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FLT3 mutations are one of the most common genetic alterations in acute

myeloid leukemia (AML) and are identified in approximately one-third of newly

diagnosed patients. Aberrant FLT3 receptor signaling has important implications

for the biology and clinical management of AML. In recent years, targeting FLT3

has been a part of every course of treatment in FLT3-ITD/TKD-mutated AML and

contributes to substantially prolonged survival. At the same time, wide

application of next-generation sequencing (NGS) technology has revealed a

series of non-canonical FLT3 mutations, including point mutations and small

insertions/deletions. Some of these mutations may be able to influence

downstream phosphorylation and sensitivity to FLT3 inhibitors, while the

correlation with clinical outcomes remains unclear. Exploration of FLT3-

targeted therapy has made substantial progress, but resistance to FLT3

inhibitors has become a pressing issue. The mechanisms underlying FLT3

inhibitor tolerance can be roughly divided into primary resistance and

secondary resistance. Primary resistance is related to abnormalities in signaling

factors, such as FL, CXCL12, and FGF2, and secondary resistance mainly involves

on-targetmutations and off-target aberrations. To overcome this problem, novel

agents such as FF-10101 have shown promising potential. Multitarget strategies

directed at FLT3 and anomalous signaling factors simultaneously are in active

clinical development and show promising results.
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1 Introduction

Acute myeloid leukemia (AML) is a clonal stem cell malignancy that is characterized by

infiltration of abnormally differentiated myeloid progenitor cells (blasts) and has a

historically high mortality rate (1, 2). FLT3 (FMS-like tyrosine kinase-3) is a type 3

receptor tyrosine kinase (RTK) that consists of five Ig-like domains in the extracellular
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region, a juxtamembrane (JM) domain, and an interrupted kinase

domain in the intracellular region (3). In normal cells, FLT3 is

mainly expressed in hematopoietic stem or progenitor cells and

plays an important role in hematopoietic expansion by binding

the FLT3 ligand (FL) (4). Most primary AML cells also express

FLT3, accompanied by FL stimulation leading to proliferation and

anti-apoptosis of AML cells (5–7).

FLT3 is one of the most commonly mutated genes in acute

myeloid leukemia, accounting for 15%-35% of newly diagnosed

patients (8). Most of these mutations are internal tandem

dupl icat ion (ITD) mutat ions that inser t into the

juxtamembrane region and tyrosine kinase domain 1, while

activating point mutations localized in the tyrosine kinase

domain activating loop (TKD) are less frequently observed.

ITD and TKD mutations occur in approximately 20% and 7%

of AML patients, respectively (9, 10). FLT3 mutations in AML

are of clinical significance. FLT3-ITD mutations are strongly

linked to worse clinical features and poor prognosis, making

FLT3-ITD an independent prognostic marker. while the

presence of FLT3-TKD mutations is correlated with a

favorable prognosis over FLT3-ITD-mutated patients (10–13).

With the wide application of NGS, an increasing number of non-

canonical activating point mutations and indel alterations have

been detected, but it is unclear whether those non-canonical

FLT3 alterations are associated with prognosis because of their

low incidence (14–18).

In the era of targeted therapy, mutant FLT3 serves as a

promising molecular target spot for the treatment of AML, and

great changes have been made in the clinical management of

FLT3-mutated AML due to the development of FLT3 inhibitors

(13, 19, 20). However, drug resistance remains a challenge

despite FLT3 inhibitors providing a dramatic therapeutic

response in the frontline and relapsed/refractory settings (21–

24). This review mainly focuses on the recent progress in

applying FLT3 inhibitors in AML and the mechanisms of

drug resistance.
2 Classification of FLT3 inhibitors

FLT3 inhibitors can be classified using two primary schemas:

generation and type. The first-generation FLT3 inhibitors were

tyrosine kinase inhibitors (TKIs) with multi-kinase target

activity. Existing first-generation TKIs include lestaurtinib

(CEP-701), sunitinib (SU11248), midostaurin (PKC412), and

sorafenib (BAY43-9006) (25–28). The antileukemic effects of

these multi-kinase inhibitors likely derive from the simultaneous

inhibition of FLT3 and parallel pathways, but multiple off-target

effects also bring about increased toxicities (29). Subsequently,

second-generation FLT3 inhibitors with higher selectivity and

inhibitory activity were identified. Second-generation FLT3

inhibitors can more selectively inhibit FLT3, and thus have

greater clinical potential and fewer off-target effects. Second-
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generation FLT3 inhibitors include gilteritinib (ASP2215),

quizartinib (AC220), and crenolanib (CP868596). In plasma,

first-generation inhibitors have higher IC50 values and shorter

half-lives than their second-generation counterparts, which

explains their limited clinical potency (30–32).

Furthermore, these FLT3 inhibitors can be roughly classified

into two types according to the binding mode to FLT3. Type I

inhibitors bind to the ATP-binding site in the intracellular active

pocket and enable downregulation of the phosphorylation of

both ITD and TKD mutations. In contrast, because type II

inhibitors are designed to favorably bind to the hydrophobic

space of the inactive conformation of FLT3, they are made

inaccessible by TKD mutations (24). The details of established

FLT3 inhibitors are summarized in Table 1.
3 FLT3 inhibitors for AML therapy

3.1 Therapy for canonical FLT3
mutated AML

Historically, except for acute promyelocytic leukemia (APL),

conventional chemotherapy (“3+7”) alone was the standard

strategy for FLT3-mutated AML. Although FLT3-ITD AML

had a similar response to induction chemotherapy compared

to WT counterparts, a shorter duration of remission and higher

relapse rate attracted attention (53, 54). Preliminary results from

large multicenter trials showing a survival improvement from a

combination of chemotherapy and FLT3 inhibition (compared

with historic controls) made this approach look promising (25,

55). After continuous optimization of treatment strategies and

renewal of FLT3-targeted drugs, FLT3 inhibitors have already

been widely used in the clinical treatment of FLT3-mutated

AML (Figure 1).
3.1.1 Induction and consolidation therapy
The fitness and age of patients are key points in the decision

for the management of newly diagnosed AML with FLT3

mutations. Midostaurin plus standard chemo-therapy is the

first choice for those who are fit. In the phase III RATIFY

trial, young adult patients (16-59 years old) with FLT3-ITD and

FLT3-TKD were randomly assigned to receive standard

induction and consolidation chemotherapy plus either

midostaurin or placebo. Subsequently, those who reached

remission after consolidation therapy received either

midostaurin or placebo as maintenance. This combination

resulted in significant improvement in event-free survival

(EFS; 8.2 vs. 3.0 months, P=0.002) and median overall survival

(OS; 74.7 vs. 25.6 months, P = 0.009) compared to chemotherapy

alone, although a larger population with an FLT3-TKDmutation

in the RATIFY study than that seen in the general population

might bias the clinical outcomes toward this less aggressive
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subtype. Regrettably, the complete remission (CR) rate was not

obviously improved (21). In 2017, midostaurin, one of the first

FLT3 inhibitors to be studied in AML, was approved for use with

induction and consolidation by the US Food and Drug

Administration (FDA), as administered in the RATIFY trial,

and com-bination therapy was recommended for the preferred

strategy by the guidelines of the National Comprehensive

Cancer Network (NCCN).

Older adults (>60 years old) who cannot undergo intensive

chemotherapy often receive less intensive regimens, including

hypomethylating agents (azacitidine or decitabine), because of

limited effective treatment options. Hypomethylating agents and

low-dose cytarabine were associated with poor CR plus CRi rates

and median survival times (56, 57). Venetoclax, a selective small-

molecule Bcl-2 inhibitor, has demonstrated an outstanding

ability to induce apoptosis of AML cells in vitro (58, 59). In

the phase III VIALE-A trial, treatment with azacitidine and

venetoclax obviously improved the remission rate of various

mutated subgroups and the median OS (60). However, the clonal

evolution of FLT3-ITD loss of heterozygosity (LOH) may lead to

treatment failure (12). As an alternative strategy, low-intensity

chemotherapy (azacitidine or decitabine) plus sorafenib and

venetoclax in combination with LDAC showed poor

performance (61, 62).

However, it is important to note that the combination of

venetoclax and FLT3 inhibitors shows great potential. The

combination of FLT3 inhibitors (gilteritinib or sorafenib) with

venetoclax could synergistically reduce cell proliferation and

enhance apoptosis/cell death in FLT3/ITD cell lines and

primary AML samples. Venetoclax was also able to attenuate

FLT3 inhibitor-resistance of cells to gilteritinib or sorafenib

treatment by inhibiting the MAPK/ERK pathway (63). In a

phase II trial, 25 older patients with FLT3 mutated AML

were enrolled and accepted triplet therapy combining FLT3

inhibitor, venetoclax, and HMA. The composite complete
Frontiers in Oncology 03
remission (CRc) rates in patients with newly diagnosed AML

achieve 92% and 62% in R/R patients (64). Moreover, a

retrospective analysis of their team demonstrated that older and

unfit adult patients with newly diagnosed FLT3 mutated AML

receiving a triplet regimen (lower intensity chemotherapy + FLT3

inhibitor + venetoclax) had a significantly higher CR/CRi rate

(93% vs. 70%, P = 0.02) and longer median overall survival (NR

vs. 9.5 months, P < 0.01) compared with doublet (lower intensity

chemotherapy + FLT3 inhibitor) regimens (65). Overall, the

combination of venetoclax and FLT3 inhibitors may be an

effective frontline regimen for FLT3 mutated AML, which

should be further validated prospectively.
3.1.2 Maintenance therapy
The role of FLT3 inhibitors in maintenance therapy is

intriguing, either during re-mission for patients who do not

accept HSCT or for those who are undergoing HSCT. Data from

several clinical trials that included TKI maintenance therapy

after first-line induction and consolidation suggest that it may be

a promising approach (21, 66–69).

• Post-chemotherapy maintenance therapy

In the notable phase III RATIFY study, patients accepted up

to one year of midostaurin maintenance following induction and

consolidation chemotherapy plus midostaurin, while FLT3

inhibitor maintenance was discontinued once patients

underwent HSCT. An unplanned post hoc efficacy analysis of

the midostaurin maintenance phase in the RATIFY trial

suggested that midostaurin maintenance might not further

reduce the probability of relapse, although it was well tolerated

(21). Maintenance of midostaurin after chemotherapy did not

receive US FDA approval due to the result of limited efficacy

shown from clinical data. In the SORAML study, maintenance

therapy with sorafenib after chemotherapy ameliorated RFS,

though the trial could not determine to what extent sorafenib
TABLE 1 Established FLT3 inhibitors and features.

Inhibitor
name

Generation Type IC50 in
plasma
(nM)

Half life
in vivo
(h)

Clinical development Observed mechanisms of secondary resistance

On-target mutations downstream/parallel
signal pathways
abnormalities

Midostaurin First I 1000 (28) 5-29 (33) Approved for newly
diagnosed AML
by FDA in 2017

FLT3-N676K/D/S, F691I/L,
G697R/S mutations (34, 35)

Upregulation of
MCL-1 (36), AXL (37)

Sorafenib First II 308 (38) 20-38 (39) Phase III FLT3-D835Y, F691L, Y842H,
A848P mutations (40, 41)

Upregulation of
PIM (42), ERK (43)

Gilteritinib Second I 17-33 (31) 45-159 (44) Approved for R/R
AML by FDA in 2018

FLT3-F691L, Y693C/N,
G697S, N701K mutations
(45–47)

Mutations in N-Ras
signaling (45, 48)

Quizartinib Second II 18 (49) 36+ (50) Approved for R/R
AML by MHLW in 2019

FLT3-D835Y, F691L,
Y842D mutations (40, 41)

Upregulation of PIM (42),
ERK (43), AXL (37, 51)

Crenolanib Second I 48 (32) 8 (32) Phase III FLT3-K429E, F691L, N701K
mutations (46, 52)

N-Ras, IDH2, TET2
mutations (48, 52)
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maintenance influenced RFS (66). Recently, a long-term follow-

up study validated a clear benefit in RFS; however, it did not

translate into an OS benefit (67). To evaluate actual benefits

from maintenance therapy of FLT3 inhibitors, separate

randomized trials will compare gilteritinib or quizartinib vs.

placebo maintenance for up to two and three years following

chemo-therapy, respectively (NCT02927262, NCT02668653).

• Post-HSCT maintenance therapy

Allogeneic hematopoietic stem cell transplantation (allo-

HSCT) is considered the most powerful method for

hematopoietic malignancies. Allo-HCST improves the out-

come of AML patients with FLT3-ITD AML, but leukemia

relapse remains a frequent factor of failure (70–72). In the

post-HSCT maintenance setting, recent evidence has shown

the antileukemic synergism of FLT3 inhibitors. In a phase I

hypothesis-generating trial, midostaurin was added to intensive

chemotherapy followed by allogeneic hematopoietic cell

transplantation (allo-HSCT) and midostaurin maintenance

therapy for 12 months. This study demonstrated a significant

improvement in EFS by midostaurin compared to 415 historical
Frontiers in Oncology 04
controls (73). Sorafenib maintenance after HSCT in a

randomized, placebo-controlled, double-blind phase II trial

also showed po-tential improvement in RFS (24-month RFS,

sorafenib vs. placebo, 85.0% vs. 53.3%, P=0.002) and OS (24-

month OS, sorafenib vs. placebo, 90.5% vs. 60.2%, P=0.007) (74).

Based on the data frommidostaurin and sorafenib, the efficacy of

quizartinib, gilteritinib, and crenolanib in maintenance therapy

after HSCT will be evaluated in clinical trials (NCT02668653,

NCT02997202, NCT02400255).

3.1.3 The relapsed/refractory setting
Response rates are low in adult patients with relapsed/

refractory (R/R) AML, and no standard strategy has emerged

for treating primary refractory or relapsed AML (13). Patients

with relapsed or refractory FLT3-mutated AML in the phase III

ADMIRAL trial were randomly assigned to the subgroups of

single-agent gilteritinib or salvage chemotherapy. Compared to

salvage chemotherapy, gilteritinib monotherapy resulted in

a higher percentage of patients with complete remission and

full or partial hematologic recovery (34% vs. 15.3%) and
FIGURE 1

Applications of FLT3 inhibitors in AML.
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improved OS with or without censoring at HSCT (9.3 months vs.

5.3 months, P<0.001) (23). The promising results of

the established trial prompted FDA approval of gilteritinib in

the R/R setting. Similarly, in the phase III QUANTUM-R trial,

patients in the subgroup of single-agent quizartinib had an

improved OS of 6.2 months versus 4.7 months (P=0.02) and a

hazard ratio for death of 0.76 (95% CI: 0.58–0.98). However,

complete remission rate did not improve from single-agent

quizartinib (23). A post hoc analysis of the ADMIRAL and

QUANTUM-R trials demonstrated that quizartinib treatment

achieved remission faster and response may be more durable

and survival potentially longer with gilteritinib regardless of

substantial limitations in cross-study comparisons (75).

Furthermore, the combination of venetoclax with gilteritinib

showed a potential for molecular clearance, which seemed to be

associated with increased OS in a recent trial (76). The promising

latent capacity of FLT3 inhibitors in the re-lapsed/refractory

setting has been demonstrated, and further exploration is

ongoing (NCT03989713, NCT04140487, NCT05010122).
3.2 Therapy for non-canonical FLT3
mutated AML

With the clinical application of NGS methods over recent

years, an increased number of FLT3 mutations outside of the

ITD and D835/I836 regions have been de-scribed (16, 18, 77,

78). These non-canonical FLT3 mutations, including point

mutations and small insertions/deletions, occur in every FLT3

protein domain and frequently in the juxtamembrane (JM)

domain and the KD domain adjacent to D835/I836. Several

studies have validated that many of the mutations acquire

increased phosphorylation activity, and some of them might

confer resistance or high sensitivity to specific FLT3 inhibitors

(16, 29, 78, 79).

A series of point mutations located in the non-TKD region

tend to result in aberrant phosphorylation of FLT3 and an

enhanced ability to activate STAT5. Several point mutations in

the TKDs were less sensitive to the type II inhibitor quizartinib

than to the type I TKI crenolanib (80). In contrast, small

insertions/deletions of FLT3, such as p.Glu598_Tyr599del and

p. Phe590_Asp593delinsLeuTyr did not show an increase in

Y589/Y591 phosphorylation but led to constitutive activation of

STAT3, ERK1/2, SFK (Src family kinases), SHP2 and AKT.

Interestingly, p.Phe590_Asp593delinsLeuTyr-transduced cells

showed a higher sensitivity toward PKC412 and AC220 than

FLT3-ITD-transduced cells (17).

The clinical characteristics of non-canonical mutations

remain unclear because of their low incidence. In a brief

report, a patient with mutation of p. Glu598_Tyr599del, which

is described in the above study, is likely to be responsive to
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targeted therapy with tyrosine kinase inhibitors (77). Another

report demonstrated that patients har-boring activating non-

canonical FLT3 mutations (V592G and N676K) may benefit

from TKI therapy in the relapsed/refractory setting (81).

However, a recent study revealed that FLT3 non-canonical

mutations in the ITD region have a higher rate of concomitant

mutation of KTM2A-PTD, and the patients with dual FLT3

non-ITD and KMT2A-PTD mutations may indicate a trend for

inferior outcome (82). The phosphorylation activity and clinical

characteristics of non-ITD and TKD FLT3 mutations vary

widely, but most of them may be sensitive to FLT3 TKIs.
4 Resistance to FLT3 inhibitors

Although multiple small molecule inhibitors of FLT3 have

rapidly improved the outcomes of FLT3-mutated AML,

resistance to FTL3 inhibitors has become increasingly

prominent. Frequent short-lived responses and therapeutic

resistance pose an ongoing issue. Resistance mechanisms,

including primary resistance and secondary resistance, vary

due to drug type. Primary resistance is considered innate. For

example, overexpression of FL and the abnormal status of the

marrow microenvironment induce resistance when FLT3

inhibitors are used for the first time. Secondary resistance

defines the resistance that occurs after using FLT3 inhibitors,

including the second mutation of FLT3 (on-target) and a non-

FLT3 abnormality (off-target), such as acquiring an alteration of

downstream and parallel signal pathways (Figure 2).
4.1 Primary resistance

One common mechanism of primary resistance is the

increased FLT3 ligand. FLT3 ligand is an important regulator

in hematopoiesis. FL is expressed by most leukemic cells and

promotes proliferation through an autocrine process (83, 84).

The soluble FL concentrations increase with the courses of

chemotherapy and maintain a high level and increase more

rapidly in relapse patients. Furthermore, increased plasma FL

levels are tightly correlated with decreased efficacy of FLT3

inhibitors in vitro and in vivo (85). It is connected to increased

FL that overexpression of FLT3 in AML blast cells can clearly

impair the efficacy of FLT3 inhibitors. In addition, Bcl-2 is

located down-stream of the FLT3/PI3K pathway and plays a

significant anti-apoptotic role. The ab-normal elevation of Bcl-2

in FLT3-ITD-positive blasts protects tumor cells from apoptosis,

and the Bcl-2 protein level is not decreased when FLT3

inhibitors attenuate the phosphorylation of FLT3 (86–88).

Similar to Bcl-2, activation of other anti-apoptotic proteins,

such as Mcl-1 and Bcl-xl, mediates resistance (36, 88).
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The bone marrow microenvironment can also directly

contribute to primary FLT3 inhibitor resistance. The

upregulation of CXCL12 and fibroblast growth factor 2

(FGF2), which are secreted by endothelial precursor cells and

bone marrow stromal cells in the bone marrow, respectively, can

shield AML blasts from FLT3 inhibitor injury (89, 90). Hepatic

CYP3A4 has also been shown to inactivate all TKIs and provide

chemoprotection. Enhanced CYP34A expression on BM stromal

cells will weaken the drug availability of FLT3-TKIs, leading to

limited efficacy (91).
4.2 Secondary resistance

4.2.1 On-target resistance
Secondary resistance can be broadly subdivided into on-

target and off-target mechanisms according to where the

alteration occurs. The most common on-target resistance is

the development of the second FLT3 mutation, often in the

KD (Table 1). Acquisition of point mutations at four residues

(F691, D835, Y842, E608) in the kinase domain of FLT3-ITD

confers resistance to quizartinib by disrupting binding (92). The

gatekeeper F691L mutation and D835 mutation confer

resistance not only to quizartinib but also to sorafenib,

gilteritinib, and crenolanib (93). After using midostaurin, the

TKD1 mutations N676D/S, F691I/L, and G697R/S were

screened for efficacy (34). In these acquiring point mutations,

D835 alterations tend to confer drug tolerance to type II FLT3

inhibitors by disrupting the binding and keeping the A-loop in a

DFG-out state (94, 95). In contrast, the acquisition of the

gatekeeper F691L and G697R/S mutations often means

tolerance to most FLT3 inhibitors (34).
Frontiers in Oncology 06
4.2.2 Off-target resistance
On-target mutations only partly explain FLT3 inhibitor

resistance, and upregulation or emergence of non-FLT3

mutant clones (off-target) is a key resistance mechanism

(Table 1). Recent studies have demonstrated obvious

differentiation in paired patients be-tween previous and

posttreatment gilteritinib and crenolanib resistance.

Upregulation of the Ras/MAPK pathway occurs frequently,

causing resistance generation (48, 52). Using patient-derived

cell lines, Lindblad O et al. and Knapper S et al. revealed an

enrichment of the PI3K/mTOR and JAK/STAT5 signaling

pathways in resistant cells (96, 97). The above evidence clearly

shows that the aberrant activation of down-stream signaling

pathways of FLT3 enables AML cells to become tolerant to

FLT3 inhibitors.

Abnormal upregulation of parallel AXL tyrosine kinase

signaling is another mechanism of FLT3 inhibitor resistance.

AXL is a member of the TAM family with the high-affinity

ligand growth arrest-specific protein 6 (GAS6). Activation of the

GAS6/AXL signaling axis serves as an important pathway

driving cancer cell survival and proliferation, which is similar

and parallel to the FLT3 signaling pathway (98). In one study,

AML cell lines and primary blasts from FLT3-ITD-mutated

AML patients were treated with PKC412 and AC220

concomitantly, and the expression of phospho-AXL and AXL

was detected. Enhanced phosphorylation of AXL by treatment

with PKC412 and AC220 occurred not only in AML cell lines

but also in primary blasts (37). Similarly, the results from

another study validated that the increased level of AXL

dampened the response to the FLT3 inhibitor quizartinib. In a

xenograft mouse model of this study, inhibition of AXL

significantly enhanced the response of FLT3-ITD cells to
FIGURE 2

Common mechanisms of primary and secondary resistance.
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quizartinib exclusively within a bone marrow environment (51).

These data high-light a new bypass mechanism that attenuated

the response to FLT3 inhibitors through upregulation of

AXL activity.

4.2.3 Other mechanisms of
secondary resistance

The emergence of metabonomics has prompted the

exploration of the mechanisms driving FLT3-ITD acute

myeloid leukemia resistance to FLT3 inhibitors from a new

perspective. Metabolic reprogramming mediated the evolution

of gilteritinib resistance (Figure 3A). Sunil K Joshi et al.

demonstrated dramatic differences in the metabolome of early

and late gilteritinib-resistant AML cell lines. Metabolic profiling

of these cells affirmed a trend toward upregulation of

sphingolipid/phospholipid or fatty acid/carnitine metabolites

relative to MOLM14 parental cells. Early resistant cells

undergo metabolic reprogramming with a slow proliferation

rate, while expansion of pre-existing NRAS mutant subclones is

dominant in late resistant cells (99). The role of autophagy in

targeted therapy has gradually been revealed. Enhanced

autophagy activity was observed in sorafenib-resistant AML

cell lines bearing FLT3-TKD mutations and FLT3-ITD cells

participating in AML progression and drug resistance (100, 101).

Although the molecular mechanisms remain a mystery, it is

highly probable that the transcription factor ATF4 (activating

transcription factor 4) stimulated by FLT3-ITD is crucial to the

upregulation of autophagy (102). Mitophagy is a cellular process

for the degradation of mitochondria by the autophagic

machinery and is regulated by ceramide on the outer

mitochondrial membrane (103). FLT3-ITD mutations rescue

AML cells from mitophagy by suppressing pro-cell death lipid

ceramide generation, and FLT3-ITD inhibition mediates

ceramide-dependent mitophagy, leading to AML blast death.

The abnormality of mitochondrial ceramide arresting

mitophagy results in resistance to FLT3-ITD inhibition

(104) (Figure 3B).

Epigenetic dysregulation is a significant cause of secondary

resistance. Mutations in epigenetic modification genes

(DNMT3A, TET2, IDH1/2, HDAC) are related to diverse

processes of epigenetic regulation and suggest potential

associations between alterations and autophagy associated with

secondary resistance (48, 102, 105) (Figure 3C). In addition,

HDAC8 was upregulated upon FLT3 inhibitor exposure in

FLT3-mutated AML cells and subsequently enhanced HDAC8

binding and deacetylation of p53 to promote AML cell survival

and TKI resistance (106, 107) (Figure 3D).
5 Strategies to overcome resistance

Numerous efforts have been made to attenuate the effect of

FLT3 TKI drug tolerance. To overcome primary and off-target
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resistance, doctors attempt to combine different types of agents

and use multitarget inhibitors to avert limited response. Due to

on-target resistance, it is necessary to develop new FLT3

inhibitors that are effective against primary and secondary

mutations via an original molecular design rationale.
5.1 Development of novel FLT3 inhibitors

As described above, type II inhibitors exhibit high selectivity

but no response to FLT3-TKD mutation because of a persistent

state of DFG-out (95). Although type I inhibitors show efficacy

in overcoming FLT3-TKD, several secondary FLT3 mutations,

for example, the gatekeeper mutation (F691L), confer limited

efficacy to all existing FLT3 inhibitors (95). To tackle this

challenge, the discovery of novel agents that are sensitive to

secondary mutations conferring resistance is essential. The

development of new type II inhibitors seemed to bring

promising prospects. Pexidartinib (PLX3397) is a triple-kinase

inhibitor of FLT3, KIT, and CSF1R and shows excellent

inhabitation of FLT3-ITD (half-maximal inhibitory

concentration [IC50]: 11 nM). Pexidartinib has a shorter

linker between the middle and tail pyridine rings than other

type II inhibitors and forms two hydrogen bonds with D829,

which sequesters pexidartinib away from F691, thus avoiding the

adverse influence of the F691L mutation. Extraordinary efficacy

in overcoming the secondary F691L mutation has been shown

due to the above mechanism (108, 109). Ge et al. discovered a

novel type II FLT3 inhibitor, MZH29, which can stably bind to

the FLT3-F691L model by four hydrogen bonds formed between

MZH29 and E661, C694, and D829 and a p−p stacking

interaction formed between MZH29 and F830 (110). Another

novel FLT3 inhibitor, cabozantinib, potently inhibited FLT3

phosphorylation in FLT3-ITD-positive and FLT3-ITD-F691L-

positive cells under both medium and plasma conditions, and

the result of the docking binding model in which cabozantinib

maintained a remote distance from F691 and formed a hydrogen

bond with D829 opposite F691 explains the potent inhibitory

activity (111). All these novel type II inhibitors, which

noncovalently bind to the FLT3-ITD-F691L model, show

stable binding ability and excellent efficiency in vitro.

However, they were vulnerable to other residue mutations,

particularly the residue located in the activation loop (108,

110, 111). Consequently, targeted covalent inhibitors have

attracted the attention of many researchers. FF-10101, the first

reported covalent FLT3 inhibitor, made great progress in

enhancing the binding affinity and response to secondary on-

target mutations by targeting conserved amino acids. A covalent

bond was generated between the warhead of FF-10101 and the

“SH” of C695.70 Based on its high affinity for FLT3 kinase, FF-

10101 showed outstanding efficacy against not only the FLT3-

ITD-TKD mutation but also the uncommon K663Q, N841I,
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R834Q, and F691L mutations in vitro. Furthermore, oral

administration in NOD/SCID mice also showed potent

inhibitory effects (112). FF-10101 is now in a phase I/II

clinical trial (NCT03194685) to treat refractory or relapsed

AML patients in the US.
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5.2 Therapies of multitarget inhibition

Monotherapy with FLT3 inhibitors frequently causes drug

resistance, a short duration of remission, and poor effects due to

complex pathological changes, such as an abnormal
B

C

A

D

FIGURE 3

Other mechanisms of secondary resistance. (A) Metabolic reprogramming mediated the evolution of resistance. (B) The abnormality of
mitochondrial ceramide results in resistance to FLT3-inhibitors by arresting mitophagy. (C) Mutations in epigenetic modification genes suggests
potential associations between alterations and autophagy associated with secondary resistance (D) HDAC8 was upregulated upon FLT3 inhibitor
exposure and enhanced HDAC8 binding and deacetylation of p53 to promote resistance.
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microenvironment using FLT3 inhibitors and compensatory off-

target alterations. That many non-FLT3 abnormalities are

involved in the occurrence of FLT3 inhibitor tolerance

indicates that simultaneously inhibiting multiple synergetic

signaling molecules might contribute to improving the efficacy

and overcoming resistance. Much evidence has demonstrated

that the combination of different kinds of agents according to

various abnormal states results in promising outcomes.

The combination of midostaurin or gilteritinib with the Bcl-

2 inhibitor venetoclax contributed to the simultaneous

downregulation of Mcl-1 and Bcl-2, resulting in the synergistic

induction of apoptosis and attenuating the adverse impact of

increased Bcl-2 (113, 114). Similarly, the concurrent inhibition

of CXCL12 and FGF2 could have a favorable effect (89, 90).

Furthermore, a synergistic effect has been shown in therapies

combining FLT3-TKIs with agents targeting downstream or

parallel signaling pathways, such as JAK/STAT5 pathway

inhibitors (115, 116) and PI3K/mTOR pathway inhibitors (99,

117). In addition to combination therapies, dual inhibitors can

achieve good results by reaching the identical goal of multitarget

inhabitation, such as dual Pim kinase/FLT3 inhibitors, dual

FLT3/JAK2 inhibitors, and dual FLT3/CDK4 inhibitors

(118–122).

Moreover, addressing metabolic abnormalities is also a

potential strategy to drive AML cells to return to a susceptible

state (99, 104).
6 Conclusions and future directions

In the era of individual diagnosis and treatment, FLT3-

activating mutations are a marker of poor prognosis and specific

therapeutic needs. Although the emergence of FLT3 inhibitors

has provided us with numerous powerful creative treatment

tools, survival remains poor in FLT3-mutated AML, and new

strategies need to be explored. In addition to FLT3-ITD/TKD,

FLT3 non-canonical alterations also deserve attention with the

wide use of NGS. At the same time, the influence of FLT3

inhibitor tolerance has become an inevitable issue. To solve this
Frontiers in Oncology 09
problem, a deeper exploration of the underlying mechanisms

and resolvents from many different angles are essential.
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