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Abstract

Interrogation elicits anxiety in individuals under scrutiny regardless of their innocence, and

thus, anxious responses to interrogation should be differentiated from deceptive behavior in

practical lie detection settings. Despite its importance, not many empirical studies have yet

been done to separate the effects of interrogation from the acts of lying or guilt state. The

present fMRI study attempted to identify neural substrates of anxious responses under inter-

rogation in either innocent or guilt contexts by developing a modified “Doubt” game. Partici-

pants in the guilt condition showed higher brain activations in the right central-executive

network and bilateral basal ganglia. Regardless of the person’s innocence, we observed

higher activation of the salience, theory of mind and sensory-motor networks–areas associ-

ated with anxiety-related responses in the interrogative condition, compared to the waived

conditions. We further explored two different types of anxious responses under interro-

gation–true detection anxiety in the guilty (true positive) and false detection anxiety in the

innocent (false positive). Differential neural responses across these two conditions were

captured at the caudate, thalamus, ventral anterior cingulate and ventromedial prefrontal

cortex. We conclude that anxiety is a common neural response to interrogation, regardless

of an individual’s innocence, and that there are detectable differences in neural responses

for true positive and false positive anxious responses under interrogation. The results of our

study highlight a need to isolate complex cognitive processes involved in the deceptive acts

from the emotional and regulatory responses to interrogation in lie detection schemes.

Introduction

When people are being interrogated, they naturally exhibit signs of nervousness and somatic

tensions elicited by the sympathetic nervous system [1–3]. These sympathetic responses can

occur due to the anxiety caused by merely expecting imminent threat or by over-reacting to it.
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Interrogation also elicits various cognitive responses, such as memory retrieval, internal regu-

lation of anxiety, theory of mind (i.e., trying to understand the interrogator’s perspective), and

suppression of guilty conscience (or remorse) [4, 5]. With this understanding of the heteroge-

neous nature of elements involved in the anxious response to interrogation, it should be noted

that anxious response under interrogation is not only caused by the actual deception (we call

true positive anxiety) in a guilt situation but also caused by the fear of being falsely accused

(false positive anxiety) in an innocent situation [6, 7]. This distinction stems not from the emo-

tional or psychophysical manifestation of anxiety, but from different causes of anxiety. This

point is of special importance particularly when lie detection strategies solely rely on the emo-

tional arousal indicated by physiological responses elicited via the sympathetic system.

In search of a more accurate lie detection system, researchers, over the last two decades,

have increasingly investigated neural responses observed by functional MRI (magnetic reso-

nance imaging). Despite the heterogeneity in their designs, most of these studies fundamen-

tally focused on identifying neural substrates underlying deception and truth-telling while

participants performed a relevant task. For example, one study used a modified version of the

Guilty Knowledge Test (GKT) [8] and asked participants to lie about their possession of a tar-

get stimulus (a specific kind of playing card) while answering truthfully to all other cards [9].

Another study evaluated the patterns of neural activity among different types of lies (e.g. spon-

taneous-isolated and memorized-scenario lies)[10], and yet another study used a modified

GKT paradigm in which the participants were asked to lie about their possession of cards

according to given instructions [11]. Yang and colleagues[12] examined brain regions capable

of decoding true-thoughts, after making the participants tell a lie with an instructed cue.

Despite a sizeable volume of research about the neural correlates of deception, to our

knowledge, no empirical study has yet been done to examine the effects of situational pressure

of interrogation on neural responses related to anxiety and other accompanying behaviors

(e.g., trying to hide one’s own biophysical responses) following either a deceptive or truthful

act. We believe this topic should be an important line of research on deception because an act

of lying frequently takes place in an interrogative context. After all, a stressful interrogation

setting has such potent anxiogenic effects on the subject that it has often led to innocent people

being wrongfully convicted [13, 14]. Therefore, in a practical setting of lie detection, it is criti-

cal to isolate the complex emotional and regulatory responses under interrogation from the

internal processes following the deceptive act itself.

For this purpose, we designed an event-related fMRI task, in which we attempted to differ-

entiate the anxious response for interrogation from responses for being in guilt situation. We

incorporated a card game called “Doubt”, which involves the participant’s possession of target

playing cards as a basis for decision to deceive with the knowledge of an impending interro-

gation about that decision. After telling a lie or the truth during the game, participants were

either implicitly interrogated (based on facial expression or biophysical signals) or the interro-

gation was waived off. We then analyzed brain responses related to a sense of anxiety during

the interrogation or a sense of relief during the waiting period in both the guilt and innocent

conditions.

As we have previously discussed, interrogation elicits a complex combination of neural

responses comprising both affective and cognitive processes related to anxiety–the obvious

anxious responses as reflected in the sympathetic responses and the cognitive processes

recruited to regulate one’s own anxiety. The first is rather a passive, negative, emotional

response to the interrogation that unfolds almost automatically while the second is a more

active response to the interrogation that include processes such as mentalizing about the inter-

rogator’s view of the participant and changing one’s own facial expressions to appear more

innocent. Therefore, we speculated that two major brain networks would be involved in these
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processes: the salience network and a network responsible for theory of mind or mentalization.

In the case of waive (no interrogation) condition, we expected that people would feel more

relaxed, which would result in the activation of the default mode network (DMN) [15–17].

These regions involved in the interrogation process may differ from regions observed in

deceptive acts investigated by previous studies mentioned above. Previous literature have iden-

tified a variety of brain regions as neural substrates of deception: 1) areas in the frontal cortex,

such as the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, dorso-medial pre-

frontal cortex, anterior cingulate cortex, orbitofrontal cortex, and superior frontal gyrus; 2)

regions in the temporal cortex, such as the superior temporal sulcus and para-hippocampal

gyrus; and 3) other regions such as the precuneus, supramarginal gyrus, caudate, and thalamic

nuclei [4, 9–12, 18–20].

By analyzing main effects, we expected to show that anxious responses have a sort of com-

monality for interrogation regardless of one’s guilty or innocent state. We also expected to find

differential neural substrates of true-positive and false-positive anxiety in the interaction con-

trast. This study highlights a need for isolating the complex emotional and regulatory

responses under interrogation from the processes involved in the guilty or innocent act itself.

Methods

Participants

Twenty-two young, healthy participants with no history of neurological or psychiatric

impairment participated in this study. Data from three participants were excluded due to poor

task performance and excessive motion in the scanner, allowing data from 19 participants in

total (11 males, 19–31 years old, mean age 25.68 (standard deviation, s.d. = 3.58)) to be

included in the final analysis. Informed consent was obtained from each participant prior to

the experiment, in accordance with a protocol sanctioned by Severance Institutional Review

Board.

Task design

We incorporated interrogation into an experimental design to elicit anxiety-related responses

from the participants. Interrogators (confederates) were introduced to the participants as pro-

fessional interrogators to elicit a sufficient sense of anxiety. The participants were told that the

facial expressions and biophysical signals gathered from the devices (video camera, electrocar-

diogram, electromyogram and respiration sensors) attached to them will be used to determine

their truthfulness, although a computerized program was instead making the interrogation

judgment pseudo-randomly without using any biophysical information from the participant

(at a rate of 60% and 80%). To evoke a lie, monetary rewards were utilized as the potential lie-

eliciting incentive and forfeit of these rewards as a form of penalty, while keeping in accor-

dance with the ethical standards that an experiment must not provoke too serious a moral

dilemma for the participants. A modified form of a card game was introduced and the trial

was repeated for a sufficient number of times, given the fact that fMRI experiments require

multiple trials of data for there to be any meaningful signal detection.

The card game used as the main cognitive task is a modified version of a game called

“Doubt”, in which players must try to get rid of all the cards that were distributed to each of

them at the beginning of the game; a player who ends up discarding the given cards first is

deemed the winner.

The “Doubt” paradigm was revised to fit the current fMRI experiment as follows: (1) The

trials are played in a set. In each set, participants are randomly given four cards to discard:

three that have a number ranging from 2 to 7 and one Pass card. In every trial, a number from
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2 to 7 is randomly presented on the screen, and if the participant happens to have a card with

the same number, s/he can discard it, but if s/he doesn’t, s/he can either use the Pass card to

skip to the next trial or deceptively discard an incompatible card. Participants are told that

they would receive a basic prize of 5000 won (equivalent of 5 USD) if they manage to discard

all three number cards in four trials (with the use of the Pass card). The participants are also

told that they would receive 10000 won (basic prize of 5000 won + bonus of 5000 won) if they

manage to discard all three number cards in three trials (without the use of the Pass card and

without being detected as deceptive). They are told that if the deception is ever discovered by

the interrogator for a given set, they would lose 5000 won as penalty (-5000). They are sup-

posed to discard all the cards at most in four trials in each trial set (three trials without the use

of the Pass card), forcing them to lie on some occasions even though they may not want to. A

round of these three or four trials needed to discard the three given (number) cards makes up

a set. (2) After several repeated sets like this (the way we determined the number of repetitions

of these sets for each participant is explained later), the accumulated prize money shown after

the final trial counts proportionally as the final compensation.

For the two seconds after the participants make the decision (discarding a card by pressing

a button), a sentence “The dealer is watching you” is displayed on the screen while the partici-

pants wait for the decision about whether they will be placed under interrogation. Every trial is

followed by either an interrogation to determine whether s/he has discarded a card truthfully

or not, or a simple waiting period without any interrogation (no interrogation condition);

whether or not there will be an interrogation is determined by the computer program designed

by the researchers in such a way that there are at least 10 trials of each of the four conditions

(guilt & interrogation, innocence & interrogation, guilt & no-interrogation, innocence & no-

interrogation) for each participant.

During the interrogation, a sentence “Did you truly discard n (the number presented)?” is

presented on the screen. During the waiting period (no-interrogation condition), participants

see “Please stay until the next trial” on the screen. The participants do not have to answer the

interrogation question with a yes or no, but the question is presented to the participants simply

to imply that the interrogators are determining their truthfulness by looking at their facial

expressions and biophysical signals as they have been told. The interrogation or waiting period

lasts for seven seconds, after which a fixation cross is displayed for three seconds until the next

trial. When the participant discards the final number card (the third card), the amounts of cur-

rent and accumulated money are presented for two seconds. After this a fixation cross is dis-

played for three seconds until the next trial.

Note that, since the computer program generated the target stimulus numbers and received

inputs from each participant, the program was aware of the truthfulness of each decision made

by the participant without analyzing any biophysical signals, and made a pseudo-random

judgement, meeting a predetermined judgement accuracy (60% for the first session). We

assumed that the participants might reckon how accurate the judgement is by looking at the

monetary rewards presented after finishing each set (three or four trials). However, the proce-

dures were carefully managed to make the participants believe that it was a human interroga-

tor, not a computer program behind the device, and we assumed this would motivate the

participants to do their best to manage their facial and biophysical signals to deceive a human

interrogator in their efforts to acquire the biggest final compensation possible. The experimen-

tal procedures are summarized in Fig 1.

The task was conducted in two sessions. All the aspects of the procedures in both sessions

were the same except for the participants’ sense of the interrogator’s judgment accuracy. We

implied to the participants that the judgment accuracy rate in the second session would be

higher than that in the first session by telling them that the interrogator will use individuals’
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Fig 1. The fMRI experiment paradigm. (A) Experimental procedure for the modified version of “Doubt” game under

interrogation used in the current study (B) time scheme for the procedure. (C) Description of two different types of

anxiety, i.e., true positive and false positive anxiety under guilt and innocence conditions, respectively.

https://doi.org/10.1371/journal.pone.0230837.g001
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information from the first session to judge their truthfulness in the second session. The inter-

rogation judgment accuracy of the computer program was simply enhanced to an 80% in the

second session from a 60% in the first session.

After the study, the participants were debriefed that it was a computer program that was

judging their truthfulness. The participants were given the final compensation (roughly pro-

portional to the prize money accumulated) within a range of minimum 50000 to maximum

80000 won (approximately 50–80 USD).

Procedure

The participants were given a thorough orientation on the cognitive tasks involved in the

experiment while meeting with a confederate introduced as a professional interrogator. The

participants were told that this interrogator will discern their truthfulness by observing their

facial expressions and measuring their biophysical signals (pupil sizes, heart rates, breathing,

and electromyograms) during fMRI scanning. The polygraph equipment (clinical MR-com-

patible EKG and respiratory monitoring) was not operating, but simply there to amplify the

participants’ anxiety. All the participants agreed to these conditions and provided written

informed consent.

The participants performed the tasks in two successive fMRI sessions, with the polygraph

instruments attached to their bodies. The cognitive tasks were delivered through Psychtool-

box 3 (http://psychtoolbox.org/).

There are 4 possible conditions in which the participants could proceed with each trial: 1)

innocence & interrogation condition (in which the participant goes through interrogation

after truthfully discarding a compatible card), 2) innocence & no-interrogation condition (in

which the participant goes through a simple waiting period after truthfully discarding a com-

patible card), 3) guilt & interrogation condition (in which the participant goes through inter-

rogation after deceptively discarding an incompatible card, and 4) guilt & no-interrogation

condition (in which the participant goes through a waiting period after deceptively discarding

an incompatible card). We programmed an algorithm in such a way that the trials would run

repeatedly so that each of these four conditions were recorded at least 10 times for each partici-

pant in a pseudo-random but adaptively administered manner.

After these procedures were over, the participants were asked to fill out a post-hoc ques-

tionnaire allowing them to describe how they felt about having gone through each of the four

conditions, the two successive sessions, and the overall experience of the experiment. In addi-

tion, they were asked to fill out an anxiety assessment questionnaire in which they were to rate

the level of anxiety experienced during each of the 4 conditions [from -5 (very relaxed) to +5

(very anxious)].

Data acquisition, processing, and statistical analysis

Brain activity was measured using a Siemens 3T MRI system (Siemens MAGNETOM Trio,

Germany) with T2� weighted single shot echo planar imaging (EPI). For each task, fMRI

images with four dummy scans were acquired axially with the following parameters: repetition

time (TR) = 2000ms, echo time (TE) = 20ms, flip angle = 90˚, number of slices = 42, inter-

leaved sequence, 3mm slices with no gap, FOV = 22cm, matrix size = 80x80.

Head movement was minimized by adding foam pads into the head coil. To facilitate later

spatial normalization, we also obtained a high-resolution T1-weighted MRI volume dataset for

each subject with a 3D T1-TFE sequence configured with the following acquisition parameters:

axial acquisition with a 224 × 224 matrix, 220 mm field of view, 0.9 × 0.9 × 1.0 mm voxel unit,

2.6 ms TE, 1900 ms TR, 9˚ flip angle, and 0 mm slice gap.
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Image preprocessing was carried out by using statistical parametric mapping (SPM12,

http://fil.ion.ucl.ac.uk/spm, Wellcome Department of Cognitive Neurology, London, UK)

[21]. The procedure included slice timing correction for the interleaved sequence, motion cor-

rection by realigning all the images to the first fMRI image, normalization to standard Mon-

treal Neurological Institute (MNI) template in SPM12, and smoothing with a 6-mm full-

width-at-half-maximum (FWHM) Gaussian filter. Low-frequency drifts were removed using a

high-pass filter with a cut-off frequency of 128 seconds. In the individual level analysis, the six

motion regressors that were calculated during realignment procedure were added to eliminate

unnecessary effect caused by head movement.

The moment of interrogation notification was used as an onset time in the generalized lin-

ear model analysis of the first level. fMRI signals at every voxel were modeled with regressors,

one for each condition comprising every event for the condition with a duration of 7 sec after

the onset time, convolved with the canonical hemodynamic response function.

Group-level activation was evaluated using a random effect model for the effect of interest.

Statistical difference in activation among conditions was estimated using a flexible design with

two factors: 1) a situation following discarding compatible cards (“innocence” condition) versus a

situation following discarding incompatible cards (“guilt” condition); and 2) interrogation versus

no interrogation. To minimize the effects of the differences in the number of trials for each condi-

tion, we assigned the number of trials as a nuisance variable in the group level analysis.

For the group level inference of SPM results, statistical significance was defined by the clus-

ters surviving the voxel-level threshold of p< 0.001 (uncorrected) and the cluster-level extent

threshold of p< 0.05 (cluster size� 112 voxels for FWHM 10.2 mm) generated with 10,000

Monte Carlo simulations using the 3dClustSim program (September 2017 version) in the

Analysis of Functional NeuroImages software (AFNI; https://afni.nimh.nih.gov/afni).

As a post-hoc analysis, the percent signal changes for significantly detected clusters were

calculated by counting 3 mm-diameter sphere regions around the peak of the cluster using

MarsBaR software [22]. The percent signal change measures were taken to explore the direc-

tions of interaction between the two factors; Guilt vs. Innocence and Interrogation vs. Non-

interrogation, rather than to derive novel inferences from them.

Results

Behavioral data

Two-way repeated measures analysis of variance (ANOVA) for the response times of guilt and

innocence conditions (except for one missing data) shows a significant difference between

guilt (mean ± s.d. in sec: 3.44 ± 1.17) and innocence (3.10 ± 0.45) conditions (F (1, 71) = 8.349,

p = 0.005, partial eta-squared ηp2 = 0.19).

Two-way repeated measures ANOVA for post-hoc anxiety scores (self-reports) shows a sig-

nificant main effect for anxiety scores in the contrast between interrogation (1.05 ± 0.57) ver-

sus no-interrogation (-3.13 ± 0.40) conditions (F (1, 18) = 39.757, p = 0.000, ηp2 = 0.52). There

was also a significant difference between the anxiety score of guilt (mean ± s.d.: -0.63 ± 0.32)

versus innocence (-1.45 ± 0.48) conditions (F (1,18) = 4.68, p = 0.044, ηp2 = 0.12). Interaction

between the two factors was significant (F (1,18) = 19.49, p = 0.000). Paired t-test as a post-hoc

showed that the guilt & interrogation condition (mean ± s.d.: 2.05 ± 2.41) exhibited higher

anxiety scores than the innocence & interrogation condition (0.05 ± 2.93) (t18 = 4.14, p =

0.001, Cohen’s d indicating effect size d = 0.75). The innocence & interrogation condition

yielded a higher score of anxiety than both the guilt & no-interrogation (-3.32 ± 1.95) (t18 =

3.97, p = 0.001, d = 1.35) and innocence & no-interrogation conditions (-2.95 ± 2.04) (t18 =

4.59, p = 0.000, d = 1.19).
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13 out of 19 participants reported that they were anxious during interrogation even when

they were telling the truth, and 9 participants reported having attempted to engage in autosug-

gestion or control their biophysical signals to deceive the interrogator. These reports were

given voluntarily with a prompt asking participants to describe what they felt during the exper-

iment rather than directing the participants to answer specifically to a yes or no question.

Therefore, more participants may have felt anxious and engaged in manipulation of their bio-

physical signals yet decided not to include these details in their description.

As for the session, only half of all participants (11) reported that the judgment accuracy had

seemed to be higher in the second sessions. In addition to this high inter-individual difference

in the sense of judgement accuracy for the second session, we could not rule out compounds

from the fixed-order session manipulation (lower to higher accuracy). Therefore, we did not

consider to analyze the session effects independently.

Participants conducted on average 17.6 (s.d. 2.4) sets (three or four trials per a set) for

approximately 30 minutes. The number of trials executed for each condition type for the two

sessions was as follows: guilt & interrogation (mean ± s.d.: 24.44 ± 4.44), guilt & no-interro-

gation (28.56 ± 8.10), innocence & interrogation (25.89 ± 5.70) and innocence & no-interro-

gation (26.44 ± 5.90). Two-way repeated measures ANOVA of the mean numbers of executed

trials for each condition type showed no significant effect for guilt (26.50 ± 1.39) versus inno-

cence (26.17 ± 1.20) (p = 0.886, d = 0.001) but significant for interrogation (25.17 ± 0.51) ver-

sus non-interrogation (27.50 ± 1.01) (p = 0.035). Participants who deceived more performed

more trials (r = 0.59, p = 0.01), and received more rewards (r = 0.6, p = 0.009). However, inter-

rogation decision was not dependent on deceptive trials (r = 0.14) since it was determined by

computer semi-randomly within the preset accuracy.

fMRI imaging data

Brain activation results from fMRI data concerning the main effects of guilt vs. innocence and

of interrogation vs. no interrogation are displayed in Fig 2 and Table 1.

Fig 2. Statistical parametric maps for main effects. (A) Brain regions detected to be involved in the Guilt versus Innocence

contrast are shown. (B) Brain regions detected to be involved in the Interrogation versus No-interrogation contrast are shown

(red: increased activation, blue: decreased activation). IFG: inferior frontal gyrus, SFG: superior frontal gyrus, MFG: middle

frontal gyrus, MTG: middle temporal gyrus, SMG: supramarginal gyrus, dmPFC: dorsal medial prefrontal cortex, CAUD:

caudate, THL: thalamus, STG: superior temporal gyrus, STS: superior temporal sulcus, SOG: superior occipital gyrus, PrCG:

precentral gyrus, aINS: anterior insular, IOG: inferior occipital gyrus, SMA: anterior supplementary motor area, dACC: dorsal

anterior cingulate cortex, MCG: middle cingulate gyrus, AG: angular gyrus, SFG: superior frontal gyrus, PCC: posterior

cingulate cortex, PrCU: precuneus.

https://doi.org/10.1371/journal.pone.0230837.g002
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Table 1. Brain activation corresponding to the effects of Interrogation, Guilt and interactions.

Region Coordinate (x,y,z) Zmax Cluster Size Region Coordinate (x,y,z) Zmax Cluster Size

Interrogation> No-interrogation Interrogation < No-interrogation

L Superior Temporal Gyrus (BA 22) -62,-42,18 6.23 2930 R Precuneus (BA 7) 12,-56,20 5.19 885

L Supramarginal Gyrus (BA 40) -60,-36,34 5.89 - R Posterior Cingulate Cortex (BA 23) 2,-38,34 4.25 -

L Middle Temporal Gyrus (BA 21) -52,-44,8 5.70 - R Angular Gyrus (BA 39) 42,-72,44 4.76 374

L Middle Cingulate Gyrus -10,12,34 6.20 2311 R Middle Frontal Gyrus (BA 9) 30,14,54 4.58 173

R Supplementary Motor Cortex (BA 6) 6,16,40 5.63 - R Superior Frontal Gyrus (BA 8) 30,20,60 4.09 -

L Supplementary Motor Cortex (BA 6) -6,2,66 5.30 - L Posterior Cingulate Cortex (BA 31) -12,-46,34 4.32 202

R dorsal Anterior Cingulate Cortex (BA

32)

8, 26,26 4.66 L Precuneus (BA 7) -16,-56,22 3.76 -

R Temporal Pole (BA 38) 50,14,-8 6.12 2499

R Anterior Insula (BA 13) 44,8,-2 5.82 -

L Temporal Pole (BA 38) -50,14,-10 6.09 2799 Guilt > Innocence

L Caudate -14,0,8 5.57 - R Medial Superior Frontal Gyrus (BA

8)

2,32,50 6.70 10462

L Anterior Insula (BA 13) -42,8,0 5.43 - R Superior Frontal Gyrus (BA 8) 6,48,46 5.66 -

R Supramarginal Gyrus (BA 40) 64,-38,30 5.81 5091 R Inferior Frontal Gyrus (BA 44) 54,28,18 5.38 -

R Inferior Occipital Gyrus (BA 19) 44,-82,0 5.73 - R Anterior Insula (BA 13) 30,24,-4 6.18 -

L Precentral Gyrus (BA 4) -46,-2,42 5.75 785 R Angular Gyrus (BA 39) 52,-50,54 6.04 2775

L Middle Frontal Gyrus (BA 6) -48,4,50 5.37 - R Supramarginal Gyrus (BA 40) 50,-40,44 6.03 -

R Precentral Gyrus (BA 4) 50,4,50 5.62 744 R Middle Temporal Gyrus (BA 21) 58,-28,-8 4.16 -

R Middle Frontal Gyrus (BA 46) 38,2,36 4.59 - R Thalamus 2,-10,12 5.10 859

L Middle Frontal Gyrus (BA 10) -28,50,18 4.86 632 R Caudate 14,8,12 4.19 -

L Cerebellum -30,-64,-26 4.64 112 L Thalamus -8,-6,8 3.94 -

L Superior Occipital Gyrus (BA 19) -16,-88,40 4.28 219 L Anterior Insula (BA 13) -32,20,-6 5.01 226

L Middle Occipital Gyrus (BA 19) -34,-92,14 3.86 - L Cerebellum -14,-78,-34 4.88 368

R Superior Frontal Gyrus (BA 8) 26,56,20 4.23 344 L Angular Gyrus (BA 39) -48,-54,54 4.49 589

R Middle Frontal Gyrus (BA 9) 34,54,26 3.73 - L Supramarginal Gyrus (BA 40) -60,-48,42 4.25 -

L Middle Temporal Gyrus (BA 21) -58,-46,-10 4.47 202

Guilt < Innocence L Lateral Orbital Gyrus (BA 11) -44,52,-12 3.90 130

Not detected L Middle Frontal Gyrus (BA 46) -50,46,0 3.61 -

R Precuneus (BA 7) 14,-68,40 3.74 126

(Guilt–Innocence) × (Interrogation–No-interrogation) (Innocence- Guilt) × (Interrogation–No-interrogation)

R Caudate 12,6,10 4.33 443 Not detected

R Thalamus 4,0,12 4.20 -

L Thalamus -10,0,6 4.08 -

L Cerebellum -20,-42,-26 3.75 149

L Ventromedial Prefrontal Cortex (BA

10)

-2,52,-6 3.71 112

R Ventromedial Prefrontal Cortex (BA

11)

4,44,-12 3.37 -

L Anterior Cingulate Cortex (BA 32) -2,40,4 3.67 101�

R Anterior Cingulate Cortex (BA 32) 8,38,12 3.54 -

p< 0.001, cluster size > 112

� not significant in terms of cluster size criteria > 112 (corrected p < 0.05) but showing a tendency of significance. BA = Brodmann Area; L = Left; R = Right;

Coordinate = Montreal Neurological Institute (x,y,z); Zmax = Z maximum within a cluster. “-” in the cluster size indicates that this coordinate is a peak location that

belongs to the cluster listed immediately above.

https://doi.org/10.1371/journal.pone.0230837.t001
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Guilt conditions, compared to innocence conditions, yielded increased activation mainly in

the right medial superior frontal gyrus, right superior frontal gyrus, right inferior frontal

gyrus, bilateral anterior insula, bilateral angular gyrus, bilateral thalamus, bilateral supramargi-

nal gyrus, bilateral middle temporal gyrus, right caudate, left cerebellum, left lateral orbital

gyrus, left middle frontal gyrus and right precuneus. The increased activation was more domi-

nant in the right hemisphere than the left (Fig 2A).

Relative to no-interrogation conditions, interrogation conditions elicited significantly

higher activation in the left superior temporal gyrus, bilateral supramarginal gyrus, left middle

temporal/cingulate gyrus, bilateral supplementary motor cortex, right dorsal anterior cingulate

cortex, bilateral temporal pole, bilateral precentral gyrus, bilateral middle frontal gyrus, bilateral

anterior insula, left caudate, right inferior occipital gyrus, left superior/middle occipital gyrus, left

cerebellum, right superior frontal gyrus and bilateral middle frontal gyrus. No-interrogation con-

ditions, relative to interrogation conditions, yielded higher activation in the bilateral posterior cin-

gulate, bilateral precuneus, right angular gyrus, and right superior/middle frontal gyrus (Fig 2B).

Interactions between guilt vs. innocence and interrogation vs. no-interrogation were found

at the bilateral thalamus, right caudate, left cerebellum, bilateral ventromedial frontal cortex

and ventral anterior cingulate cortex (Table 1). Fig 3 displays brain regions of interaction

effects and their percent signal changes to show the directions of the interactions at four major

regions (the caudate, cerebellum, thalamus and ventral anterior cingulate cortex). The percent

signal changes showed increase (or non-negative) only in the guilt and interrogation condition

while all the other conditions exhibited a suppressed direction.

For reference, here we present statistical analysis results to show the size of interactive

effects at the four regions. Repeated measures ANOVA for the percent signal changes at the

thalamus and the caudate revealed a significant difference between guilt & interrogation con-

ditions and guilt & no-interrogation conditions (p = 0.0008 for the thalamus and p = 0.001 for

the caudate, adjusted by Sidak’s multiple comparison test), between guilt & interrogation con-

ditions and innocent & interrogation conditions (adjusted p = 0.001 and p = 0.0004), and

between guilt & interrogation conditions and innocence & no-interrogation conditions

(adjusted p = 0.0018 and p< 0.0001). The cerebellum showed a significant difference between

guilt & interrogation and innocence & interrogation (adjusted p = 0.0242) and between inno-

cence & interrogation and innocence & no-interrogation (adjusted p = 0.0205). The ventral

anterior cingulate gyrus showed statistical significance only in the contrast between guilt &

interrogation and guilt & no-interrogation (adjusted p = 0.0365). Since the regions of interests

were chosen from the results of the current study, the statistical analysis results for the four

regions were provided just to elaborate on the results, rather than to produce a novel finding.

Discussion

Previous studies on the neural processes of lying and lie detection have not separated anxious

responses under interrogation from the deceptive act or its post-hoc responses, which occur in

tandem in practical lie detection settings. In the current study, we neurobiologically tested the

common knowledge that all interrogations elicit anxiety (as well as cognitive processes to hide

anxiety) regardless of the actual innocence of the person being interrogated and that people

under interrogation would feel either anxiety for true detection or anxiety for false detection.

The anxiety also entails both cognitive and affective components–attempts to hide or regulate

anxiety reflected in the facial expressions or physiological responses.

Current results showed that there were distinct brain networks that were involved in decep-

tive acts and their post-hoc responses (guilt condition) and the anxious responses for interro-

gation (after engaging in either deception or truth-telling, within the interrogation condition);
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Fig 3. Statistical parametric maps for interaction between guilt vs. innocence and interrogation vs. no-interrogation. (A) Statistical map for

interaction; (Guilt—Innocence) x (Interrogation—No-interrogation) displayed over slices. (B) Percent signal changes (mean and standard error) are

displayed for GuiInt (guilt & interrogation), GuiNoint (guilt & no-interrogation), InnoInt (innocence & interrogation) and InnoNoint (innocence & no-

interrogation) at the right caudate (x/y/z = 12/6/10), cerebellum (-20/-42/-26), left thalamus (-10/0/6) and left ventral anterior cingulate cortex (-2/40/4).
�, �� and ��� indicate p< 0.05, p< 0.01 and p< 0.001, respectively. CAUD: caudate, THL: thalamus, CBL: cerebellum, vACC: ventral anterior cingulate

cortex, vmpFC: ventromedial prefrontal cortex. x,y, z indicates MNI coordinates in mm.

https://doi.org/10.1371/journal.pone.0230837.g003
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brain responses in the guilt condition mainly recruited regions in the central-executive net-

work and the basal ganglia-thalamic networks, while responses under interrogation mainly

recruited regions in the salience network, theory of mind networks, and sensory-motor net-

works, among multiple brain networks classified by Menon and Uddin [23]. Regardless of

whether the person has engaged in deception or not, interrogation itself gave rise to anxiety,

which was reflected in the brain activation as well as post-hoc self-reports. By analyzing inter-

action effects, we further detailed neural correlates of two different types of anxieties- one

caused by the actual deception (true positive) and the other caused by the fear of being falsely

accused (false positive).

Guilt conditions, relative to innocence conditions, yielded higher involvement of brain

areas previously reported to be associated with deception [4, 9–11, 18–20], with a strong right-

hemispheric dominance. The deception-related brain regions primarily corresponded to the

central-executive network and thalamo-basal ganglia network. The prefrontal regions have

been established as centers for executive control such as response inhibition and error-moni-

toring, and are known to play a role in deceptive behavior [9, 18, 24]. In particular, the supe-

rior frontal gyrus is reported to be involved in lying about affective stimuli [25], and the right

inferior frontal gyrus in mediating successful lying [26]. The supramarginal gyrus has been

implicated in general deception processes related to action execution, simulation, observation,

and working memory [5, 27–29]. The left supramarginal gyrus turned out to be a region show-

ing fairly high decoding accuracy for holding true-thoughts even during telling a lie on a cue,

suggesting that the left supramarginal gyrus is responsible for encoding true thoughts [12].

The caudate and thalamus have been associated with suppression of prepotent (truthful)

responses [19]. Recruitment of these areas can be understood in the context of cognitive and

affective processes necessary for lying and its consequent behaviors, e.g., suppression of honest

responses, thinking about what the interrogator might be thinking about, prospection about

lying during the act of deception, and retrospection on lying afterwards.

We assigned the onset time at the beginning of interrogation (or no-interrogation phase) to

explore the effects of interrogation, and denoted the state after the onset time (following the

deceptive act) as a guilt state rather than a deception state. Therefore, brain regions detected in

the guilt-innocence contrast may reflect post-hoc cognitive and affective processes that differ-

entially unfold after lying or truth-telling, regardless of interrogation. We, however, note a

technical issue that brain signals generated during a lie and right after a lie could not be fully

separated from each other in this experiment. This is due to the nature of the blood oxygen-

ation level dependent (BOLD) signal in fMRI. Although a deceptive act occurred two seconds

before the onset time, BOLD signals of deception processes would sustain, albeit being rela-

tively weakened (due to the very slow pace of hemodynamic response, which peaks around 6

secs after an actual neurodynamic event). In addition to the acting phase, there is also the wait-

ing period for the decision of whether there would be interrogation or not. The common neu-

ral processes that unfold regardless of whether a participant lied or not during this waiting

period, such as anxiety for the decision about the imminent interrogation, we assumed, were

cancelled in the ANOVA analysis. Meanwhile, the differential processes during the waiting

period after lie or truth-telling would be embedded in the main effects of the guilt-innocence

contrast. Owing to the scope of the current design, details of neural processes occurring in the

acting phase and post hoc phase, common to both Interrogation and No-interrogation,

remains to be explored further by future studies.

As a main research goal of the current study, interrogation conditions elicited higher activa-

tion in the salience network (anterior insula and cingulate cortex) and a network for theory of

mind (superior temporal sulcus, middle temporal gyrus and supramarginal gyrus) compared

to no-interrogation conditions, regardless of lying or truth-telling.
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The anterior insula, as a center for the salience network, is known to be responsible for inte-

grating and modulating sensory information coming from the body and its activity has been

correlated with processing unpleasant emotions [4, 30–32]. It is also involved in emotional

awareness[33], cognition-emotion integration [34], producing cardiovascular effects (both

sympathetic and parasympathetic) [35], and interoception [36]. All these functions of the ante-

rior insula appear to be at play as participants sense their own emotional arousal (anxiety

under interrogation) as well as the physiological state of the body (interoception), and deal

with competing inputs from both cognitive and emotional aspects of the unpleasant interroga-

tory experience.

Increased activation in the dorsal anterior cingulate cortex, as a part of the salience network,

can also be understood along the same lines. The anterior cingulate cortex is known for its

involvement in a variety of functions, including error detection [37], conflict monitoring and

response selection [38], and regulation of emotions [39–41], all of which can readily be under-

stood as processes relevant in an interrogative context. Specifically, the dorsal anterior cingu-

late cortex is reported to be involved in vigilance due to anticipatory anxiety [42]. Activation

in these anxiety-related areas during the interrogation conditions is also confirmed by the

post-hoc questionnaires as participants reported having been conscious of the interrogation

setting and the corresponding anxiety arising from that awareness.

The superior temporal area and supramarginal gyrus, parts of the temporal parietal junc-

tion [43], had higher activations during the interrogation. Those regions have previously been

reported to be implicated in social cognition [44, 45], intention detection, and theory of mind

[46, 47]. The middle temporal gyrus has been implicated in social anxiety induced by guided

mental imagery in patients with generalized social anxiety disorder [48]. Those areas belonging

to the theory of mind network can be thought of as components of the mentalization process

about the interrogator.

The involvement of sensory-motor networks (facial area in the precentral gyrus and premo-

tor area, the anterior supplementary motor area, and the occipital areas) during interrogation

was not expected. However, recruitment of the sensory-motor network for the interrogation

may be explained by the processes the participants went through in interpreting sensory infor-

mation and motor control during the interrogation, such as evaluating their own facial expres-

sions and biophysical signals as well as adjusting them, to successfully deceive the interrogator.

This was also confirmed through the post-hoc self-reports.

As expected, the no-interrogation condition, in contrast, produced activations in the default

mode network, including bilateral posterior cingulate, bilateral precuneus, and the right angu-

lar gyrus as part of the inferior parietal lobule, which has been previously known to be active

during cessation of attention-demanding tasks [15–17]. These areas, as part of the default

mode network, appear to be associated with the neural mechanisms underlying a relief

response in the context of a cancelled interrogation session (no-interrogation conditions).

Interestingly, the activation pattern for interrogation response was highly bilateral in con-

trast to the right-hemispheric dominance we observed in the Guilt> Innocence contrast.

Although the main effect for brain responses under interrogation regardless of truthfulness

was strong and widely distributed, we still found some differential neural responses between

the contexts of true positive anxiety and its concurrent behavior (fear of being caught) com-

pared to false positive anxiety and its entailing behavior (fear of being falsely accused of an act

he/she did not commit). This was reflected in the interaction effects between the type of acts

(truth vs. lie) and the interrogation administration (presence vs. absence of interrogation).

The detected regions were the bilateral thalamus and caudate, left cerebellum, bilateral ventral

anterior cingulate cortex and ventromedial prefrontal cortex. All those brain regions were
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suppressed for conditions except for interrogation after deception, which showed increased

activation or no significant suppression (Fig 3).

The caudate and thalamic nuclei are regions known to be recruited during response inhibi-

tion and motor control [19, 20, 49, 50]. The cerebellum has previously been reported to be

associated with the act of deception and anxiety [9, 18]. The ventral anterior cingulate cortex,

which is known to play emotional regulation [51], is often considered together (in terms of

coordinates or its function) with the ventromedial prefrontal cortex in previous studies [52–

54]. The ventromedial prefrontal cortex is recruited for the regulation of parasympathetic

activity in the fear and risk processing and is activated during suppression of affective

responses to a negative emotional signal [52]. This is consistent with a lesion study that the

focal damage in the ventromedial prefrontal cortex induces potentiated amygdala responses to

aversive images [54]. Meanwhile, patients with damage at the ventromedial prefrontal cortex,

show inability to generate guilty feelings in situations of moral judgement [53], supporting the

role of the ventromedial prefrontal cortex in the normal generation of social emotions. The

current finding for interactions at those regions is understandable because one would expect

to observe more tension (negative affect as it relates to interrogation) and disguise tactics (sup-

pression of honest responses and manipulation of facial and posture cues) in guilt conditions

than in innocence conditions, although both cases involve the same interrogative context.

In summary, the anxious response to interrogation recruits specific brain circuits, segre-

gated from the brain regions responding to guilt, which should be considered in lie detection

systems involving interrogation. This argument is apparent and is not new. In practice, when

considering biophysical monitoring data in lie detection, interrogators have been advised to

differentiate between these two different factors affecting physiological signals. In line with

this, we propose that fMRI data concerning the distinctly distributed neural patterns of differ-

ent condition types could be utilized to identify these two factors.

As a limitation of the current study, we did not obtain anxiety scores for performing each

trial during the fMRI experiment in order to make the current experimental setting realistic,

by not giving a hint to participants that the interrogation judgment was based on the self-

report on the anxiety level. If we had acquired biophysical measurements linked to the self-

reported anxiety level, it would have been helpful in the interpretation of current results. Fur-

thermore, the relatively small sample size (N = 19) analyzed in the current study does weaken

the strength of our conclusions. Further studies with a sufficient sample numbers could help

increase the reliability of our findings.

The present study attempted to test and provide neurobiological evidence for the common

knowledge that interrogation causes anxiety and anxiety-related responses in both the decep-

tive and the innocent. Under interrogation, regardless of the participant’s innocence, there

was higher activation in the salience network, the theory-of-mind network, and the sensory-

motor network, compared to that in no-interrogation conditions. We also found interaction

effects within the interrogation conditions, signifying the differential neural responses associ-

ated with the two types of anxiety- true positive and false positive—as hypothesized. Future

studies can try to measure the accuracy with which deceptive and truthful trials can be dis-

criminated by using fMRI data, while also making further efforts to delineate the distinct acti-

vation patterns of deceptive and innocent responses under interrogation. One can then hope

that these fMRI data will help bring more precision to court judgments.
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