPs and SSA/P in vivo. The main characteristic 
used to detect SSA/Ps was oval glandular lumens (137,138). 
Ogawa et al. further quantified the size of lumen and 
reported that SSA/Ps have lumens which are twice as big 
as HPs lumens (mean luminal areas 4,152 vs. 2,117 μm2, 
P< 0.001) (139).

Mori et al. compared the diagnostic accuracies of EC 
with standard biopsy for diagnosing colorectal neoplasia. 
Results showed diagnostic accuracy of 94.1% with EC vs. 
96.0% with standard biopsy. They established that EC 
is non-inferior to standard biopsy and could be used as 
an alternative for diagnosing colorectal neoplasia during 
routine colonoscopies (140). Several studies have utilized 
EC for predicting depth of invasion of colorectal cancer 
using endocytoscopic classification (based on the shape of 
the glands and lumens) (135,141), endocytoscopic-vascular 
pattern (EC-V) classification (based on the appearance 
surface micro-vessels) (142) or detecting desmoplastic 
reaction in tumor surface (143). All of them found EC to be 
highly accurate in predicting depth of invasion.

Multiple computer-aided systems have been developed 
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based on EC and they have shown high accuracy, sensitivity 
and specificity which were comparable with expert 
endoscopists, but better than non-experts (144-147). This 
shows that CAD can be used for facilitation of diagnosis in 
non-expert settings in conjunction with EC.

Bessho et al. found a relationship between Matts’ 
histologic score used for stratifying patients with UC and 
EC findings. Based on their findings, they developed the EC 
system score (ECSS). They reported a strong correlation 
between ECSS and Matts’ histologic score (148,149). 
Another study reported that EC can precisely identify the 
different inflammatory cells (e.g., basophils, eosinophils, 
and neutrophils) in the mucosa of patients with UC (150).

Full spectrum endoscopy (FUSE)

FUSE (developed by EndoChoice Inc., Alpharetta, GA, 
USA) allows a panoramic view of 330 degrees of the GI 
tract. It has multiple cameras placed on the tip of the scope 
along with LEDs (instead of xenon light source used by 
most other colonoscopes), which allows a wide-angle view 
of entire GI tract. The images taken from the FUSE are 
displayed on three separate monitors. Because of its broader 
view, FUSE is being marketed as a product to improve the 
visibility of GI lesions, especially flat and sessile adenomas 
which can be missed by conventional HD-WLE, thereby 
decreasing AMRs. Most studies done since the conception 
of this technique have been focused on checking the 
efficacy of this technique by comparing the AMR from 
FUSE vs. standard forward viewing colonoscope (FVC). 
As such, Gralnek et. conducted a multicenter RCT across 
multiple countries and results showed significantly reduced 
AMR in patients who underwent FUSE vs. standard FVC 
(7% vs. 41%; P<0.0001) (151). During this back-to-back 
tandem study, another notable finding was that standard 
FVC had missed three advanced adenomas, however, none 
of the adenomas missed with FUSE were advanced (151). 
Kudo et. al demonstrated similar results for their tandem 
colonoscopy trial with AMR for FUSE (11.7%) vs. standard 
FVC (22.9%), P<0.001. They also demonstrated efficacy of 
FUSE in detecting lesions <5 mm in size (AMR for <5 mm  
lesions with FUSE vs. standard FVC; 10.4% vs. 20.0%; 
P=0.0057) as well as lesions in ascending colon (AMR for 
ascending colon lesions with FUSE vs. standard FVC; 4.3% 
vs. 10.6%; P=0.0212) (152). One study compared the FUSE 
with colonoscopy along with scope retroflexion to better 
visualize the right colon. The results of this study, given as 
AMR which was similar to previous studies (153). They also 

demonstrated that FUSE and standard colonoscopy with 
retroflexion in right colon had similar withdrawal times (153).  
Hassan et al., however, demonstrated that FUSE was not 
better than standard FVC in detection of adenomas and 
sessile serrated polyps (154). A recent study conducted in 
Germany compared the accuracy of FUSE with HD-WLE 
for detection of disease activity in patients with IBD. Their 
results indicated that FUSE was not significantly better 
than HD-WLE for assessment of patients with IBD (155).

Colonoscopy “Add-on” devices

Various devices have been developed which can be attached 
to the distal end of colonoscope to allow better visualization 
of colon mucosa, thereby increasing ADR. Cap-assisted 
colonoscopy (CC) is a straightforward attachment on 
the distal end of colonoscope. It extends beyond the tip 
of colonoscope to various lengths and allows deflection 
of colon mucosa for better visualization. A recent meta-
analysis of seven studies showed an overall improvement 
of ADR for CC compared to standard colonoscopy (156). 
Another large network meta-analysis including 25 RCTs 
demonstrated an absolute increase in ADR to 11.3% for low 
performing endoscopists (baseline ADR 10%) and to 45.2% 
for high performing endoscopists (baseline ADR 40%), 
albeit the evidence for CC and Endorings was very low-
quality and for Endocuff was low-quality (157). The head-
to-head analysis done in their study yielded very low-quality 
evidence, with no significant differences in ADR between 
three devices included in their study; CC, endocuff and 
Endorings. Additional devices which provide a broader view 
of GI tract include third-eye retroscope (TER) and third-
eye panoramic (TEP). TER has been shown to increase 
the polyp and ADRs without causing a large increase in 
the withdrawal times (158,159). TEP is more recent and 
there is paucity of data to establish its efficacy regarding 
the improvement of ADR. Endocuff, Endocuff- Vision, 
EndoRings and Balloon assisted-colonoscopy-The G-EYE 
allow improved visualization of colon during withdrawal 
by mechanically stretching the colon folds. Multiple RCTs 
have demonstrated improved ADR and reduced AMR with 
these devices (157,160-168).

Future direction

Optivista, introduced by Pentax in 2016, uses a mechanical 
optical filter to enhance the characterization of colorectal 
polyp surfaces and blood vessels (169). A recent RCT 
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showed that Optivista performed similar to i-SCAN with 
>90% NPV for rectosigmoid adenomas (170).

Another new IEE is red dichromatic imaging (RDI, 
Olympus). It uses red (630 nm), amber (600 nm) and green 
(540 nm) wavelengths to enhance the visibility of deep 
blood vessels (171). This helps identify potential bleeding 
points. RDI has three modes: mode 1 is useful for detecting 
bleeding points and modes 2 and 3 help in visualizing 
superficial and deep vessels (5). Hirai et al. in a study of  
64 lesions, demonstrated improved visibility of bleeding 
points in acute GI bleeding compared with WLE (172).

Another new IEE technology was recently launched by 
Olympus called Texture and Color Enhancement Imaging 
(TXI), which enhances the three components of WLE 
(color, brightness, and texture) to better visualize subtle 
differences in the tissues (173). TXI divides normal white 
light images into a texture image and a base image, then 
recombines them to enhance the mucosal surface’s structure, 
color tone, and brightness (169). Studies have shown that 
TXI provides higher visibility than WLE for colorectal 
polyps, including SSLs, and improved visualization of 
colorectal lesions compared to WLE and NBI (174,175).

CAD using AI for colonoscopy is  a developing 
technology aimed at improving polyp detection and 
predicting the pathology by characterization (CADx) of 
detected lesions (176). The first FDA-approved computer-
aided polyp detection system was GI Genius (Medtronic 
Corp, Dublin, Ireland) (177). Several AI systems have been 
validated and approved for use in medical practice which 
include GI Genius (Medtronic Corp), Endo AID, (Olympus 
Corp), CAD EYE (Fujifilm Corp), Discovery, (Pentax), 
EndoBRAIN (Cybernet Corp, Tokyo, Japan) (178).  
There has been an explosion of multiple RCTs being 
published using AI systems from various parts of the world. 
which have shown significant improvement in quality 
metric outcomes. A recent systemic review and network 
meta-analysis of 50 RCTs compared CAD systems with 
chromoendoscopy and mucosal exposure techniques using 
various distal attachments. This study showed that CAD 
demonstrated higher ADR compared to other technologies 
including standard WLE, use of mucosal exposure 
devices and CE (179). Even though the results from these 
initial studies have been promising, more recent studies 
published from real world data have shown contradicting 
results with several negative studies (180-183). Several 
hypotheses have been postulated as possible reasons for 
the results not translating to the real world, some of which 
are possible ceiling effect of polyp detection seen with 

experienced endoscopists, a false sense of comfort among 
endoscopists assuming CAD would help with a high-
quality examination, leading to decrease in the endoscopist 
quality of mucosal exposure and the unblinded nature of 
the studies leading to bias among endoscopists during 
examination. Moreover, most of the initial studies have 
been performed with strict inclusion criteria and that may 
certainly impact its translation to the real world when a 
controlled environment for patient selection does not exist. 
There is still a significant need for more of these real-world 
studies and possibly training AI algorithms with inputs 
from various patient groups. There is also a need for more 
studies comparing with, or using IEE techniques along with 
AI, which could certainly improve endoscopic examinations 
and the outcomes in the future, but as of now, it remains to 
be seen.

The wide distribution of IEE may be hindered by 
factors such as perceptions of technology inefficiencies and 
difficulties in use, high cost and low compensation, lack 
of standard training, and limited high-quality comparison 
studies (4). Further research is underway to determine the 
efficacy and reliability of these new IEE modalities.

Summary

Colonoscopy is an effective tool for detecting and 
preventing colorectal cancer, but its success depends on 
reliably detecting colorectal neoplasia. Incorporating 
advanced imaging technologies such as IEE to characterize 
lesions in real time diagnosis play an important role.

Since the advent of flexible GI endoscopy in the 
1960s, advancements in endoscopic imaging technology 
have been continuous. From replacing fiber optics with 
charge-coupled device (CCD) (9), to introduction of 
chromoendoscopy in 1970s, we have come a long way (184).  
In recent years, “push-button” technologies such as 
narrowed-spectrum endoscopy (e.g., NBI, FICE, BLI, 
LCI, i-SCAN) and AFI has made advanced imaging more 
accessible, while CLE has given endoscopists the ability to 
view “in vivo histology” (64).

DCE is a technique in which dyes or stains are applied 
to the digestive tract through a spraying catheter during 
endoscopy, to improve the identification and assessment 
of abnormalities. There are two main categories of dyes 
used for evaluating colonic lesions: absorptive dyes (e.g., 
crystal violet and methylene blue) and contrast dyes (e.g., 
indigo carmine). DCE is falling out favor due to the longer 
time required for application and removal of dye and the 
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difficulty of identifying lesions in certain situations.
NBI is a technology that filters the light used for 

illumination leading to improved contrast for small 
blood vessels close to the surface and better visibility of 
the structures on the mucosal surface for differentiating 
between abnormal and normal tissue. It has shown a 
consistently higher ADR compared to WLE. Classifications 
such as NICE and JNET were developed to standardized 
lesion inspection and have significantly increased accuracy 
of in vivo diagnosis. Both ASGE and ESGE endorse the use 
of NBI for diagnosis of polyps ≤5 mm. However, NBI and 
other electronic IEE were not found to improve neoplasia 
detection in patients with IBD.

CLE is a medical imaging technique used to view 
cells and structures within 250 micrometers of a mucosal 
surface. CLE has high sensitivity (93.3%) and specificity 
(89.9%) for polyp detection and characterization and 
several classifications systems, such as the Mainz and 
Miami classifications, have been developed for accurate 
identification of normal, regenerative, and dysplastic 
epithelium. The diagnostic yield for identification of 
colorectal lesions and assessment of polypoid lesions 
in colon has been improved through CLE and the 
development of CAD-based systems.

Most studies in current literature establish the efficacy 
of FICE for in vivo differentiation between neoplastic and 
non-neoplastic polyps. This differentiation is mainly done 
based on the classification given by Teixeira. The ADR of 
FICE is comparable to WLE.

BLI produces bright detailed images of microvasculature 
and microstructure of the colorectal tumors to allow better 
characterization of the tumors. BLI can accurately predict 
the histological diagnosis and therefore can differentiate 
between neoplastic and non-neoplastic polyps. The ADR 
with BLI was found to be comparable to WLE in multiple 
studies, including a large multicenter randomized control 
trial.

LCI has shown to improve the ADR compared to white 
light (58.7% vs. 46.7%; P<0.01) (90). LCI also improves 
detection of SSL and diminutive polyps (86,95,96). LCI 
keeps the color of residual as yellow, similar to white light, 
and therefore enhances the visibility and detection of the 
polyps (93).

i-SCAN has 3 modes for image enhancement: SE, CE 
and TE with SE being better for polyp characterization. 
Reports for ADR with i-SCAN have not been consistent; 
however, multiple studies have reported high accuracy of 
i-SCAN for predicting polyp histology.

AFI can differentiate between normal and abnormal 
mucosa based on their color differences. ADR with AFI has 
shown mixed results, however, the AMR seemed to improve 
with AFI compared with WLE. The color intensity in AFI 
was also found to correlate with mucosal inflammation with 
UC. One of the studies reported correlation of green color 
with number of polymorphonuclear cells (128).

EC has also been called a technique of “virtual 
histology”. It can efficiently differentiate between neoplastic 
and non-neoplastic polyps. EC can also recognize SSA/P  
by visualizing the oval lumens of the glands present in 
these lesions. The diagnostic accuracy for in vivo neoplasia 
recognition by EC is comparable to standard biopsy.

FUSE allows a wide-angle view of 330 degrees during 
colonoscopy and can better detect the lesions which are 
usually missed by standard HD-WLE. Many studies have 
demonstrated significantly lower AMR for FUSE compared 
to forward-viewing colonoscope.

Various add-on devices have been developed with an aim 
of increasing the ADR during colonoscopy. They mainly 
work by either improving the field of view by attaching 
distal devices (TER and TEP) or by mechanically flattening 
the colonic folds (Endocuff, Endocuff-Vision, EndoRings, 
The-G-EYE). Multiple RCTs and meta-analysis have 
supported their efficacy by demonstrating an increased 
ADR and reduced AMR with these devices.

New technologies are under way. Optivista, uses a 
mechanical optical filter to enhance the characterization of 
colorectal polyp surfaces and blood vessels and performs 
similar to i-SCAN with a high negative predictive value for 
rectosigmoid adenomas. Another IEE technology, RDI, 
uses green, amber, and red wavelengths to enhance the 
visibility of deep blood vessels, improving the localization 
of bleeding points in acute GI bleeding compared to WLE. 
Texture and color enhancement imaging (TXI) enhances 
the texture, brightness, and color of WLE to better define 
subtle tissue differences.

CAD using AI for colonoscopy is aimed at improving 
polyp detection and pathology prediction. Initial studies 
have shown great promise with the adaptation of AI 
algorithms but there is a need for more real-world data 
with training these algorithms using datasets from diverse 
population groups.

Conclusions

High-quality colonoscopy is essential to improve ADR s and 
decrease the rates of interval cancers. As more population-
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based screening programs are established around the 
world, the volume of colonoscopies will go up and can 
create a huge burden in healthcare and a drive to improve 
efficiency of these procedures. Several IEE technologies 
have been developed over time, which have assisted in 
improving the visualization of colonic mucosa, detection 
and characterization of polyps and neoplastic tissue. The 
role of these technologies will only continue to expand our 
ability to perform these procedures and strive to achieve 
perfection. Barriers for their standardized use in clinical 
practice continue to exist, given the issues with ease of 
access, costs, lack of standardized training, reimbursements, 
and constant evolution. With the advent of AI and in 
combination with IEE, there is more research developing 
in this topic, which could significantly impact the future 
of screening and surveillance colonoscopies, along with 
diagnostic and therapeutic endoscopies in general.
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