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Abstract: Evidence from human and animal studies indicate that disrupted light cycles leads to
alterations of the sleep state, poor cognition, and the risk of developing neuroinflammatory and gener-
alized health disorders. Zebrafish exhibit a diurnal circadian rhythm and are an increasingly popular
model in studies of neurophysiology and neuropathophysiology. Here, we investigate the effect of
alterations in light cycle on the adult zebrafish brain: we measured the effect of altered, unpredictable
light exposure in adult zebrafish telencephalon, homologous to mammalian hippocampus, and the
optic tectum, a significant visual processing center with extensive telencephalon connections. The
expression of heat shock protein-70 (HSP70), an important cell stress mediator, was significantly
decreased in optic tectum of adult zebrafish brain following four days of altered light exposure.
Further, pSer473-Akt (protein kinase B) was significantly reduced in telencephalon following light
cycle alteration, and pSer9-GSK3β (glycogen synthase kinase-3β) was significantly reduced in both
the telencephalon and optic tectum of light-altered fish. Animals exposed to five minutes of environ-
mental enrichment showed significant increase in pSer473Akt, which was significantly attenuated
by four days of altered light exposure. These data show for the first time that unpredictable light
exposure alters HSP70 expression and dysregulates Akt-GSK3β signaling in the adult zebrafish brain.
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1. Introduction

Evidence from animal models and human studies have demonstrated that abruptly
altered light cycles, poor sleep, and sleep deprivation exert profoundly negative impacts
on brain function and general health. In fact, shift work has been identified as a risk
factor for developing cancer [1] and Alzheimer’s disease (AD), and sleep deprivation
exacerbates cognitive dysfunction and pathology in a mouse model of AD [2]. Gene
expression patterns associated with circadian rhythms have been investigated for decades,
as have the mechanisms by which light entrains circadian clocks in various species, but the
molecular underpinnings connecting interruptions of circadian functions with cognitive
dysfunction and neuropathology are only beginning to be investigated [3].

Akt is an important regulator of cell survival, cell death, mitochondrial function,
and learning and memory processes [4–7]. Akt is regulated by phosphorylation: phos-
phorylation on the serine-473 or threonine-308 residues via phosphatidylinositol 3-kinase
(PI3K) is activating and promotes long term potentiation of synaptic strength, cell survival,
microglial phagocytic activity, and increased neurogenesis in the healthy brain in response
to enrichment, growth factors, synaptic strengthening, and cell survival signaling [7–9].
Akt, in turn, phosphorylates GSK3β on the serine-9 residue, which serves to decrease its
activity. This signaling is essential to experience-dependent neuroplasticity [7]. Recent
evidence indicates the neuroprotective functions of Akt may be impaired after disruption of
the sleep/wake cycle. Specifically, treatment of microglial cells with orexin-A/B—a major
modulator of the sleep-wake cycle which mimics sleep deprivation conditions-impaired
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phagocytosis of amyloid beta by microglia, and this deficit was associated with down-
regulation of PI3K and Akt [10]. Akt may therefore represent a molecular link between
disrupted circadian functions and neuropathology.

GSK3β impacts numerous cellular processes in the brain associated with cell sur-
vival [11], inflammation [12], learning, memory [7,13,14] and development [15]. Addi-
tionally, the dysregulation of GSK3β has been linked with the cognitive abnormalities
and pathologies of AD [16], schizophrenia [17], fragile-X mental retardation [18,19], mood
disorders [20,21], ischemic stroke and other excitotoxicity-related disorders [22]. The phos-
phorylation state of GSK3β regulates its kinase activity—phosphorylation of the serine
9/21 residues by Akt or phospholipase C (PLC) is inhibitory, and this is generally regarded
as the pro-cognitive and protective form [23]. Neuroinflammation, a key aspect of AD eiti-
ology and of central importance to injury sustained after ischemic stroke and subarachnoid
hemorrhage, is reduced by phosphorylation of GSK3β [22]. In primary neurons, in which
glutamate inhibits the Akt/GSK3 pathway and promotes cell death, GSK3 inhibitors protect
primary neurons from glutamate-induced cell death [24]. Several other hallmark patholo-
gies of AD—overproduction of soluble amyloid beta oligomers, tau hyperphosphorylation,
deficits in synaptic plasticity and cell death—appear to converge upon hyperactive GSK3β,
and the therapeutic benefit of inhibiting it. In mice, GSK3β phosphorylation follows a
circadian rhythm, and genetically manipulating GSK3β phosphorylation impacts clock
gene periodicity in the hippocampus [25]. GSK3β signaling clearly modulates a host of
brain functions, including circadian rhythmicity, but the question of whether disruption of
circadian function may cause GSK3β dysregulation has not been evaluated. Additionally,
a link between acute light exposure and effects on pGSK3B has been identified [26]. It is
therefore an open question as to whether altered light cycles, sleep deprivation and other
stressors on the circadian system exert adverse effects on brain function by disrupting
normal GSK3β signaling.

Heat shock proteins (HSPs) constitute a well-studied family of proteins that confer
protection to cells during a host of stressors. Acting as chaperones, HSPs restore aberrantly
misfolded proteins [27]. Additionally, HSPs inhibit apoptotic cell death pathways [28,29]
and attenuate inflammation [30–33]. Stressors known to induce the protective functions
of HSPs include heat [34], ischemia [35,36], oxidative stress [37–39], infections, heavy
metals and toxins [27]. Notably, a relationship between HSP70 and circadian functions
has been detected—in diurnal mammals, HSP70 levels are known to decline at night and
increase during light hours [40,41]. Additionally, sleep deprivation has been shown to
stimulate HSP70 expression in the rat cerebral cortex [42] and in several areas of mouse
brain [43]. Finally, two days of light interference treatments during dark hours, a stressor
and disruptor of normal sleep in diurnal animals, has been shown to stimulate HSP70 in
the brain of golden spiny mice [41].

Zebrafish—which have emerged as a powerful animal model for neuroscience-exhibit
a diurnal circadian rhythm, a well-characterized sleep-like state, and sleep disruption
in response to pharmacology, light exposure, and other protocols used in mammals for
the purposes of sleep deprivation [44–50]. As in mammals, circadian functions of periph-
eral tissues are affected in a light-sensitive manner by a centralized structure—the pineal
gland—which coordinates melatonin release. In striking contrast to mammals, however,
light sensitivity is evident in nearly every tissue in zebrafish, imparting the ability for
individual cells in peripheral tissues to reset their molecular clocks in direct response to
light [51–53]. It is known that extended light exposure during the dark phase impairs sleep
in zebrafish, and that neurogenesis decreases in the brain of fish after light-induced sleep
deprivation [54]. Additionally, gene expression changes in response to altered light expo-
sure have been described [54]. However, detailed investigations into how sleep deprivation
and/or altered light may affect intracellular signaling pathways in the zebrafish brain
have not been conducted. In the current study, a causal relationship between abnormal
patterns of light exposure (a commonly used approach for sleep alteration in many animal
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models [1,2,41,54]) and alterations in GSK3β, Akt, and HSP70 are examined in the brains
of adult zebrafish via exposure to four days of altered, unpredictable light exposure

2. Materials and Methods
2.1. Zebrafish Husbandry

Adult zebrafish were housed as described by Mans et al., 2019 [55]. All experimental
procedures were approved by the Georgia Southern University Institutional Care and
Use Committee.

2.2. Light Cycle Alteration

Adult zebrafish were subjected to light alteration as follows. Single fish were placed
in 2.8 L tanks equipped with carbon filtration (Tetra Whisper 4, Spectra Brands, Blacksburg,
VA, USA), and tanks were placed in light-isolated boxes equipped with LED (light emit-
ting diode) lighting (50 C9 White Christmas Lights, Holiday Time, Bentonville, AR, USA)
connected to timers (MyTouchSmart Indoor Digital Timer, General Electric, New York, NY,
USA). Following a four-day acclimation period in which light cycles were maintained on
the standard 14 h on/10 h off protocol (lights ON from 600 h until 2000 h), experimental
fish were then subjected to 4 days of unpredictable alterations in light cycles. Control
tanks were maintained on standard 14/10 light cycle noted above. Feeding times remained
constant for all conditions, and occurred between 1200 h and 1300 h each day (Figure 1). For
each replicate (6 replicates for HSP70 expression investigation, 8 replicates for Akt/GSK3β
investigation), sampling order was interleaved as an internal control. 2.8 L tanks equipped
with carbon filtration (Tetra Whisper 4), and tanks were placed in light-isolated boxes
equipped with LED lighting (50 C9 White Christmas Lights) connected to external timers
(MyTouchSmart Indoor Digital Timer). Following a four-day acclimation period in which
light cycles were maintained on the standard protocol, two boxes maintained the standard
light cycle. The third fish was subjected to 4 days of alterations in light exposure (Figure 1).
After the 8-day period, the control fish was subject to no enrichment. 5 min of environ-
mental enrichment was carried out for the other two fish: one on normal light cycle (ENR)
and one on “altered light” cycle (EN/AL) (protocol developed using Oliviera, 2015 [56]).
Enrichment was accomplished by external remote control of LED adhesive light strips
(Good Earth Lighting, Plug-In Tape Light with Remote, Black (Mount Prospect, IL)) affixed
to the inside of the light isolation boxes, which alternated blue and green on a 5 s interval
for five minutes. Following enrichment, fish were anesthetized and prepared for sample
collection. For each replication, sampling order was interleaved as an internal control.
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Figure 1. Scheme for alteration of light cycles. Gray bars indicate lights OFF, while white areas
indicate lights ON.

2.3. Dissection and Sample Collection

Fish were anesthetized using tricaine methanesulfonate (300 µg/mL) until there
was no response to tail pinch. The fish were decapitated, and heads were stabilized on
foam blocks submerged in ice-cold artificial cerebrospinal fluid (ACSF) consisting of NaCl
(120 mM), KCl (3.5 mM), CaCl (2 mM), MgSO4 (1.3 mM), MgCl2 (1.3 mM), NaH2PO4
(1.25 mM), NaHCO3 (26 mM), and glucose (11 mM). Telencephalon and optic tectum were
removed and placed immediately into homogenization buffer containing T-Per (Tissue
Protein Extraction Reagent, Fisher Scientific, Pittsburg, PA, USA) containing protease and
phosphatase inhibitor cocktails (Roche). Samples were homogenized with a Dremel rotary
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tool with teflon pestle attachment for 60 s followed by 1-min centrifugation at 1000× g and
immediate freezing at −20 ◦C. For sample clarification, thawed samples were centrifuged at
5000× g for 10 min and supernatants were removed for protein assay and immunoblotting.

2.4. Western Blotting

Protein concentration of homogenates was determined using a NanoDrop spectropho-
tometer (ThermoFisher, Waltham, MA, USA). In brief, 2 µL of sample was added to the
pedestal and absorbance was measured at 280 nm. Protein concentrations were compared
to a bovine serum albumin (BSA) standard curve of known concentrations. Total protein
concentration was reported in µg/µL units. Samples totaling a 30 µL volume and contain-
ing 20 µg of protein were prepared in SDS (sodium dodecyl sulfate) sample buffer (BioRad)
using standard sample preparation protocol and as reported by Barksdale, 2009 [57].
Samples were resolved using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis) onto 10% polyacrylamide gels of 1.5 mm thickness, then transferred to PVDF
(polyvinylidene fluoride) membranes using discontinuous semi-dry transfer (BioRad). Fol-
lowing transfer, membranes were blocked in 5% milk with tris-buffered saline with 0.02%
Tween (TBST) for one hour, followed by application of primary antibody (HSP70: GENE-
TEX GTX25442), 1:2000; total-Akt: Cell Signaling (Rabbit mAb #4691) 1:2500; total-GSK3β
(Rabbit mAb #5676): Cell Signaling 1:2500) in 2.5% milk/TBST. Primary antibodies to
pSer473-Akt (Cell Signaling (Rabbit mAb #4060), 1:5000) and pSer9 GSK3β (Cell Signaling
(Ab #9331), 1:5000) were incubated in 2.5% bovine serum albumin (BSA)/TBST [55,58].

Primary antibodies were incubated overnight at 4 ◦C. Secondary antibodies (HRP-
Conjugated goat anti-rabbit; Cell Signaling, 1:1000) were incubated for 1 h in 2.5% milk/T
BST followed by chemiluminescent detection with Clarity Western ECL peroxidase sub-
strate (BioRad, Hercules, CA, USA). Blots were imaged using the ChemiDoc MP Imager
with Image Lab software v. 5.1 (BioRad). Protein levels were quantified using densitometry
of individual bands using ImageJ Freeware (NCBI). Prior to detection of loading control
proteins actin (AbCam, 1:2000) or tubulin (Sigma-Aldrich, 1:5000), blots were stripped
using a harsh antibody stripping protocol (AbCam), and absence of residual antibody was
confirmed via digital imaging.

2.5. Data Analysis

Data were expressed as mean +/− standard error of the mean (SEM). Comparison of
data from different treatment groups was performed using Student’s t-test (Figures 2 and 3)
or ANOVA (Analysis of Variance) (Figure 4 with 95% confidence interval). Protein levels
were normalized to control proteins (i.e., pAKT reported as pAkt/tAkt ratio) prior to
statistical analysis and graphed with controls set to 1.0.

3. Results
3.1. HSP70 Expression Is Significantly Diminished Following Light Cycle Alteration

HSP70 protein expression was measured in the telencephalon and the optic tectum
using Western blot analysis. HSP70 protein levels showed approximately 50% decrease in
the optic tectum of adult zebrafish following four days of light cycle alteration (Figure 2).

3.2. Akt and GSK3B Are Dysregulated Following Exposure to Altered Light Cycles

pSer473Akt decreased significantly in telencephalon by approximately 20%, and
trended to decrease in optic tectum following exposure to alterations in light cycle
(Figure 3A), with no significant change to total levels of Akt in the tested brain areas
(Figure 3B). These results indicate that the activity of Akt is diminished in the brain fol-
lowing alterations in light exposure, and this may lead to downstream changes to brain
biochemistry. To further explore this, we measured the levels of pSer9-GSK3β in the telen-
cephalon and optic tectum. pGSK3β in both regions showed a significant decrease (18%
in telencephalon and 30% in optic tectum) with respect to controls (Figure 3A), with no
significant change to total levels of GSK3β (Figure 3B).



Cells 2021, 10, 637 5 of 10

Cells 2021, 10, 637 6 of 12 
 

 

3. Results 
3.1. HSP70 Expression is Significantly Diminished Following Light Cycle Alteration 

HSP70 protein expression was measured in the telencephalon and the optic tectum 
using Western blot analysis. HSP70 protein levels showed approximately 50% decrease in 
the optic tectum of adult zebrafish following four days of light cycle alteration (Figure 2). 

 
Figure 2. Light cycle alteration significantly decreases HSP70 expression in the optic tectum. (A) 
HSP70 expression measured in the telencephalon and optic tectum from control and light-altered 
fish. HSP70 protein levels in control samples were set to 1.00. HSP70 levels were normalized to 
actin. Error bars represent SEM. * p = 0.0212, Student’s t-test with 95% CI, t = 2.7286, n = 6. (B) 
Representative Western blot images. 

 
Figure 3. Alterations in light exposure dysregulates Akt and GSK3β in the telencephalon and optic 
tectum of adult zebrafish. (A) Quantified levels of pSer473Akt and pSer9GSK3β in telencephalon 

Figure 2. Light cycle alteration significantly decreases HSP70 expression in the optic tectum.
(A) HSP70 expression measured in the telencephalon and optic tectum from control and light-
altered fish. HSP70 protein levels in control samples were set to 1.00. HSP70 levels were normalized
to actin. Error bars represent SEM. * p = 0.0212, Student’s t-test with 95% CI, t = 2.7286, n = 6.
(B) Representative Western blot images.

Cells 2021, 10, 637 6 of 12 

3. Results
3.1. HSP70 Expression is Significantly Diminished Following Light Cycle Alteration 

HSP70 protein expression was measured in the telencephalon and the optic tectum 
using Western blot analysis. HSP70 protein levels showed approximately 50% decrease in 
the optic tectum of adult zebrafish following four days of light cycle alteration (Figure 2). 

Figure 2. Light cycle alteration significantly decreases HSP70 expression in the optic tectum. (A) 
HSP70 expression measured in the telencephalon and optic tectum from control and light-altered 
fish. HSP70 protein levels in control samples were set to 1.00. HSP70 levels were normalized to 
actin. Error bars represent SEM. * p = 0.0212, Student’s t-test with 95% CI, t = 2.7286, n = 6. (B) 
Representative Western blot images. 

Figure 3. Alterations in light exposure dysregulates Akt and GSK3β in the telencephalon and optic
tectum of adult zebrafish. (A) Quantified levels of pSer473Akt and pSer9GSK3β in telencephalon 

Figure 3. Alterations in light exposure dysregulates Akt and GSK3β in the telencephalon and optic
tectum of adult zebrafish. (A) Quantified levels of pSer473Akt and pSer9GSK3β in telencephalon
(Telencephalon pAKT: p = 0.0494, t = 2.180; Telencephalon pGSK: p = 0.0483, t = 2.0754) and optic
tectum (Optic Tectum pGSK3β: p = 0.0335, t = 2.3570) of control and light-altered adult zebrafish.
pSer473Akt was normalized to tAkt, and pGSK3β was normalized to tGSK3B. Control protein
expression was set to 1.00. (B) Quantified levels of Akt and GSK3β in telencephalon and optic tectum
of control and light-altered adult zebrafish. Akt and GSK3β were normalized to tubulin. Control
protein expression was set to 1.00. Error bars represent SEM. * p < 0.05, n = 8 (C) Representative
Western blot images; tubulin shown as loading control.
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3.3. Light Cycle Alteration Diminishes Enrichment-Related Increase in pSer473Akt

Environmental enrichment has long been reported to increase the activity of Akt, as
measured by phosphorylation on Ser473 or Thr308 in rodent and other models [59,60] but
has not been tested in adult zebrafish brain. Furthermore, it has been reported in other
models that neuroinflammatory processes inhibit enrichment-induced increases in Akt
activity [59], and that neuroprotection from stress is accomplished via activation of the PI3K-
Akt-GSK3β signaling pathway [59,61,62]. We hypothesized, given the results obtained
from light alteration experiments shown in Figure 3, that environmental enrichment would
lead to increased pAkt in telencephalon, and that this enrichment-induced increase would
be attenuated by unpredictable alterations in light exposure. Figure 4 illustrates that, in
telencephalon of adult zebrafish, environmental enrichment caused a robust significant
increase in pSer473 Akt levels in telencephalon as expected. This effect was completely
blocked by 4 days of exposure to altered light cycle.

4. Discussion

Here we have shown significant effects on the biochemistry of adult zebrafish optic
tectum and telencephalon in response to four days of unpredictable alterations in light
cycles. These effects include a significant decrease in HSP70 expression, significant decrease
in Akt activity as measured by pSer473Akt, and significant increase in GSK3β activity as
measured by pSer9GSK3β.

Expression of HSP70 decreased significantly in the optic tectum of fish exposed to
altered light cycles, but not telencephalon, with respect to controls. These results support
previous findings that the optic tectum undergoes significant changes in response to visual
experience [63], and further indicate that this may also be true for the adult zebrafish brain.
The drop in HSP70 expression in the face light cycle alteration suggests that the adult
brain may be less able to cope with external stressors (such as tank sediment, predator
threat, or DNA damaging stimuli) when undergoing a potentially stressful stimulus such
as unpredictable light exposure. While these data do not match what has been found in
rodents specifically, they are substantiated in the results shown in the Yokogawa [46] model
of an electric shock stressor, in which cortisol levels rise while HSP70 decreases. Further,
changes in the optic tectum may also extend to affect circuitry in the telencephalon, and
both regions are important for cognition and experience dependent plasticity [63–65].

Akt phosphorylation on the serine-473 residue was significantly diminished in te-
lencephalon of adult zebrafish following four days of light cycle alteration. Interestingly,
while not significant, the total levels of Akt showed a trend to increase following exposure
to unpredictable light cycles. These data, if investigated further, may solidify that, even
though total levels of Akt may increase as part of a compensatory mechanism due to a
potential stressor such as sleep alteration, the activity of this pro-survival and pro-plasticity
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protein remains woefully low. Likewise, GSK3β phosphorylation on the ser-9 residue was
significantly decreased in both the optic tectum and telencephalon in zebrafish exposed to
altered light cycle, while total levels of GSK3β showed a trend to increase with no signifi-
cant change. These data suggest presence of increased inflammatory processes, decreased
neuronal health, and potential metabolic effects on the sleep-altered brain [66], which could
be confirmed upon further investigation. These results, overall, solidify that decreased Akt
activity is linked with a significant increase in GSK3β activity in the zebrafish brain, and
indicate this pathway is similar to mammalian models. Our results do not rule out other
enzymatic effects on Akt or GSK3β activity, but they do confirm presence of this signaling
pathway in the adult zebrafish. Since protection of the brain via lithium-induced decrease
in GSK3β activity (measured by pSer9GSK3β) is associated with an increase in HSP70
expression in the rodent brain [22], these data may show a similar signaling pathway in the
zebrafish brain, in which decreased HSP70 expression occurs concurrently with decreased
Akt activity and increased GSK3β activity.

In addition to effects on baseline HSP70 expression, Akt activity and GSK3β regula-
tion, enrichment-related increase in pSer473 was completely attenuated by four days of
alterations in light exposure. These results are significant because environmental enrich-
ment had not previously been explored in the context of light exposure or circadian rhythm
using zebrafish as a model. These results support many previous reports in multiple
mammalian models (human, rat, mouse, monkey) that disruption of normal light exposure
alters critical biochemical signaling that is required for homeostasis, cell survival, mood,
and experience dependent plasticity [46,67–69].

Taken together, our results indicate that the Akt-GSK3β signaling pathway is dysreg-
ulated in the telencephalon and optic tectum, accompanied by decreased expression of
HSP70 in the optic tectum of adult zebrafish upon light cycle disruption. These results
serve to substantiate the future use of adult zebrafish in the investigation of stress-induced
pathways and indicate underlying cellular signaling related to learning and memory that
occurs in the adult zebrafish brain following as a result of alterations in light cycle. As the
Akt-GSK3β signaling pathway is strongly linked to long term potentiation, depression and
neuroinflammation, these experiments may illustrate potential biochemical underpinnings
of cognitive changes that occur with alterations in light exposure.
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