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ABSTRACT: Scanning electrochemical microscopy (SECM) is one of the
scanning probe techniques that has attracted considerable attention because of its
ability to interrogate surface morphology or electrochemical reactivity. However,
the quality of SECM images generally depends on the sizes of the electrodes and
many uncontrollable factors. Furthermore, manipulating fragile glass ultra-
microelectrodes and blurred images sometimes frustrate researchers. To overcome
the challenges of modern SECM, we developed novel soft gold probes and then
established the AI-assisted methodology for image fusion. A novel gold
microelectrode probe with high softness was developed to scan fragile samples.
The distribution of EGFR (protein biomarker) in oral cancer was investigated.
Then, we fused the optical microscopic and SECM images to enhance the image quality using Matlab software. However, thousands
of fused images were generated by changing the parameters for image fusion, which is annoying for researchers. Thus, a deep
learning model was built to select the best-fused images according to the contrast and clarity of the fused images. Therefore, the
quality of the SECM images was improved using a novel soft probe and combining the image fusion technique. In the future, a new
scanning probe with AI-assisted fused SECM image processing may be interpreted more preciously and contribute to the early
detection of cancers.
KEYWORDS: scanning electrochemical microscopy, SECM, gold soft ultramicroelectrode, oral cancer, EGFR, image fusion,
artificial intelligence

1. INTRODUCTION
Oral cancer causes more than 300 000 new cases and over
140′000 deaths every year globally.1 It can be classified into
several subtypes, including malignant tumors in the oral cavity,
malignant tumors in the lips, and the oropharynx.2 Therefore,
capturing oral cancer images to understand the cancer
progression and its biomarker distribution is an important
issue. In recent years, various scanning probe techniques have
attracted considerable attention, such as electrochemical
microscopy (SECM), scanning ion conductance microscopy
(SICM), and atomic force microscopy (AFM).3−7 Moreover,
scanning probe techniques combined with optical images can
offer more information that allows scientists to understand
chemical reactions during the catalytic processes and kinetics
of certain chemical reactions.8−16 However, the quality of
SECM images usually depends on the electrode sizes of the
electrodes and many uncontrollable factors.17−22 For example,
manipulating fragile glass ultramicroelectrodes and blurred
images sometimes frustrates researchers.23 Usually, scientists
tend to fabricate smaller electrode probes to achieve better
resolution, but the image speed will be slower and the
fabrication processes are tedious.24,25

To overcome the challenges of modern SECM, we improved
electrochemical imaging using novel soft probes scanned in

contact mode and then established algorithm-assisted artificial
intelligence (AI) for image fusion.26,27 First, we developed new
ultrathin gold wire electrodes with extreme flexibility. The
probes were made of gold wire and sealed in parafilm and
polyimide (PI) membranes. Subsequently, the oral cancer
biomarkers EGFR protein in tumor slices were labeled with
primary and secondary antibodies with horseradish oxidase
(HRP). HRP catalyzed the oxidation reaction of ferrocenme-
thanol (FcMeOH) to FcMeOH+ in the presence of FcMeOH
and H2O2. When the probe was scanned over the location of
biomarkers, the currents would increase due to the reduction
of FcMeOH+ on the electrode surface and thus, generating an
SECM image according to the current recorded at different
locations on the sample surface.28 Subsequently, the electro-
chemical images were merged with optical microscopic images
to improve the quality of the SECM images. The merged
images have clear tissue boundaries and provide information
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on the distribution of cancer biomarkers in oral cancer from
different human bodies.

However, when the parameters of the image fusion process
were changed, thousands of fused images were generated,
which was confusing and annoying to the researchers.
Fortunately, emerging trends in AI have revolutionized how
we think and provided wide scopes of applications in
electrochemistry, imaging processing, and material sci-
ence.29−32 Machines can be trained to interpret images
similarly to our brains and analyze them much more
thoroughly than humans. For example, deep learning is a
rapidly evolving form of AI that uses deep convolutional neural
network (CNN) algorithm to mimic the human brain and has
been prominently used to identify facial features, text, and
voice.33,34 The CNN-based algorithm has been used to classify
the medical images in clinical treatment and teaching tasks
(e.g., pneumonia).33,35 CNN automatically extracts the features
of the pictures of the hidden network with raw-image input
data. VGG16 model belongs to the CNN family. It has a
superficial layer architecture, but in this case, it can provide
higher accuracy in the data set, and it is suitable for small data
sets that only contain a few thousand images.36−38 In this
work, deep learning was used to select good-quality fused
images from thousands of merged pictures. In the future, AI-
assisted fused SECM images may be interpreted with greater
value and contribute to the early detection of cancers.

2. MATERIALS AND METHODS

2.1. Materials
FcMeOH (>95%) was purchased from Tokyo Chemical Industry,
Japan. Monopotassium phosphate (KH2PO4, 99.5%) and sodium
chloride (NaCl, 99.5%) were purchased from SHOWA, Japan.
Disodium phosphate (Na2HPO4, 99%), monosodium phosphate
(NaH2PO4, 99%), hydrogen peroxide (H2O2, pure, 30% w/w), and
Tris base were purchased from Sigma-Aldrich. Anti-IL-6 antibody and
goat anti-mouse IgG were bought from Abcam, UK. Bovine serum
albumin (BSA) was purchased from Sigma-Aldrich. Xylene and Triton
X-100 were purchased from Fisher. Ethanol (99.5%) was purchased
from ECHO. Tween 20 was bought from Merck, Germany. Human
oral cancer tissue array (product number T271b), oral cancer tissue
array (product number T273), and human oral cancer tissue slices
(product numbers HuCAT481 and HuCAT503) were purchased
from Biomax. Details of human oral cancer samples are presented in
the Supporting Information (SI) Table S1, including the patients’ age
and sex of the pathology sites. Deionized water was obtained from
Sartorius (18.2 MΩ·cm). The conductive silver paint was bought
from Pelco. Polyimide was purchased from Kapton (DuPont).
Parafilm was purchased from Parafilm M (Merck, Germany). Gold
wire (25 μm) was purchased from Tanaka Electronics, Singapore.
Sylgard 184 A&B was bought from Uni-Onward, Taiwan.

2.2. Pretreatment of the Tissue Slices
The tumor samples we studied were obtained from female and male
patients between 12 and 68 years old. Before scanning with SECM,
formalin-fixed paraffin-embedded (FFPE) oral cancer tissue slices
were soaked in xylene solution for 10 min to remove paraffin and then
immersed in five concentrations of alcohol (100, 95, 90, 70, 30%) for
5 min, respectively. After rehydrating the tissue slices, they were
placed in a beaker containing Tris buffer (10 mM, pH 8) and heated
to 95 degrees to restore antigen activity in the tissues. 3% hydrogen
peroxide was added to avoid interference from endogenous
peroxidase. Then, BSA was added to block the nonspecific adsorption.
Subsequently, the solution of primary antibodies against EGFR or IL-
6 (100 times diluted in PBS) was added and incubated for 1 h at
room temperature (RT) and washed three times with Triton X-100
and PBS by placing the tissue in the buffer for 5 min. Finally, the slices

were immersed in secondary antibodies�HRP (200 times diluted in
PBS), incubated for 1 h at RT, and washed with Triton X-100 and
PBS as in the previous step.11,39,40

2.3. SECM Measurements and Imaging
The fabrication of the newly developed soft gold ultramicroelectrode
was described in the SI-2. In brief, the novel gold soft ultra-
microelectrode was composed of two PI layers, conductive gold wire
and a parafilm layer in the central part. The tiny gold wire (diameter =
25 μm) was connected with silver-coated conductive wire with silver
glue. Figures S2 and S3 show the excellent softness and flexibility of
the soft gold ultramicroelectrode, as it could even be bent like a
hairpin. For testing its quality, cyclic voltammetry (CV) experiment
was performed in 2 mM of FcMeOH. A commercial SECM (Ametek)
ran under VersaStudio software (Ametek) was used. All SECM
experiments were performed in a three-electrode arrangement under
RT using an Ag wire as quasi-reference (QRE) and a Pt wire as the
counter electrode (CE). All potentials reported here are given versus
the Ag QRE. Data sets were treated and analyzed using MIRA
software (Gunther Wittstock, Carl von Ossietzky University of
Oldenburg, Germany). We adopted the contact mode for the SECM
imaging of the distribution of EGFR and IL-6 in tissue slices. The soft
probe was slightly contacted with the sample surface during
forwarding line scans and recorded the current values. A lift-off
routine was used in VersaStudio software to perform the SECM
images. The pretreated tissue samples were immersed in an electrolyte
containing 2 mM FcMeOH, 1 mM H2O2, and 50 mM PB, pH 5.5.
The soft gold electrode was scanned at a speed of 35 μm/s. A voltage
of −0.2 V was applied to reduce FcMeOH+ generated from HRP. The
measurement delay interval is 0.1 s. First, we checked the cyclic
voltammetry to ensure the quality of the soft microelectrode. The
probe was scanned in the x direction (x-line scan) in contact mode to
investigate the oral cancer tissues. Finally, the XY area mode was
selected to image the sample and analyze the distribution of
biomarkers.

2.4. Image Processing
2.4.1. MIRA for Image Processing. The raw data from the

SECM experiments were processed by MIRA software. Different plot
styles can be selected in the MIRA operation window. We clicked the
“subsets” in the “data” to adjust the color code of the graph and then
clicked “XLoadct” in the “tools” to select the color of the chart; we
could also select “Modify” to remove the extreme value or background
interference of the SECM image, and finally, in the “IDL image
window”, the two-dimensional and three-dimensional images could be
plotted at the same time, showing the current values of the x, y, and z-
axes.
2.4.2. Matlab Software for Image Fusion and Image

Processing. First, the SECM data of tissue scanning was plotted as
an image processed by MIRA software. The same cancerous tissue
was observed under an optical microscope. The Matlab software
could read the optical microscopic image and convert it into a
grayscale image. The edge of the optical microscopic image was
enhanced by the edge detection function in Matlab. The detailed
procedures are listed in the SI-4. Consequently, a “wfusimg” function
in Matlab was applied to merge the SECM and optical images.
Different parameters were tested for image fusion. Finally, around
4000 merged images with different edge thresholds, brightness, and
patterns were generated.

2.5. Convolutional Neural Network
After fusing SECM images and constructing a training data set, we
used the CNN model to process image classification. CNN is a widely
used model in image classification; it is a model that uses multiple
filters as sliding windows that scan around to extract local features and
construct a higher-level abstract concept. In other words, it collects a
lot of different small patterns and maps them into the whole image to
build feature maps. Some hidden features between data are therefore
distilled in this process through these layer structures, which makes it
powerful for spatial feature extraction. CNN is usually composed of
several convolution layers and pooling layers. Convolution layers are a
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series of filters that distill features as input for the next layers. As for
the pooling layer, it is a downsampling method that comes with
convolution layers. It reduces data dimensions by combining the
outputs of neuron clusters at one layer into a single neuron and
usually follows the convolution layers. Therefore, it can not only
decrease the calculation cost and increase the generalization
performance of the network but also accelerate the convergence
speed of the model training.

CNN is commonly accompanied by fully connected layers and
dropout layers. A fully connected layer, also called a dense layer, is the
basic component of the neural network. It takes the features extracted
by the convolution layers as input and maps them to the final output
with some linear transformation. As for the dropout layer, it is a layer
to prevent our model from overfitting, a phenomenon that the model
considers the noise as a feature of the data by randomly setting some
neurons to freeze with a certain possibility. To boost the image
classification model, we reserved the original CNN model mentioned
above and then appended VGG16, another model architecture, and
used transferred learning to speed up the training time. The details of
the AI model building can be found in the SI-5.

3. RESULTS AND DISCUSSION
In this work, a novel soft gold ultramicroelectrode was
developed based on the widely used soft carbon stylus
microelectrode (Ametek). The carbon paste part was replaced
with 25 μm gold wire to enhance the stability of the probe.
The problems of swelling and exfoliation of the carbon paste
were solved. The 100 μm polyethylene terephthalate (PET)
and the parylene C insulating layer were replaced with 5 μm PI
film. Hence, the flexibility and practicality of the probe were
greatly improved. Figure S2 and Figure S3 shows its
advantages and extreme softness. Moreover, the fabrication
process was much easier and less time-consuming, and the cost
of the novel soft gold ultramicroelectrode was low. In the
previous literature, we demonstrated the capability of a soft
carbon stylus microelectrode for scanning various fragile and

rugged samples, for instance, melanoma tissues, without
damaging the tip or sample. Therefore, we used the novel
soft gold ultramicroelectrode developed in this work for further
human tissue scanning experiments.

Figure 1a presents the photos of the soft gold ultra-
microelectrode gently scanned on the human oral cancer tissue
biopsy array and the tissue section on the glasses in contact
mode without damaging fragile samples. Compared to
conventional assays, such as fluorescent staining or immuno-
histochemistry (IHC), SECM can avoid optical interferences,
including skin pigmentation and autofluorescence, to assist the
clinical study of samples with a darker color or can be used
along with other optical methods. To explore the biomarker
distribution of human oral cancer samples from different
people and different body parts while amplifying the signals of
the target proteins, the biomarkers inside the tissue were
labeled with the enzyme HRP. Figure 1b illustrates the
mechanism of SECM imaging of oral cancer biomarkers.
Rehydrated formaldehyde-fixed tissue was treated with primary
and secondary HRP conjugated antibodies. The secondary
HRP conjugated antibody in the tissue section catalyzed the
oxidation of FcMeOH to FcMeOH+ in the presence of H2O2.
We used the sample generation/ tip collection (SG/TC) mode
and applied a constant voltage of −0.2 V at the ultra-
microelectrode. The FcMeOH+ in the solution was reduced to
FcMeOH on the electrode surface. Therefore, the more target
molecules, the higher the current value was measured, and
SECM could map the overexpressed areas.

After labeling IL-6 proteins, pretreated oral tissue samples
from the tongue, mandible, and submandibular glands were
scanned in the x direction with a soft gold probe. Figure 1c
displays the SECM x-line scan of the tissue array containing
normal tissue, stage I, II, and III oral cancer tissues. The
current value was proportional to the quantity of biomarkers
and therefore reflected the distribution of IL-6. The literature

Figure 1. (a) Photos of the soft gold ultramicroelectrode scanned gently over the human oral cancer tissue biopsy array (upper picture) and the
tissue section (lower picture) on the glasses in contact mode without damaging fragile samples. (b) Mechanism of SECM imaging of oral cancer
biomarkers (e.g., IL-6). The rehydrated formaldehyde-fixed tissue was treated with primary and secondary HRP conjugated antibodies. The
secondary HRP conjugated antibody in the tissue section catalyzed the oxidation of FcMeOH to FcMeOH+ in the presence of H2O2. (c) Schematic
representation of the x-line scan from left to right in different IL-6-labeled oral tissue samples. (d) Scanning on x-line of different oral tissue
samples.
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indicated that interleukin 6 (IL-6) is a potential biomarker for
the oral cavity and oropharyngeal squamous cell carcinoma.41

In Figure 1d, the higher current value (more negative) over the
lower jaw stage III oral cancer tissue indicated higher levels of
IL-6 protein, while the current value of stage III oral cancer in
the submandibular gland was slightly higher than that of
normal tissue. To explore more facts about the distribution of
IL-6 and compare the stability of the new gold ultra-
microelectrode, we also investigated more SECM images and
x-line scans using the carbon soft stylus microelectrode used in
the previous study (Figure S10).11 The sensitivity and quality
of SECM images or line scans performed by the commercial
soft carbon stylus electrode and the newly developed electrode
were similar. The results of the line scan experiments were
comparable.

After scanning several human oral cancer samples, we found
that in some cases, the distribution and amount of IL-6 in stage
I, II, and III oral cancer and normal tissues did not show
obvious differences. The reasons for this phenomenon could
be many. We inferred that IL-6 was involved in many

physiological and pathological processes, including Covid-19
infection, trauma, infection, inflammation, and the develop-
ment of malignant tumors. Therefore, the expression level of
IL-6 could be interfered with by many factors related to the
patient’s healthy state. Therefore, the accuracy was not high
enough if we used IL-6 as the only biomarker to distinguish
oral cancer and normal tissues. Therefore, we still require more
evidence and samples to evaluate the precision of using the IL-
6 protein as the only biomarker for oral cancer detection.

Since IL-6 overexpression could be found in many diseases,
we investigated another biomarker, EGFR, to analyze with
SECM.42 Pretreated human oral cancer samples were labeled
with EGFR antibody and secondary antibody with HRP.
Figure 2a,c illustrates the schematic representation of the x-line
scan of different oral tissue samples using the soft probe. Figure
2b shows the normal submandibular glands labeled with the x-
line scans of the EGFR antibody and the second-stage cancer
tissues of the maxillary and third-stage cancer tissues of the
floor of the mouth. Figure 2d presents the x-line scans of
normal tongue tissue, second-stage cancer tissue of the upper

Figure 2. (a) Schematic representation of the x-line scan from left to right in different oral tissue samples labeled with EGRF antibody and HRP
antibody. d is the distance between the sample and the probe. (b) x-Line scan plot of different EGFR-labeled oral tissue samples. (c) Schematic
representation of the x-line scan from left to right in different EGRF-labeled oral tissue samples. d is the sample−probe distance. (d) X-Line scan
plot of different oral tissue samples. Experimental conditions: WE = soft gold ultramicroelectrode, QRE = Ag wire, CE = Pt wire, E = −0.2 V,
translation speed = 50 μm/s, and delay of ADC time = 0.1 s.

Figure 3. (a) Overlaid SECM images of oral cancerous tissue #1, tissue #2, and tissue #3 labeled with EGFR antibody and HRP secondary
antibodies. (b) Optic microscopy images of oral tissue #1, tissue #2, and tissue #3. Experimental conditions: WE = soft gold ultramicroelectrode,
QRE = Ag wire, CE = Pt wire, E = −0.2 V, translation speed = 50 μm/s, and delay of ADC time = 0.1 s.
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jaw, and first-stage cancer tissue of the lower lip. Compared to
normal tissues, the current values of cancer tissues were higher
(more negative), representing more EGFR in cancer biopsies.
Therefore, we speculate that EGFR is a better biomarker than
IL-6 in these cases. However, the microelectrodes were
fabricated manually, so it was difficult to compare the current
values of different experiments. Also, although the sample−
probe distance may be slightly different for each micro-
electrode, the trend of the x-line scan results was similar. In the
x-line scans in Figures 1 and 2, the current value over the
cancerous tissue was approximately 400 pA higher than that for
normal tissues. Therefore, the slight variation of each
microelectrode could cause some bias in the baseline, but it
did not affect the results of the measurements.

For further investigation of the vertical and horizontal
distribution of biomarkers in a tumor block, an EGFR-positive
human oral cancer tumor was cut into three pieces with an
interval of approximately 20 μm. These samples in the same
tumor block were named tissue #1, tissue #2, and tissue #3.
Figure 3a is the overlay of SECM images of tissue #1, tissue #2,
and tissue #3. It reveals the three-dimensional (3D)
distribution of EGFR in the tumor block. The higher current
(darker parts) represented the locations of EGFR in the tumor.
In Figure 3a, the features with darker color could be the
cancerous area, which has higher amounts of EGFR. The
microscopic pictures of tissue #1, tissue #2, and tissue #3 are
displayed in Figure 3b. The scanned areas are roughly circled
with dashed lines.

One of the advantages of the novel soft gold probe
developed in this research is to minimize the side effect
caused by topography interference. The soft gold micro-
electrode could scan the rigged sample surfaces in contact
mode (Figure 2a,c). Therefore, the FcMeOH+ generated from
the HRP-antibody−EGFR complex could be mapped on the
tissue surfaces. Although the thickness of the tissue was about
20 μm, the interference caused by the change in probe sample
and topography was not obvious in Figure 3a. If the

topography could affect the current signals, the currents on
the tissue surface would have been lower. On the contrary, the
higher signals from HRP were detected on the tissue surface
than on the glass surface in Figure 3a, suggesting that the effect
of topography change could be ignored. As a result, SECM can
be used as an imaging method that can uncover certain
biomarkers, including IL-6 and EGFR. Meanwhile, it can avoid
interferences such as sample color, sample roughness, and
autofluorescence. However, when scanning with SECM, it is
very difficult to locate the exact position of the area scanned on
the sample. For example, the cancerous sites detected in Figure
3a could not be directly linked with their optical microscopic
pictures displayed in Figure 3b. Moreover, the clarity of the
SECM images was not as high as that of the optical
microscopic pictures. Therefore, developing a methodology
for integrating both SECM images and optical images could
improve the resolution and quality of the images.

The quality and resolution of the electrochemical imaging
depend on many factors, including the tip size, the reactivity of
the target molecules, the convention of collecting the signals,
the vibration interference, and the experience of the experi-
ment operator. If we could fuse the SECM image with an
optical microscopic image, the resolution and tissue boundary
might be much clearer so that the distribution of biomarkers
could be investigated more thoroughly. We used a built-in
function in Matlab software for wavelet processing to process
image fusion. This ready-made function, “wfusimg”, is widely
used to merge two images, detect edges, or eliminate noise.
The details of wfsimg are explained in the SI-4. Although it is a
built-in function, there are a lot of parameters that should be
adjusted in the fusion process, including (1) wavelets for
processing image fusion; (2) wavelet processing decomposi-
tion level; and (3) aufsmeth and refuseth, the methods for
approximations and details, respectively. When these param-
eters are changed, details, edges, brightness, and features may
greatly affect the quality of fused images.

Figure 4. (a) Optical microscopic image of an oral cancer tissue section. (b) SECM images of an EGFR-labeled oral cancer tissue section. The
darker parts revealed the presence of more EGFR in cancerous tissue. (c) Fused images with good quality. (d−f) Images fused with poor quality.
(g) and (h) Enlarged pictures of noncancerous and cancerous areas of oral cancer tissue. The parts enlarged are labeled in panel (a).
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We expect that the fusion process can extract the details and
edge of the optical image and extract the features and
brightness of the SECM image. Based on the Matlab official
tutorial, several family wavelets (parameters) are included in
the toolbox, such as Haar, Daubechies, Biorthogonal, and more
tools. Each of them can yield different results from image
fusion. Figure 4a shows the highly resolved optical microscopic
image of oral cancer tissue, while Figure 4b presents an SECM
image of the same oral cancer tissue. We have manually tried
many combinations of the parameters for processing image
fusion in Matlab. The fused images with good and poor
qualities are presented in Figure 4c,d−f, respectively.
Consequently, some merged images have the right brightness
and boundary clarity, but some do not. In the good-quality
fused image, Matlab software extracted the features of the
tissue boundary in the optical microscopic picture (Figure 4a),
resulting in the white frame in the fused image. The pale and
dusky colors of the fused image are taken from the SECM
image (Figure 4b). The darker parts represent the presence of
EGFR, the biomarker secreted by cancer cells. The enlarged
images of optical images, SECM images, and fused images are
compared in Figure 4g,h. The areas corresponding to
cancerous and noncancerous areas of Figure 4g, h are shown
in Figure 4a. In Figure 4h, the exact cancerous area could be
identified in an optical microscope after image fusion. The
white arrows pointed out the cells with the highest level of
EGFR expression in the fused image, which cannot be easily
identified in the images that were not fused. However, trying
all of the parameters for image fusion is impractical since one
fusion process may generate more than 4000 fused images.
Hence, we have to build a machine learning model that can be
used to select the fused images with better quality.

After generating thousands of synthetic images, we expect
the “artificial intelligence” to select the fused images with
better quality, thus enhancing the significant features in the
SECM images. To achieve this goal, we need to build an ML
model and train it with many images to ‘learn’ how to
distinguish images with good quality. Figure 5a shows the ML
model building process. We chose one set of pictures to build
the ML model. Around 4000 fused images generated by
Matlab software were manually labeled as “good quality” and
“poor quality”. Among them, 3000 images were used as
training data, and 1000 images were used for testing.
Subsequently, a famous ML model, the VGG16 model, was
trained to classify the fused images. The VGG16 algorithm is a
widely used CNN model that has been shown to perform well
on a wide range of image classification tasks. The VGG16

model has 16 convolution layers, and each of them is followed
by a maximum-pooling layer. After max pooling, the processed
image representation is passed through three fully connected
layers (FC) to predict the label (“good quality” or “poor
quality”). Details of the model architecture and the training
process can be found in the SI-5.

One of the indicators of evaluating the ML model is the
accuracy of the classification of images with good or poor
quality. After optimization, the proposed method using our
model architecture was able to classify the SECM images well
with very high accuracy of as high as 97%. Figure 5b shows the
overall approach of AI-assisted image fusion to reveal
cancerous areas according to biomarker distribution.

To further analyze the performance and effectiveness of AI
models, four evaluation indicators were calculated after 500
fused pictures were classified. The four evaluation indicators
include true positive (TP) numbers, false positive (FP)
numbers, true negative (TN) numbers, and false negative
(FN) numbers. TP stands for samples that are correctly
classified as good quality. FP means that samples of poor
quality are mistakenly classified as of good quality. TN
represents those that are correctly classified as poor quality. FN
is the number of samples that belong to good quality but are
somehow classified as poor quality. Among these 500 pictures,
the number of TP and TN was as high as 223 and 214. FP and
FN were 2 and 12, respectively. These results indicated that
the AI-assisted image classification tool was useful and
practical. Since the “machine” can classify images as good
quality and poor quality, researchers can apply this method-
ology to cope with blurred electrochemical images or apply this
technique to bioimaging assays.

4. CONCLUSIONS
In conclusion, we have successfully developed super-soft gold
ultramicroelectrodes to scan human oral cancer tissue sections
and observe the biomarker distribution at different depths of
the tumor. According to the experimental results, compared to
the IL-6 protein, EGFR is a better oral cancer biomarker that
can be used to distinguish cancerous tissues and normal tissues
in the cases we studied. Moreover, we proposed a new AI-
assisted methodology for processing SECM images by taking
advantage of Matlab software, merging the optical and
electrochemical images obtained from SECM. Images fused
with different parameters were fed into our AI model to select
the best images with the highest resolution, obvious cancer

Figure 5. (a) Process of building the ML model. (b) AI-assisted image fusion can enhance the quality of the image, showing a clear tissue boundary
and identifying the cancerous area (darker part).
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boundary, and clear biomarker distribution among thousands
of combinations, and the accuracy was 97%.

In addition, we expect to build a database of SECM images
and microscopic images of different biomarker distribution in
human tissues in the future. Automatic SECM experiments will
be designed to distinguish the tumor border and stages of
cancer while using the microfluidics-embedded soft gold
electrode to instantly detect the biomarker and then release
the cancer target drug to inhibit cancer cell division or induce
cell apoptosis.
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