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Abstract

Immortal cancer cell lines (CCLs) are the most widely used system
for investigating cancer biology and for the preclinical develop-
ment of oncology therapies. Pharmacogenomic and genome-wide
editing screenings have facilitated the discovery of clinically rele-
vant gene–drug interactions and novel therapeutic targets via
large panels of extensively characterised CCLs. However, tailoring
pharmacological strategies in a precision medicine context
requires bridging the existing gaps between tumours and in vitro
models. Indeed, intrinsic limitations of CCLs such as misidentifica-
tion, the absence of tumour microenvironment and genetic drift
have highlighted the need to identify the most faithful CCLs for
each primary tumour while addressing their heterogeneity, with
the development of new models where necessary. Here, we discuss
the most significant limitations of CCLs in representing patient
features, and we review computational methods aiming at system-
atically evaluating the suitability of CCLs as tumour proxies and
identifying the best patient representative in vitro models.
Additionally, we provide an overview of the applications of these
methods to more complex models and discuss future machine-
learning-based directions that could resolve some of the arising
discrepancies.
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Cancer cell lines: a mainstay for cancer biology, drug
discovery and large-scale multi-omic data generation

Since the first cultured cell line was established in 1951 from Henri-

etta Lacks’ cervical cancer cells (Scherer et al, 1953), the use of

immortalised cell lines as cancer in vitro models has become a piv-

otal tool for studying primary tumours. Cancer cell lines (CCLs) are

widely used for therapy discovery, as they are easily amenable to

experimental manipulation, and suitable for high-throughput

screens, supporting the generation of large-scale perturbation data

sets (McDonald et al, 2017; Meyers et al, 2017; Tsherniak

et al, 2017; Behan et al, 2019), as well as comprehensive multi-omic

characterizations (Gillet et al, 2013; Ghandi et al, 2019; Fig 1).

Currently, the use of large-scale cell-line-based multi-omic data

sets is having a major impact on drug discovery and repositioning,

facilitating the identification of genetic linkages between candidate

drug targets and disease biology, thus increasing the likelihood of

investigative compounds to progress through the different phases of

clinical development (Wilding & Bodmer, 2014; Nelson et al, 2015;

Corsello et al, 2020; Francies et al, 2020). Starting from the pioneer

NCI-60 panel, created in the 1980s (Shoemaker, 2006) and aimed at

identifying compounds with tumour-type-specific growth-inhibitory

effects across 60 CCLs, next-generation high-throughput tech-

niques have given rise to large-scale pharmacogenomic screens

(Sharma et al, 2010), in the attempt to dissect the relationship

between cell viability reduction upon compounds’ treatment and

genetic features.

Besides extensively characterisations of the NCI-60 panel (Gar-

raway et al, 2005), tremendous effort has been and is still being

made to assemble increasingly large CCL drug response data sets.

These embody quite comprehensive tumour molecular heterogene-

ity together with viability reduction measurements of thousands of

in vitro models in response to treatment with hundreds of com-

pounds. Examples include the Cancer Cell Line Encyclopedia (CCLE;

Barretina et al, 2012), the Genomics of Drug Sensitivity in Cancer

(GDSC; Garnett et al, 2012; Yang et al, 2013), the Centre for Molecu-

lar Therapeutics 1000 (CMT1000; McDermott et al, 2007), Cancer

Target Discovery and Development (CTD (Basu et al, 2013) and

CTD2 (Seashore-Ludlow et al, 2015)) and a study from (Greshock

et al, 2010). In addition, comprehensive drug response data sets

have been recently expanded to incorporate non-oncology drugs

(Corsello et al, 2020), and combinatorial treatments (Menden

et al, 2019; Jaaks et al, 2022).
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In parallel, CCL characterizations have expanded in the direction

of multi-omic data assembly to reveal regulatory mechanisms associ-

ated with cancer vulnerabilities arising from cancer driver genomic

(as well as, epigenetic and transcriptomic) alterations. For instance,

CCLE moved beyond the initial genomic and transcriptomic space and

characterised RNA splicing, DNA methylation, microRNA expression,

global histone modifications, proteomic and metabolomic quantitative

profiles in more than 1,000 CCLs from multiple lineages and ethnici-

ties (Ghandi et al, 2019; Li et al, 2019; Nusinow et al, 2020; preprint:

Goncalves et al, 2022). Among those, a subset of 198 CCLs in 22

cancer types have been recently profiled by single-cell RNA-seq to

study intra-tumour heterogeneity (Kinker et al, 2020).

Various computational approaches have been used to jointly anal-

yse these drug response data sets and the comprehensive multi-omic

characterisations of the CCLs, revealing molecular features that are

informative and predictive of drug response, most often based on

stratifying CCLs on the presence/absence of individual molecular

features. This has allowed recovering established and identifying

novel genomic (Basu et al, 2013; Seashore-Ludlow et al, 2015;

Iorio et al, 2016; Jaaks et al, 2022) as well as transcriptional

(Garcia-Alonso et al, 2018; Jaaks et al, 2022) markers of drug sensi-

tivity, leading to new testable hypotheses and clinical trials. For

instance, Ewing’s Sarcoma lines were found to be hypersensitive to

PARP inhibitors (Gill et al, 2015), leading to the proposed use of

these inhibitors in combination with chemo/radiotherapy (Vormoor

& Curtin, 2014). Canakinumab and spartalizumab are undergoing

phase 1 clinical trial as a combinatorial treatment for clear cell renal

carcinoma patients (NCT04028245) and entinostat (histone deacety-

lase inhibitor) is undergoing phase 2 in the treatment of neuroen-

docrine tumours (NCT03211988). Finally, CHEK1 inhibitors were

found to act synergistically with chemotherapy (irinotecan) in

microsatellite-stable and KRAS-TP53 double-mutant colon cancer

cells, both in vitro and in vivo (Jaaks et al, 2022).

Simultaneously, large-scale RNA interference (RNAi) (Cheung

et al, 2011; McDonald et al, 2017; Tsherniak et al, 2017) and

genome-wide CRISPR-Cas9 knockout screens (Hart et al, 2015;

Tzelepis et al, 2016; Meyers et al, 2017) performed on large panels of

CCLs enabled the systematic identification of cancer genetic dependen-

cies (i.e. genes necessary for cancer cell proliferation and survival, also

called fitness genes) (Grimm, 2004). With higher efficiency and

Figure 1. Major public cell line-based data sets with corresponding omics and reference publications.

The horizontal bars indicate the data type/omic type availability. Created with BioRender.com.
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precision compared with RNAi (Evers et al, 2016), CRISPR-based stud-

ies have elucidated the landscape of cancer vulnerabilities and

unveiled novel and therapeutically exploitable synthetic-lethalities

(Chan et al, 2019), allowing the development of advanced bioinfor-

matics methods for the identification and the prioritisation of new can-

didate therapeutic targets on a genome scale (Behan et al, 2019).

Increasing the level of complexity, more recent in vitro screens

are focussing on digenic dependencies, uncovering compensatory

relationships between pairs of genes and are starting to identify

interactions that are synthetic lethal for cancer cell survival, and

most often involve specific paralogous genes (Ito et al, 2021;

Thompson et al, 2021). In addition, CCL-based post-perturbational

transcriptomic data sets such as the Connectivity Map (Lamb, 2007;

Bush et al, 2017; Ye et al, 2018) and related Web resources

(Stathias et al, 2020) have been pivotal for computational drug dis-

covery and repositioning (Pushpakom et al, 2018), and are now

being increasingly assembled also at single-cell resolution (McFar-

land et al, 2020; Srivatsan et al, 2020).

This ecosystem of CCL data sets is publicly accessible, actively

curated and allows generating new hypotheses about the biology of

cancer, its dependencies and response to therapy (Table 1). For

instance, Cellosaurus (Bairoch, 2018) provides curated CCL meta-

data resources across multiple species. COSMIC (Tate et al, 2019)

includes the Cell Lines Project dataset (Iorio et al, 2016), which col-

lects exome sequencing data and molecular profiling of more than

1,000 CCLs. cBioPortal (Gao et al, 2013) allows users to interac-

tively explore multidimensional cancer genomic and clinical data

sets, including data visualisation and analytical options across

genes, samples and data types, gathering both CCL and patient

tumour information. The GDSC (Yang et al, 2013) and GDSC2

(Jaaks et al, 2022) databases are large public resources of drug sen-

sitivity data derived from treating more than a thousand CCLs with

hundreds of individual and pairs of compounds, respectively. These

resources are also paired with Web portals equipped with interac-

tive data exploration tools, aiming at facilitating the discovery of sta-

tistical associations between molecular features and differential

treatment response to single or combinatorial therapies. The Cancer

Dependency Map has continued to generate and refine data from

the characterisation of increasingly larger CCL collections, now

accounting for more than 1,800 in vitro models, and making the cor-

responding omics and CRISPR-screening data available pre-

publication. Similarly, the Cell Model Passports portal (van der

Meer et al, 2018) includes highly curated multi-omic and clinical

data sets derived from the characterisation of more than 1,900 CCLs

and organoids. The Project Score (Dwane et al, 2021) database

allows the exploration of systematic genome-scale CRISPR-Cas9

dropout screen results in a variety of CCLs. Finally, the Online Gene

Essentiality Database (Gurumayum et al, 2021) contains gene fit-

ness data for 91 species, encompassing more than 500 CCLs.

Despite initial concerns about inter-study reproducibility (Haibe-

Kains et al, 2013), this plethora of resources has been proven consis-

tent across institutes and publications, from a pharmacogenomic point

of view (Cancer Cell Line Encyclopedia Consortium & Genomics of

Drug Sensitivity in Cancer Consortium, 2015; Geeleher et al, 2016;

Haverty et al, 2016), as well as when considering drug response profil-

ing (Mpindi et al, 2016) and CRISPR-Cas9 screens (Dempster

et al, 2019). This agreement across studies has allowed their integra-

tion (Pacini et al, 2021), paving the way to large unified resources and

inter-study/institute Cancer Dependency Maps (Boehm et al, 2021).

Compared with more recent cancer models such as patient-derived

Table 1. Portals providing access to large CCL-based data sets and related in vitro models’ curated annotations.

Portal name URL Available info

Cellosaurus https://web.expasy.org/
cellosaurus/

CCL names with synonyms, sex and age of the donor, and molecular charachteristics (MSI, doubling
time etc).

Engineering procedure (gene KO or insertion), resistance to drug, known contaminations.

COSMIC https://cancer.sanger.ac.
uk/cosmic

Catalogue of cancer somatic mutations: variant type, gene fusions, CN variants, drug resistant
mutations, GE and HypMet effects.

https://cancer.sanger.ac.
uk/cell_lines

CCLs’ exome sequencing and other molecular profiles.

cBioPortal https://www.cbioportal.
org/

Interactive exploration of genetic, epigenetic, gene expression, proteomic events and clinical data.
Connection to disrupted pathways.

GDSC https://www.
cancerrxgene.org/

CCLs’ drug sensitivity and molecular markers of drug response.

GDSC2 https://gdsc-combinations.
depmap.sanger.ac.uk/

CCLs’ drug combination sensitivity and related molecular markers.

DepMap https://depmap.org/portal/ Portal collecting multi-omic data from the characterisation of 100s of CCLs (maintained at the Broad
and other institutes).

CCLs’ molecular, drug sensitivity, gene essentiality (from CRISPR-Cas9 and RNAi screens) profiles.

CellModelPassport https://
cellmodelpassports.
sanger.ac.uk/

Portal with multi-omic data from the characterisation of 100s of CCLs (maintained at the Wellcome
Sanger institute).

CCLs’ molecular, drug sensitivity, gene essentiality (from CRISPR-Cas9 screens) profiles.

ProjectScore https://score.depmap.
sanger.ac.uk/

Systematic genome-scale CRISPR-Cas9 drop-out screens with exploration tools.

Online Gene
Essentiality Database

https://v3.ogee.info/ CCLs’ gene essentiality profiles (from CRISPR-Cas9 and RNAi screens).
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xenografts (PDx) and patient-derived organoids (PDO), the scalability

and cost efficiency of CCLs is reflected by the larger volume and diver-

sity of available data (Feng et al, 2021). Hence, it is likely that for the

foreseeable future, CCLs will remain the main source of information

for genomics-guided and data-driven preclinical development of cancer

therapies (Francies et al, 2020), and for the discovery and validation

of cancer genetics dependencies (Lin & Sheltzer, 2020). Nonetheless,

CCLs have intrinsic and unsurmountable limitations, including the fact

that they are cultured in 2D flat dishes, growing in cell culture media

and lacking matching tumour microenvironment (TME) components.

This poses questions about how reliably CCLs mimic patient tumours

and the extent to which this represents an obstacle for the translation

of CCL derived findings from-bench-to-bedside.

If CCL characterizations, pharmacogenomic and genetic pertur-

bation screenings are effective in the context of forward translation,

which implies actualizing research discoveries into practice, reverse

translation, that is the elucidation of the mechanistic basis of clinical

observations, is a complementary and equally important need for

successful drug development (Honkala et al, 2021). Hence, reverse

translational practices such as the identification of clinically predic-

tive features and their observational validation in real tumours is

meaningless if it is not preceded by a correct selection of properly

representative CCLs for each considered patient cohort.

In a precision medicine context, patients’ genomic heterogeneity

has been linked to differences in treatment response, and the efficacy

of 75 FDA-approved anti-cancer drugs associated with 47 biomarkers

across 25 cancer types (Feng et al, 2021). Indeed, efforts to genomi-

cally characterise tumour patients (International Cancer Genome Con-

sortium et al, 2010; Cancer Genome Atlas Research Network

et al, 2013) have also led to a comprehensive collection of data sets

spanning across multiple omics, in some cases paired with clinical

observations (Gao et al, 2013). This has allowed retrospectively vali-

dating to a certain extent some of the associations between molecular

features and drug responses observed in CCLs. However, new CCL-

derived pharmacogenomic associations were not always confirmed in

clinical trials. For example, the upregulation of IGFR1 found associ-

ated with tamoxifen resistance in breast cancer CCLs, exhibited the

opposite behaviour in patients (Drury et al, 2011).

Leveraging the plethora of existing data, it is now possible to

develop methods able to map CCLs to tumours, to identify CCLs that

most closely resemble relevant patient characteristics to (1) achieve a

better understanding of cancer mechanisms and (2) maximise the

likelihood that virtual drug prescriptions discovered from CCL-based

studies are effective and beneficial for a specific patient segment.

Here, we first review the factors that might compromise how

well CCLs represent primary tumours. We then discuss computa-

tional studies that investigate CCL resemblance to patient tumours,

ranging from cancer-specific investigations focussed on individual

(or few) data modalities to more recent multi-omic and pan-cancer

approaches. Finally, we offer an outlook on the use of machine

learning methods in this context.

Factors that might compromise how well cell lines
represent tumour characteristics

The relevance of the findings originating from CCL-based studies

and their translation in clinical applications have been long

questioned, long before large-scale screenings became widespread

(Hughes et al, 2007; Gillet et al, 2013). This was due to several fac-

tors that potentially compromise the faithfulness of CCLs in repre-

senting the cancer patients they are intended to model (Fig 2).

Misidentification and contamination
The first issue arises from possible contaminations and misclassifi-

cations due to culturing the cells in the laboratory (Fig 2E). Cross-

contamination, for example cells from a foreign culture introduced

accidentally in a CCL, is a well-documented problem. Capes-Davis

et al (2010) performed a literature screening and reported that 360

CCLs from 68 references were cross-contaminated, mostly intra-

species (90%), with the most common contaminant being HeLa

cells (29%). Cross-contamination cases are usually spotted by short

tandem repeat (STR) profiling, generally performed for CCL authen-

tication purposes, thus also suitable for the identification of misla-

belled CCLs. Via STR profiling performed on 113 independent

sources in China, 95 CCLs of the 380 tested were detected as cross-

contaminated, with 93.22% of the cases involving HeLa cells

contamination (Ye et al, 2015). Another well-known source of con-

tamination is mycoplasma, a small parasitic bacterium which might

be passed on by other contaminated cell cultures or laboratory

personnel. RNA sequencing showed that 11% of 9,395 samples

from hundreds of laboratories were indeed contaminated with

mycoplasma (Olarerin-George & Hogenesch, 2015).

Misidentification and misclassification errors arise when the gen-

der, species, tissue or cell type, disease or CCL names are wrongly

annotated and do not match the actual source. It was estimated that

more than 30,000 scientific publications were affected by CCLs not

being of the declared type (Horbach & Halffman, 2017). To tackle

this significant problem, Cellosaurus (Bairoch, 2018) offers a CCL

authentication system by STR profiling in the CLASTR (Cellosaurus

STR similarity search) tool (Robin et al, 2020), which allows con-

trasting one or more STR profiles against that of 6,474 human CCLs.

Despite being the international reference system for in vitro model

authentication, STR profiling is still susceptible to heterogeneity

within the same CCL that can occur due to differences in laboratory

and culture conditions or genetic drifting, especially in the presence

of microsatellite instability (Much et al, 2014).

Genetic drift, in vitro selection pressures and genetic instability
Genetic heterogeneity in CCLs of the same origin has been observed

by several groups (Ben-David et al, 2018; Liu et al, 2019b; Quevedo

et al, 2020), aggravating differences in models that originated from

the same donor (Fig 2F). For instance, Ben-David et al (2018)

reported on many CCLs exhibiting complex clonal dynamics and

evolutionary pressures specific to in vitro culturing conditions. Ben-

David et al (2018) reported that this in turn impacted functional

properties such as morphology, proliferative capacity, gene expres-

sion and drug response. A recent study from Quevedo et al (2020)

explored genetic stability across the 3 largest pharmacogenomic

studies that leveraged both RNA-seq and SNP array data, finding

discrepancies both intra- and inter-institutions, and hinting that

pharmacological delineation could have been derived at different

passages and/or stocks, thus not properly defining CCLs’ drug

responses and being linked to different and variable transcriptional

programmes. Indeed, within-CCL genetic variability greatly impacts

gene expression, even at the level of cancer-related genes (Fasterius
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Figure 2. Factors hampering the faithfulness of CCLs as tumour models.

Panels A to E show issues that can be addressed by establishing new in vitro models (top to bottom) or by developing cell line-tumour mapping methods (bottom to
top). (A) Cell line biobanks are mostly derived from European and east Asian ancestries (data from Dutil et al, 2019). (B) Ease in establishing cell lines from more aggres-
sive subtypes. (C) Intra-tumour and intra-cell lines dynamics, possibly reduced heterogeneity in cell lines that additionally do not include tumour microenvironment. (D)
Differences in cell states among cell lines and tumour biobanks in terms of genetic, transcriptional, epigenomic and proteomic features that lead to differentially regu-
lated pathways. (E) Contamination and mis-identification due to lab conditions. Cells in blue represent a different donor. (F) Genetic instability in the same cell line due
to different culture conditions or passaging can lead to divergences in genetic features, transcriptional and proteomic states and consequentially drug response. Created
with BioRender.com.
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& Al-Khalili Szigyarto, 2018). Genomic and transcriptomic varia-

tions can translate also into variations at the proteomic level, as it

was shown while investigating 14 HeLa cells strains (Liu

et al, 2019b). On the contrary, epigenetic changes driven by envi-

ronmental factors (e.g. culture conditions) are also plausible, given

the evidence of DNA methylation instability in human pluripotent

stem cells (Weissbein et al, 2017). However, no study has analysed

this aspect so far. In addition, the mutational variability in a CCL

donor can lead to the continuous emergence of new subclones in

that CCL (Ben-David et al, 2018), which can lead to the emergence

of drug resistance (Hata et al, 2016).

In general, given the intrinsic differences between human physio-

logical environment and cell culture conditions, it sems rather unli-

kely that tumours and CCLs are subjected to the same evolutionary

selective pressures. This increases the molecular divergence

between cancer models and the tumours they were originated from

(reviewed in Ben-David et al, 2019).

The similarity of CCLs to their tumour of origin can be considered

a non-critical issue if CCLs are used just as a means for investigating

intrinsic oncogenic mechanisms. However, diverse evolutionary

mechanisms could contribute to significantly distancing cancer

model populations from patient cohorts, not properly mimicking the

focal aspects of oncogenic addiction in cancer patients and their trig-

gered genetic dependencies. This can lead to misleading findings that

would not be recapitulated in real tumours. On the contrary, unstable

molecular features in an in vitro cohort also limit the faithfulness of

its molecular characterisation, making collected data inaccurate

across multiple strains, with possible false findings arising especially

when using CCLs for harvesting biomarkers of drug response.

Selection bias
Existing biobanks and panels of in vitro cancer models are biased

towards the preferential representation of certain cancer types and

subtypes (Fig 2B). It has been reported that CCLs are more com-

monly derived from metastatic tumours due to their predisposition

to grow successfully in vitro (Masters, 2000). The genetic changes

accumulated by aggressive cancers are one possible explanation for

their increased chances of growing indefinitely in vitro. Conse-

quently, aggressive cancer subtypes tend to be overrepresented

across CCL collections of a specific tissue. For example, breast CCLs

are mostly derived from metastases rather than primary lesions

(Burdall et al, 2003). In addition, CCL cohorts do not sufficiently

represent all patient tumour subtypes (van Staveren et al, 2009;

Klijn et al, 2015). This is a prominent problem for rare cancers

which collectively make up 25% of cancer diagnoses each year

(Greenlee et al, 2010) and for most of which no representative CCLs

are available to date (Sharifnia et al, 2017).

Missing tumour microenvironment factors
CCLs are cultured in flat plastic dishes, fed with synthetic media

enriched with bovine serum and they completely lack the tumour

microenvironment (TME) that surrounds patients’ cancer cells in vivo

(Fig 2C). The TME includes non-malignant cell types such as immune

cells and fibroblasts, extracellular matrix and signalling proteins (Bin-

newies et al, 2018). The crosstalk between tumour cells and the sur-

rounding TME enhances both tumorigenesis and tumour progression,

and also plays a role in preventing therapy efficacy and increasing mul-

tidrug resistance (Klemm & Joyce, 2015; Baghban et al, 2020).

Furthermore, recent studies have shown that cell culture media

impacts genetic dependencies observed in CCLs (Cheteh et al, 2017; Li

et al, 2019; Rossiter et al, 2021). Nevertheless, despite the lack of

immune-like cells or cancer fibroblasts, it was found that specific

metabolites in human plasma-like medium also influence the set of

essential genes in CCLs detected in CRISPR-based screens (Rossiter

et al, 2021). Co-culturing CCLs with cancer-associated fibroblasts

(CAF) or even CAF-conditioned medium reduced response to

chemotherapeutic treatments and conversely increased cell survival in

prostate CCLs (Cheteh et al, 2017). This offers the possibility to repro-

duce in vitro some of the interactions occurring between cancer cells

and the TME. More complete TME representations have been imple-

mented via co-culturing technologies in complex in vitro models. For

instance, three-dimensional patient-derived organoids (PDO) have

been co-cultured with endogenous native infiltrating immune cell pop-

ulations and non-immune stromal elements, allowing in vitro immune

oncology investigations (Neal et al, 2018). In addition, single-cell anal-

yses in PDOs from pancreatic cancers showed that TME signals drive

malignant cell states and influence drug responses (Raghavan

et al, 2021). Interestingly, Raghavan et al (2021) also demonstrated

that ex vivo soluble micro-environment can be manipulated to alter

transcriptional states, demonstrating again that at least some TME

components can be modelled in vitro.

Heterogeneity in tumours and cell lines
Individual patient tumours are typically highly heterogeneous in

terms of their genetic, epigenetic, transcriptional, cell state and

other phenotypic features (Marusyk et al, 2012; Jamal-Hanjani

et al, 2015). These different levels of intra-tumour heterogeneity

can arise from genetic instability followed by subclonal evolution,

as well as epigenetic plasticity, diverse microenvironmental factors,

and heterotypic interactions with immune and stromal cells (Hino-

hara & Polyak, 2019; Vitale et al, 2021). Recent work suggests that

distinct genetic and molecular subtypes can often co-exist within the

same tumour (Patel et al, 2014; Roerink et al, 2018; preprint: Gav-

ish et al, 2021; Raghavan et al, 2021). Such intra-tumour hetero-

geneity plays a role in governing cancer progression and metastasis,

as well as therapeutic response and resistance (Roider et al, 2020;

Hong et al, 2019; Kim et al, 2018).

CCLs are typically believed to lack much of the representative

heterogeneity of tumour cell populations due to the aforementioned

in vitro culture conditions, lack of TME complexity and strong selec-

tive pressures induced by in vitro culturing that are thought to limit

subclonal diversity. However, recent studies have casted doubt on

the notion that CCLs models are made of homogenous, stable and

clonal cell populations (Fig 2C).

Genetic heterogeneity in CCL models has been observed by dif-

ferent groups. For example, Ben-David et al (2018) found that even

single-cell clones rapidly produce heterogeneous populations due to

genetic instability. Minussi et al (2021) used single-cell DNA-Seq to

characterise subclonal diversity in triple negative breast cancer and

found that CCLs showed similar levels of subclonal diversity as

tumours, and that this re-emerged rapidly after single-cell cloning.

Similar subclonal dynamics have been observed to drive drug resis-

tance in CCLs (Bhang et al, 2015). Single-cell studies suggest that

apart from genetic heterogeneity, CCL populations may additionally

exhibit transcriptional heterogeneity, but not to the same extent as

tumours. For example, recent pan-cancer efforts aiming at

6 of 24 Molecular Systems Biology 18: e11017 | 2022 � 2022 The Authors

Molecular Systems Biology Lucia Trastulla et al



characterising recurrent patterns of transcriptional heterogeneity in

CCL models and tumours found that many of the transcriptional

programmes driving intra-tumour heterogeneity in patients were

also observed in CCLs (Kinker et al, 2020; preprint: Gavish

et al, 2021). Tumours exhibit significant heterogeneity also at the

epigenetic level (Brocks et al, 2014). However, CCLs are largely

underexplored at the epigenome level, and it remains to be deter-

mined how much of the transcriptional diversity observed in CCLs

is rooted in their epigenetic heterogeneity.

Despite their complex and dynamic nature, CCLs unavoidably

lack much of the tumour spatial organisation, cellular architecture

and microenvironmental factors, and further understanding these

similarities and differences in CCLs and tumours remains a key chal-

lenge. Homogenous in vitro models might be desirable for experi-

mental studies of defined cancer types and states, as they allow

pinpointing specific intrinsic molecular features. On the contrary,

populations lacking representative sources of heterogeneity would

fail to capture key aspects of patient tumours biology, dynamics and

treatment response.

Differences in genomic and cell state
Comparisons of tumours and CCLs, at bulk or single-cell level, have

indicated discrepancies with respect to somatic mutations and copy

number alteration (CNA) frequencies, transcriptional and epigenetic

states, (Fig 2D). Bulk gene expression profiling has identified

pathway-specific differences (Sandberg & Ernberg, 2005; Ertel

et al, 2006). Pathways upregulated in CCLs are generally involved

in metabolic processes, including cell nucleotide metabolism and

oxidative phosphorylation, whereas downregulated ones typically

involve cell adhesion and communication. Based on SAGE (Serial

Analysis of Gene Expression) technology (Stein et al, 2004), 62

genes selectively overexpressed in tumours were found to be

enriched for immune response and complement pathways, reflect-

ing the presence of stromal and immune components, as well as

extracellular matrix proteins. On the contrary, protein synthesis

pathways were found dominantly enriched among the 61 genes

overexpressed in CCLs. In addition, 50C-phosphate-G-30 (CpG)

islands were found more hypermethylated in CCLs, with more than

57% of model-specific hypermethylated loci not being found in pri-

mary tumours (Smiraglia et al, 2001).

When considering transcriptional components involved in mul-

tidrug resistance (MDR), CCLs were observed to exhibit upregula-

tion of genes that would facilitate survival (Gillet et al, 2011). This

implies that CCLs are selected during their establishment via the

expression of genes that are connected to MDR most likely as a

response to environmental adversity. In addition, CCLs have been

reported to be more sensitive to cytotoxic drugs compared with solid

tumours, possibly due to their faster proliferation rate and their lack

of a TME, which has been found to reduce responsiveness to

chemotherapeutics (Marin et al, 2008; Straussman et al, 2012).

At the genome level, genetic aberrations characterising primary

tumour are generally preserved in tissue-matching CCLs. However,

CCLs also tend to acquire novel locus-specific alterations, several of

which are rarely or never observed in primary tumours (Greshock

et al, 2007; Tsuji et al, 2010), and show a generally higher fre-

quency of mutations (Domcke et al, 2013; Jiang et al, 2016).

Considering the intrinsic differences between CCLs and primary

tumours, Iorio et al (2016) focussed on multi-omic cancer

functional events (CFEs), that is molecular features derived by pro-

cessing more than 11,000 primary tumour samples across 29 tis-

sues with state-of-the-art software aiming at identifying cancer

driver alterations (Gonzalez-Perez et al, 2013; van Dyk

et al, 2013). The CFEs encompassed somatic mutations in cancer

genes (CGs), recurrently aberrant copy number segments (RACs)

involving at least a gene and affected in at least 2.5% of subjects,

and hypermethylated informative CpG sites (iCpGs) in gene pro-

moters with consistent hypo-/hyper-methylation. The status of the

identified CFEs was then observed in more than 1,000 CCLs. Inter-

estingly, this revealed that all pan-cancer RACs identified in

patients occurred in at least one CCL, followed by 89% of iCpGs

and 64% of CGs. However, the correlation between CFEs occur-

rences in CCLs and patient tumours was high on average but

highly variable across cancer types.

Partial ancestry representation
Because available biobanks do not properly cover all ethnicities,

CCLs are not representative of diverse ancestry (Fig 2A). This issue

was clearly shown by Dutil et al (2019) using an interactive tool

called ECLA (Estimated Cell Line Ancestry) that visualised ancestry

of CCLs inferred from genome-wide SNP array in the context of the

1,000 Genome project reference populations. Among more than

1,000 CCLs in CCLE and the COSMIC panels, European and East

Asian account for 91.64% of the CCL ancestry. Moreover, 64 CLLs

involve a discordant annotation between the genetically inferred

ancestry and the self-reported one.

This is a quite significant challenge considering that genetic vari-

ants associated with cancer risk could have a different effect across

populations. For instance, variants detected in one population from

genome-wide association studies are not always recapitulated in a

different ancestry or even display a different direction of association

(Wang et al, 2018). One example is the rs2046210 variant at 6q25.1

in breast cancer, which is detected in asian and european women

but not African-American (Cai et al, 2011). A complete ancestry

representation in in vitro models is essential for understanding how

ethnicity differences impact cancer biology and to gain a compre-

hensive view of the underlying mechanisms.

Computational methods for comparing cell lines and
primary tumours

Some of the limitations hampering a correct modelling of primary

tumours by CCLs can be circumvented computationally, by in silico

preprocessing the related data. Particularly, appropriately mapping

representative CCLs onto specific tumour segments can be achieved

in a genomically guided fashion most preferably considering repro-

filing CCLs immediately before possible screens for genetic depen-

dency/drug sensitivity. This way it is possible (1) to elucidate at

least the biological mechanisms that are retained in CCLs and (2) to

facilitate translating CCL-derived findings (for example from genetic

dependencies and drug responses) into potential treatments for the

mapped patient cohorts. A correct CCL-to-tumour matching over-

comes CCL “misidentification” issues, reduces the effects of differ-

ent culture conditions and allows focussing on features that are

relevant to primary tumours while putting less emphasis on CCL-

specific ones.
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Interconnected objectives: integration, scoring and selection
Here, we review 22 studies that have leveraged multi-omic data to

compare the molecular characterisation of tumours and that of com-

mercially available CCLs (Table 2 and Fig 3). To this end, we have

classified these approaches based on three different but not mutu-

ally exclusive pursued objectives (Table 2 and Fig 4):

i integration of cell lines and tumour data.

ii scoring, that is estimating a score to rank the quality of cell lines

as tumour models.

iii assignment and selection of cell lines as representative models

for defined tumour type/subtype, with a consequent identifica-

tion of gaps, that is tumours lacking representative cell lines.

While most of the studies (14 of 22) focus on a single cancer

type, more recent ones are applied to a pan-cancer context (8 of 22).

Among those, only 3 describe methods analysing all cancer types

with available data jointly, while the remaining ones are separately

applied to individual cancer types (Pan-cancer independent). Inter-

tumour heterogeneity within the same cancer type is accounted for

in 19 of 22 studies either using prior known subtype labels (for

example, consensus molecular subtypes) or determined in a data-

driven way via cluster analysis. In general, when comparing CCLs

and tumours, the preferred approach is unsupervised (17 of 22),

estimating global similarities between samples on a domain of infor-

mative features only. Instead, 3 of 22 methods adopt a supervised

approach, building predictive models which are trained on primary

tumours’ data to capture a phenotype of interest (tumour type/sub-

type), then used to classify CCLs. Finally, 2 studies include both

strategies, unsupervised for general CL-tumour comparison and

supervised for tumour subtype assignment.

Large-scale publicly available databases, such the CCLE and

those collected under the DepMap portals, are typically used as the

source of CCL data (19 studies), plus an earlier application (Virta-

nen et al, 2002) used data related to CCLs that were subsequently

collected in DepMap. Seventeen studies use TCGA as a source of pri-

mary tumours’ data. Moreover, despite the developed methods not

being strictly subordinate to the data type included (gene expres-

sion, somatic mutations, copy number alterations, DNA methylation

and/or protein expression), we observed heterogenous choices of

used omic(s). More importantly, only 9 of 22 studies address multi-

omic sources with disparate strategies for their integration. Here, we

only focus on studies comparing tumours to CCLs, but we neverthe-

less note that 2 of the listed publications (Liu et al, 2019b; Peng

et al, 2021) extend their methods to more complex models such as

tumoroids and PDx, highlighting different representative perfor-

mances and quality across model complexities.

Only 9 studies apply a data integration method that goes

beyond a straightforward juxtaposition of the two data sources

(CCLs and primary tumours) based on a common and/or most

variable set of features and performing a data harmonisation in

an integrated comparable space (Fig 4A and Table 2). This is usu-

ally implemented when handling gene expression data, via multi-

platform microarray integration methods (for example, distance

weighted discrimination and lowess normalisation), or borrowing

techniques for experimental batch correction, such as ComBat

(Johnson et al, 2007) or mutual nearest neighbour (MNN) (Hagh-

verdi et al, 2018). The benefits of data integration are clearly

shown in (Salvadores et al, 2020; Warren et al, 2021), which dis-

play a 2D projection of combined CCLs’ and primary tumours’

data in an uncorrected and corrected version (i.e. contrastive PCA

followed by MNN or quantile normalisation plus ComBat), with

only the second case showing the two datasets properly mixed,

while maintaining tissue type separations. A different approach is

applied in (Ronen et al, 2019; Zhang & Kschischo, 2021), based

on a variational autoencoder (VAE) that identifies, in an unsuper-

vised manner, non-linear latent factors from the initial feature

space common to both CCLs and tumours.

The scoring objective is instead one of the most pursued across

the examined methods (Fig 4B and Table 2). This goal is usually

achieved through the use of a correlation (Spearman’s or Pear-

son’s) or similar metric (Kendall or Jaccard index, Euclidean dis-

tance or cosine coefficient) (Domcke et al, 2013; Chen et al, 2015;

Sun & Liu, 2015; Vincent et al, 2015; Jiang et al, 2016; Luebker

et al, 2017; Sinha et al, 2017, 2021; Vincent & Postovit, 2017;

Liu et al, 2019a; Ronen et al, 2019; Batchu et al, 2020; Fang et al,

2021; Zhang & Kschischo, 2021), sometimes applied to a new

“corrected” feature space (Warren et al, 2021). This similarity

score is usually computed first sample-wise, then for each CCL

averaged across tumours from a given tumour type/subtype (usu-

ally matching that in the CCL annotation). The approaches that

work this way build on unsupervised strategies that focus on a

global similarity metric. Supervised methods, on the contrary, first

build a classification model that can learn discriminative features

between tumour types/subtypes and then examine and classify

CCLs based on the status of these features. Although more appro-

priate for the selection tasks, classification “scores” can also be

used as a quality estimation and hence to rank CCLs based on

their representative quality (Peng et al, 2021). Regardless of

whether a certain classification is correct, studies including a scor-

ing objective can indicate the most fitting CCL for every tumour-

type/subtype under investigation.

With respect to the selection objective (Fig 4C and Table 2), not

all methods proposed so far clearly pinpoint a set of CCLs as repre-

sentative models for the tumour type under investigation. Although

selection could be a consequence of scoring via the application of a

filtering threshold on the estimated scores (Yu et al, 2019), this is

usually not the case from correlation-based studies. Instead, super-

vised methods more naturally assign a CCL to a tumour of interest

and a representative set of CCLs is then obtained as those retaining

their tissue identity following the classification (Salvadores

et al, 2020; Peng et al, 2021).

One of unsupervised methods, CELLector (Najgebauer

et al, 2020), initially clusters primary tumours in an unsupervised

way based on the most co-occurring combinations of genomic fea-

tures (signatures) and subsequently assigns CCLs to a patient seg-

ment conditional to the presence of the underlying signature,

without relying on a similarity score. Although a score is built as a

product of the percentage of the tumour samples covered by a

patient segment and the granularity of the underlying signature (in

terms of number of accounted features), this is more representative

of the patient subgroup “quality” and informativeness rather than

the CCL ability to represent that patient cohort.

Generally, pursuing the selection objective helps also identifying

tumour types and subtypes lacking adequate model representation,

providing guidelines for new in vitro model development.
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Table 2. Methods/studies that map cell lines to tumours.

Reference
Data
Input

Multi-omic
integration Application

Unsupervised/
Supervised Clustering/subtype

Method

CCL—Tumour
integration Scoring CCL Selecting CCL

Warren
et al (2021)
(Celligner)

GE – Pan-cancer Unsupervised Subtype Contrastive
PCA + Mutual
Nearest
Neighbour

Pearson corr. on
aligned space

–

Assignment by
k-NN

Peng et al (2021)
(CancerCellNet)

GE – Pan-cancer Supervised Subtype – Classification score Multi-class
Random
Forest

“Correct” class:
classification
score > thr in
actual type

Sinha et al (2021)
(TumorComparer)

GE,
CNA,
Mut

Late Pan-cancer
(independent)

Unsupervised Subtype – Aggregated ranking of
weighted Pearson’s
corr./Jaccard Index

–

Zhang &
Kschischo (2021)
(MFmap)

GE,
CNA,
Mut

Intermediate Pan-cancer
(independent)

Supervised
(subtype)

Subtype ComBat (GE) Cosine coefficient
(latent space)

Neural network
classifier on
latent spaceConcatenated

VAE

Fang et al (2021) PE – Thyroid
Carcinoma

Unsupervised Subtype – Pearson’s corr. –

Najgebauer
et al (2020)
(CELLector)

CNA,
Mut,
HypMet

Early Pan-cancer
(independent)

Unsupervised Clustering – Signature length times
fraction of samples in
group

Eclat clustering

Map by decision
tree

Salvadores
et al (2020)
(HyperTracker)

GE,
HypMet

Late Pan-cancer Supervised Subtype ComBat – Binomial ridge
regression

“Golden set” from
matching data
modalities

Batchu
et al (2020)

GE – Alveolar
Rhabdomyosarcoma

Unsupervised – – Spearman’s corr. –

Yu et al (2019)
(CompHealth)

GE – Pan-cancer
(independent)

Unsupervised Subtype ComBat Spearman’s corr. TCGA-110-CL
panel: 5 highest
score per type

Supervised
(subtype)

Liu, et al (2019a) GE,
CNA,
Mut

– Metastatic Breast
Cancer

Unsupervised Subtype – Spearman’s corr. (GE
and CNA)

–

Ronen
et al (2019)
(Maui)

GE,
CNA,
Mut

Intermediate Colorectal cancer Unsupervised Clustering Multimodal
stacked VAE

Euclidean distance
(latent space)

K-means
clustering (latent
space)

at least 1 of 5 NN
being tumour

Zhao et al (2017) GE,
CNA,
Mut

Late Pan-cancer
(independent)

Unsupervised Subtype Distance
weighted
discrimination

Kendall Rank corr. (GE
and CNA)

Similarity in at
least 3 out of 4
modalities

Gene Ontology
enrichment score

Mutation presence

Luebker
et al (2017)

CNA,
Mut

– Melanoma Unsupervised – – Fraction of genome
altered

–

Pearson’s corr. (CN)

Vincent &
Postovit (2017)

GE – Melanoma Unsupervised Subtype – Pearson’s corr. –

Sinha et al (2017) GE,
CNA,
Mut

– Renal Cancer Unsupervised Clustering/
Subtype

ComBat – Hierarchical
clustering
(Spearman corr.,
CN)

Supervised
(subtype)

PAMR classifier
(Spearman corr.,
GE)

Jiang et al (2016) GE,
CNA,
Mut, PE

Late Breast Cancer Unsupervised Clustering/Subtype – Sum Pearson corr. Hierarchical
clustering
(PE, GE)
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Moreover, it boosts pharmacogenomic associations whose signifi-

cance is diluted when accounting for low-quality models (Najge-

bauer et al, 2020; Salvadores et al, 2020; Peng et al, 2021; Zhang &

Kschischo, 2021). For instance, (Salvadores et al, 2020) identified

drug sensitivity markers across cancer types using only “golden

sets” of CCLs strongly resembling their cancer type of origin based

on transcriptomic and epigenomic profiles. They found a higher

number of pharmacogenomic associations across tumour types com-

pared to using data from all available CCLs, including a previously

unreported association between CDKN2A losses and camptothecin

sensitivity in glioblastoma. On the contrary, removing non-

representative/low-quality CCLs from pharmacogenomic associa-

tions studies filters out likely not relevant statistical interactions

between drug responses and genomic features. For instance, in col-

orectal CCLs, BRAF mutations are no longer associated with dabra-

fenib responsiveness, consistent with what was observed in tumour

patients. Najgebauer et al, 2020 used a different approach, where

CCLs were grouped according to the genomic signatures underlying

Table 2 (continued)

Reference
Data
Input

Multi-omic
integration Application

Unsupervised/
Supervised Clustering/subtype

Method

CCL—Tumour
integration Scoring CCL Selecting CCL

Sun & Liu (2015) GE, CNA Late Breast Cancer Unsupervised Subtype – Aggregated ranking of
Spearman’s corr.

–

Vincent
et al (2015)

GE – Breast Cancer Unsupervised Subtype - Pearson’s corr. (group
specific)

-

Chen et al (2015) GE – Hepatocellar
Carcinoma

Unsupervised – – Spearman corr. –

Sadanandam
et al (2013)

GE – Colorectal cancer Unsupervised Clustering Distance
weighted
discrimination

– SAM and PAM for
feature extraction

Consensus-based
NMF

Domcke
et al (2013)

GE,
CNA,
Mut

Late Ovarian Cancer Unsupervised Subtype - sum: CNA Pearson corr.
and Mut presence/
absence

GE for validation:
hierarchical
clustering

Virtanen
et al (2002)

GE – Lung Cancer Unsupervised Clustering Lowess
normalisation

– Hierarchical
clustering

Comparison with
known label

CCL, cancer cell line; CNA, copy number alterations; GE, gene expression; HypMetm DNA methylation; Mut, somatic mutations; PE, protein expression.
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Figure 3. Number of studies classified based on the characteristic displayed on the x-axis.

Each spline (alluvium) corresponds to a study in Table 2. “TAR” and “tree” abbreviations refer to TARGET and treehouse data set, respectively.
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the patient segments they were mapped onto, and assessed for dif-

ferential drug response across the resulting stratification. This

yielded 88 unique drugs whose differential response is more signifi-

cantly associated with a signature of genomic alterations than it is

to individual genomic events. As an example of precision medicine

application, this approach also shows that refining the subpopula-

tion of KRAS mutated lung adenocarcinoma CCLs based on 2 com-

plementary signatures (TP53 mutant and ARL17A promoter

hypermethylation and the absence of those plus the absence of

GSTT1 promoter hypermethylation, respectively) increases the dif-

ferential drug response significance for the MEK1/2 inhibitor

selumetinib and the BRAF inhibitor dabrafanib. Finally, scoring/se-

lection objectives can identify cell state discrepancies between

tumours and CCLs, as well as spot mis-identified CCL clearly

exhibiting features of a different tumour type, allowing for their

reclassification in a pan-cancer context.

Pan-cancer approaches identify discrepancies in cell lines states
Among the 22 studies considered here, only 3 develop a pan-cancer

approach that simultaneously considers all CCLs and tumour types

with available data (Salvadores et al, 2020; Peng et al, 2021; War-

ren et al, 2021), all focussing on transcriptional states and data.

HyperTracker (Salvadores et al, 2020) and CancerCellNet (Peng

et al, 2021) adopt a supervised approach to build a cancer type clas-

sifier using primary tumour data for training based on a one-versus-

rest binomial ridge regression and a multiclass random forest,

respectively. Cancer type labels are then predicted by the trained

classifier for the CCLs and compared with tissue/cancer-type labels

they were originally annotated with. This allows to partition the

analysed CCLs into (1) correctly classified (“golden/silver” set or

“correct” class), (2) high confidently predicted to be derived from a

cancer type different from the annotated one (“suspected” set or

“other” class) and (3) ambiguously assigned to more than one

cancer type, with low certainty or no concordance among multiple

data types (“undetermined” set or “none/mixed” class). On the con-

trary, Celligner (Warren et al, 2021) uses an unsupervised

approach, creating a “corrected” gene expression space through the

simultaneous integration of CCLs and primary tumours across

cancer types, hence allowing to detect distinct subpopulations and

cross-cancer-types affinities. For each CCL, a comparison between

A

B C

Figure 4. Aims of the major computational approaches proposed so far.

(A) Integration of cell lines and tumour in a common, comparable and visualisable feature space. (B) Scoring of cancer cell lines (CCLs) in terms of suitability in modelling
a certain tumour population. (C) Selection of CCLs as proper model for tumour type/subtypes. Pursuing this objective can also highlight tumour populations lacking
representative in vitro models and CCLs that diverge extensively from all the considered tumour populations. Created with BioRender.com.
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its 25-nearest tumour samples labels in the new space and the origi-

nal annotation enables identifying differences in CCLs states. Only

portions of analysed CCLs retain the original label state as correctly

predicted across the considered studies (60% in (Salvadores

et al, 2020; Warren et al, 2021)) and with variable results across

cancer types. For instance, in (Peng et al, 2021), a CancerCellNet

application shows that in only 6 of 20 cancer types more than 50%

of CCLs assignment match their original label. Cancer types with

poorly aligned CCLs are those that originated from pancreas, thy-

roid, oesophagus and central nervous system (CNS) tissues, consis-

tently across studies.

Historically, glioblastoma (GBM) cell models exhibit a distinct

transcriptional state than primary tumours and tend to lose their

ability to differentiate when grown in serum-containing media (Lee

et al, 2006; Ledur et al, 2017). Indeed, CancerCellNet assigns the

majority of GBM CCLs to the sarcoma type, similarly to Celligner

that places 82% of CNS CCLs as part of an undifferentiated/mes-

enchymal group. In addition, when training the classifier on single-

cell RNA-seq data, CancerCellNet (Peng et al, 2021) classifies 25 of

31 GBM lines as GBM neoplastic cells with 10 lines ambiguously

being assigned also to the cancer-tumour fibroblast class, possibly

due to a derivation from a mesenchymal subtypes. Of note, low-

grade glioma (LGG) is consistently underrepresented across studies

in CCLs collections even when considering co-occurence of genomic

cancer-functional events, with 95% of tumour patients lacking a

representative in vitro model (Najgebauer et al, 2020). Moreover,

91% of thyroid CCLs are also part of the transcriptionally based

undifferentiated group (Warren et al, 2021), consistent with previ-

ous findings (Pilli et al, 2009).

Although an undifferentiated state is not a specific characteristic

of pancreatic and oesophageal CCLs, the majority of CCLs annotated

as being derived from these tissues are not predicted as adequate

tumour models and further reasons related to this, for example

propensity to metaplastic events, should be investigated (Wang &

Souza, 2011). In general, a pan-cancer approach, especially based

on transcriptional levels, allows the identification of a common

undifferentiated state, possibly representative of known tumour sub-

type (e.g. dedifferentiated melanoma), due to artefacts from 2D cul-

ture or indicative of a stem-like state or an aggressive tumour cell

state which is not detectable from bulk tumour data.

Another advantage of pan-cancer approaches is that they can

properly reclassify in vitro models when multiple sources are con-

sidered. For instance, in (Salvadores et al, 2020), HyperTracker

identified a set of 43 CCLs with transcriptomic and epigenomic pro-

files significantly different from those of their originally annotated

cancer types. A closer inspection re-classified 22 of these CCLs,

based on similarities spanning multiple data modalities, to a differ-

ent cancer type. The authors provide two possible explanations for

CCLs with discordant predicted/annotated tissue labels: misidentifi-

cations at the time of isolation or transdifferentiation. As label reas-

signment is supported in this study by multiple independently

generated data omics, the authors conclude that the 22 lines were

most likely misidentified. This is because transdifferentiation, that is

CCL divergence during cell culture towards another cancer type,

would be inclined to strongly affect the transcriptome/epigenome

while having a reduced impact on the genetic component.

TumorComparer (Sinha et al, 2021) considers a weighted corre-

lation metric to compare tumours and CCLs, across individual omics

separately. This metric weights more cancer relevant features and

results into similarity scores that are subsequently aggregated across

omics layers. In this way, the authors identify 69 outlier CCLs (not

sufficiently similar to any other tumour type) that need to be further

investigated to determine whether they are from an undifferentiated

state, or they have been mislabelled or possibly subjected to other

molecular divergences. Finally, non-pan-cancer studies could also

identify CCLs with discordant predicted/annotated labels which can

be repurposed for studies investigating a cancer tissue different from

that they were thought to model originally. For instance, Chen

et al, 2015 detected 7 non-liver CCLs whose molecular profile signif-

icantly correlates with that of hepatocellular carcinomas, and 2 or

them (the pancreatic CCL TCC-PAN2 and the stomach CCL FU97)

even exhibit a higher level of similarity than actual liver CCLs.

These two CCLs could be therefore used in hepatocellular carcinoma

studies with a focus on transcriptomic data. In conclusion, pan-

cancer approaches proposed so far leverage the genomic differences

between the cancer types and can identify CCLs with discordant

states from their supposed tumour of origin.

Addressing inter-tumour heterogeneity
Recent technological advances such as single-cell sequencing are

starting to shed light on intra-tumour heterogeneity, that is genomic

and physiological variations within a tumour gained by cell evolu-

tion under selective pressures and microenvironmentally driven epi-

genetic modulation (Jamal-Hanjani et al, 2015; Hinohara &

Polyak, 2019). Nevertheless, the prevailing understanding of patient

tumour heterogeneity is still restricted to differences across patient

genomic profiles, thus leading to disease subclassification. This

inter-tumour heterogeneity has been linked to differences in treat-

ment response and used for the therapeutic management of different

cancer types (Heiser et al, 2012; Ceccarelli et al, 2016; Liu

et al, 2018). Consequently, an important task is to identify in vitro

models most resembling a certain tumour molecular subtype to

draw correct conclusions when examining drug efficacy and genetic

dependencies, which might be specific to individual patient subco-

horts. As an intrinsic characteristic of tumour cohorts, inter-tumour

heterogeneity is investigated in almost all studies that we have con-

sidered in this Review (Table 2 and Fig 3), either via unsupervised

clustering of patient data (6 of 22) or leveraging their a priori

defined molecular subclassification (15 of 22), sometimes at the

CCL level (Domcke et al, 2013; Vincent et al, 2015; Fang

et al, 2021). The strategies adopted to account for tumour hetero-

geneity are numerous and disparate. For instance, Celligner (Warren

et al, 2021) examines the intra-cluster variability in a corrected gene

expression space that integrates CCLs and tumours, finding this

reflective of known tumour subclassifications for breast, kidney,

leukaemia and skin cancer. Conversely, supervised methods (Sinha

et al, 2017; Yu et al, 2019; Salvadores et al, 2020; Peng et al, 2021;

Zhang & Kschischo, 2021) use prior known subtype labels of patient

tumours to build a classifier and then predict the subtype of CCLs,

similarly to the strategy adopted in the pan-cancer approaches

described in the previous section. Unsupervised strategies based on

a correlation metric ranked CCLs based on their average similarity

to tumour subtypes (Sinha et al, 2021; Fang et al, 2021; Liu

et al, 2019b; Vincent & Postovit, 2017). Molecular subtypes are still

being established and refined to better capture disease progression,

and prior known subtypes could be assigned through a human
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inspection, which is error prone. For that reason, it is still relevant

to discover and integrate classification systems built on other

genomic features. Indeed, two studies perform unsupervised patient

clustering instead of relying on known partitions, Maui (Ronen

et al, 2019) focussing on colorectal cancer and CELLector (Najge-

bauer et al, 2020) considering 16 cancer types independently. Maui

(Ronen et al, 2019) applies a multimodal stacked variational

autoencoder (VAE) to integrate CCLs and primary tumours in a

latent space on which cluster analysis is then performed. Following

this, the authors report that multi-omic-derived clustering is more

powerful than transcriptionally derived consensus molecular sub-

typing (CMS (Guinney et al, 2015), widely used by the community)

as it reveals distinct CNAs, mutation and methylation profiles not

detected only based on the gene expression classification. In addi-

tion, Maui assigns CCLs to the closest group in a latent space that

hence resembles these genomic changes. CELLector (Najgebauer

et al, 2020) instead leverages clinical relevant genomic and epige-

nomic features (Iorio et al, 2016) and unveils inter-tumour hetero-

geneity by partitioning patients samples based on the most

frequently occurring sets of molecular signatures. CCLs are then

assigned to patient subcohorts based on the collective presence or

absence of these features.

The investigation of inter-tumour heterogeneity also allows to

detect patient subgroups lacking representative models, especially

for strategies that include a selection objective. For example, Najge-

bauer et al, 2020 estimate that across cancer types and 14 TCGA

cohorts (4,153 samples), 11.7% of patients belong to segments with

no representative in vitro models in the CELLector search spaces

built using CNAs and mutations in high confidence genes. This per-

centage varies across cancer types. In particular, LGG and prostate

adenocarcinoma (PRAD) are the most underrepresented cancer

types with 95% and 62% of patients without matching CCL models.

Even for widely studied cancers such as LUAD, the large cohort of

CCLs fail to represent 3% of patients characterised by mutation in

KRAS and ATM and the absence of mutations in TP53 and STK1

genes. For annotated subtypes, Sinha et al, 2017 report that no

kidney-derived CCLs cluster with chromophobe renal cell carcinoma

(RCC) (a more indolent and less prevalent subtype than other RCCs)

based on CNAs. Accordingly, based on transcriptional data, the

cluster of chromophobe RCC tumour samples does not incorporate

any CCLs in the Celligner-corrected space (Warren et al, 2021). Cel-

ligner also reveals that there is a underrepresentation of transitory

melanoma subtype due to the fact that CCL derive from metastatic

tumours rather than primary tumours. In a subtype classification

implemented across 15 cancer types by HyperTracker (Salvadores

et al, 2020), half of the tumour subtypes are not represented by any

CCLs in kidney, bladder and brain cancer. In particular, 78% of

GBM and LGG CCLs are assigned to a mesenchymal-like type in

agreement with other studies (Peng et al, 2021; Warren et al, 2021).

To understand whether CancerCellNet classification was not suc-

cessful when considering multiple cancer types (i.e. assigned to a

“Mixed” or “None” prediction) due to the presence of a strong

diverging subtype for a certain cancer type, Peng et al, 2021 per-

formed a subtype classification for 11 cancer types, accounting also

from subtypes defined from histology or molecular profiles. Interest-

ingly, 25 CCLs (13% of the analysed cohort) without a successful

classification in the general framework are in this case reliably clas-

sified as a specific subtype that hence exhibit features not shared

across cancers from the same tissue. The CancerCellNet subtype

classification also highlights the absence of representative CCLs for

basal and secretory LUSC, terminal respiratory unit LUAD and indi-

cates only one representative CCL for endometrioid carcinoma.

These results are indicative of a selection bias towards deriving

CCLs from aggressive tumour types. In a breast cancer analysis (Sun

& Liu, 2015), a subset of CCLs shows low similarity to any of the

breast tumour subgroups, most likely because they are derived from

metastasis. Sinha et al, 2017 reported that kidney tumours cluster-

ing with kidney-derived CCLs are representative of a more aggres-

sive state, namely clear cell RCC. Vincent et al, 2015 show that

breast CCLs of the more invasive basal subtype are transcriptionally

more similar to their respective tumours than luminal CCLs.

Using a supervised approach based on nearest template predic-

tion, Yu et al, 2019 built a gene expression-based predictive model

trained on primary tumour data and then inferred cancer subtype

status in CCLs from nine cancer types. All subtypes had a predicted

representative CCL; however, the proportions of representative

CCLs across subtypes significantly differs in breast invasive carci-

noma (BRCA), LUAD and skin cutaneous melanoma (SKCM). In

particular, the predominant predicted classes for the CCLs are basal

for BRCA, proximal inflammatory/proliferative for LUAD, keratin/

mitf_low for SKCM, all corresponding to poor prognosis groups with

medium-to-low survival rates. Finally, the subtype classification

from HyperTracker presented in (Salvadores et al, 2020) finds a sin-

gle predominant subtype predicted in CCL panels for liver, skin and

thyroid cancers.

In conclusion, the selection bias in establishing in vitro models

from more invasive cancer subtypes appears clearly from the inter-

tumour heterogeneity investigations of the reviewed methods, also

highlighting many cases of cancer subtypes lacking representative

in vitro models.

Unveiling biases in current cell line usage
In 9 of the studies discussed in this Review, the authors determine

the number of times individual CCLs are mentioned across manu-

scripts published in peer-reviewed journals (Sinha et al, 2021; Liu

et al, 2019b; Yu et al, 2019; Zhao et al, 2017; Sinha et al, 2017;

Jiang et al, 2016; Vincent et al, 2015; Chen et al, 2015; Domcke

et al, 2013). This reveals that the most frequently used CCLs are not

usually those more genomically similar to tumours. The reasons for

this usage bias could lie on the ease in obtaining specific CCLs, their

growing efficiency or a mere literature miscommunication.

Domcke et al, 2013 were the first to highlight this controversy

for ovarian cancer. Focussing on high-grade serous ovarian cancer

(HGSOC), the most prevalent subtype, they found that the most

used CCLs, SK-OV-3 and A2780 accounting for 60% of the total

HGSOC CCL citations in the analysed literature (3,464 studies),

greatly diverge from patient tumours when comparing CNAs profiles

and the absence/presence of subtype specific mutations (e.g. TP53

mutations). The authors also highlight 12 CCLs more genomically

similar to primary tumours which are generally less considered,

with at the time only 1% of PubMed citations, and whose selection

should be prioritised when establishing a new in vitro study. These

results are also confirmed in a later study (Zhao et al, 2017) that

additionally includes gene expression and functional similarity

across gene ontology terms, and ranked SK-OV-3 and A2780 poorly

in representing ovarian primary tumour. Screening eight cancer
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types, Zhao et al (2017) find further inconsistencies in intestine ade-

nocarcinoma, with HT-29 being the most cited CCL (� 18,000

PubMed citations) but ranking only at the 30th position based on

molecular faithfulness to patient tumours. Similarly, the most used

breast CCLs MCF-7 and MDA-MB-231 (collectively accounting for

> 53,000 PubMed citations) are also not high-quality models of pri-

mary tumours, in contrast to the less cited T47D, SK-BR-3, MDA-

MB-468 and BT483 CCLs. In line with this, Jiang et al, 2016 showed

that the highly cited breast CCLs MCF-7 and MDA-MB-231 only rank

17th and 21st as most similar to tumours based on a comparative

correlation sum that combines gene expression, mutational profiles,

CNAs and protein expression and instead assign to the less cited

BT483 and T47D lines the highest similarity to tumour scores. MCF-

7 and MDA-MB-231 were also reported to be poorly representative

of metastatic breast cancer by (Liu et al, 2019a), who for example

reported MCF-7 as reliably classifiable as of luminalB subtype. On

the contrary, MDA-MB-231, which is used as a triple-negative meta-

static breast cancer model across many studies, could not be

assigned to any subtype and ranked poorly in terms of correlation to

basal-like metastatic tumour samples. These findings were also

independently confirmed using gene expression data (Vincent

et al, 2015). This study who directly considered known CCL parti-

tions in luminal/basal types and compared them with a similar clas-

sification of primary tumours, ranking MCF-7 and T47D as 5th and

6th best models for luminal subtype and MDA-MB-231 in 17th posi-

tion for basal subtype. Furthermore, Yu et al, 2019 highlight that

the most used CCL for pancreatic adenocarcinoma (PAAD), MIA

PaCa-2 (� 1,000 PubMed citations), is the least transcriptionally

similar to primary tumours, across a panel of 41 pancreatic CCLs,

likely due to neuroendocrine differentiation. Discrepancies also arise

for highly cited CCLs subtype annotations compared with their

genomic features. For instance, the IGROV1 CCL is often quoted as

HGSOC, but it is found more fitting as a model for endometrioid or

ovarian clear cell carcinoma due to co-occurrence of PIK3CA and

PTEN mutations and expression-based clustering in (Domcke

et al, 2013).

In a study on renal cell carcinoma (RCC) subtypes based on

CNAs profiles, Sinha et al (2017) find that ACHN is the third most

cited CCL with a generic RCC annotation. However, it specifically

clusters with the less prevalent papillary subtype, covering only

15% of RCC tumours. Overall, application of TumorComparer

(Sinha et al, 2021) across 24 cancer types finds 69 CCLs detected as

outliers based on an aggregated correlation from gene expression,

CNAs and somatic mutations to their tumour of origin, of which 31

exceedingly 1,000 PubMed citations. Although, in this study, CCLs

could be categorised as outliers even close to less frequent subtypes,

these results are still indicative of biases in in vitro model selection.

Of note, this phenomenon is not always occurring. For example,

HepG2, a widely used hepatocellar carcinoma CCL, is reported as

the highest quality model based on transcriptional correlation with

patient tumours in (Chen et al, 2015).

It is important to stress that the performed citation searches are

agnostic with respect to the usage of the cited models in the consid-

ered studies. Hence, false positives could be present due to publica-

tions using a CCL as a generic validation tool rather than for

investigating cancer type/subtype-specific mechanisms. As an

example, (Gonçalves et al, 2021) use the HT-29 CCL just as a tool

model for testing the performances of a new CRISPR-Cas9 library of

guide RNAs. Nevertheless, these studies show that there is a clear

bias from a literature search in specific CCLs usage and this high-

lights the importance of assessing the suitability of a CCL as a

proper model of the tumour under investigation at the early stages

of an experiment, without being drawn towards the easiest to

retrieve or to grow in vitro models.

Challenges from tumour impurity
In constrast to in vitro models, tumours are surrounded by a TME

composed of stromal, immune cells and extracellular matrix.

Accounting for these factors while comparing tumours and CCLs is

particularly challenging when using data derived from bulk experi-

ments. Indeed, bulk experiments for profiling copy number alter-

ations, gene expression and DNA methylation do not differentiate

among malignant and non-malignant cell types, rather giving a

mixed view of all cells in the tumour sample. To understand the

extent of malignant cell fraction in bulk data, computational meth-

ods estimating tumour purity have been developed (Carter

et al, 2012; Yoshihara et al, 2013; Aran et al, 2015).

Although all the methods discussed in this Review analyse data

from bulk experiments, tumour purity is investigated in 9 of 22 stud-

ies, mostly when considering gene expression (Vincent et al, 2015;

Luebker et al, 2017; Vincent & Postovit, 2017; Liu et al, 2019b; Yu

et al, 2019; Batchu et al, 2020; Salvadores et al, 2020; Peng

et al, 2021; Warren et al, 2021). A frequent strategy is to exclude

genes whose expression pattern across samples is found highly cor-

related with sample purity scores (or their surrogate), using an a pri-

ori decided filtering threshold (Vincent et al, 2015; Vincent &

Postovit, 2017; Yu et al, 2019; Batchu et al, 2020). Yu et al (2019)

show that this method alleviates a similarity bias: indeed, the ele-

vated presence of stromal and immune cells decreases the similarity

between tumours and CCLs. Nevertheless, the relationship between

tumour sample purity and CCL-tumour correlation became not sig-

nificant if signatures of high-impurity genes are removed from the

comparison, and the expression patterns of the remaining ones are

additionally corrected for purity scores. On the contrary, the contri-

bution of the immune infiltrate component cannot be entirely

removed, as it has been shown from differential analysis that the

protein–protein interaction network of upregulated genes in primary

tumour is still enriched for genes in the immune response pathway.

The same approach of removing genes whose expression pattern

is highly correlated with impurity scores was applied in a study

focussing on alveolar rhabdomyosarcoma (Batchu et al, 2020);

however, this fails to alleviate differences between CCLs and pri-

mary tumour, as indicated by a principal component (PC) space

inspection. Principal component analysis detects as major source of

variability differences in TME in (Vincent et al, 2015; Vincent &

Postovit, 2017). In particular, PCs computed on the juxtaposed CCL-

tumour gene expression data sets reveal a clear separation between

the two data sources, with PC2 being correlated with lymphocyte

density in melanoma (Vincent & Postovit, 2017) and PC1 with stro-

mal scores in breast cancer (Vincent et al, 2015).

Furthermore, implementing filtering strategies aiming at limiting

TME differences is not always performed via gene removal. In a

melanoma study (Luebker et al, 2017), gene expression is used to

estimate tumour cell fraction on a patient sample but then tumour

samples with high tumour impurity are just removed from the

analysis.
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Without a prior knowledge of tumour purity but with a more

sophisticated data integration step, Celligner (Warren et al, 2021)

combines gene expression data for in vitro models and primary

tumours in a multiple-step procedure. First, a contrastive principal

component analysis (cPCA) is applied to detect variability enriched

in one data source with respect to the other and vice versa, and the

first four cPCAs are removed. Then, mutual nearest neighbour

(MNN) correction is applied using the CCL data as a reference. This

ad hoc procedure highlights that tumour-specific signatures associ-

ated with the first cPC are enriched in immune pathways and that

the second cPC is highly correlated with tumour purity estimates.

Despite accounting for the first four cPCs, TME effects still persist

and are later captured by the MNN step.

Of note, two pan-cancer-supervised methods (Salvadores

et al, 2020; Peng et al, 2021) do not focus on CCL-tumour differ-

ences driven by normal cell contamination, but instead investigate

whether tumour impurity interferes with model prediction accura-

cies. In particular, HyperTracker (Salvadores et al, 2020) integrates

CCL and tumours via quantile normalisation plus a ComBat applica-

tion (Leek et al, 2012), and CancerCellNet (Peng et al, 2021) con-

verts gene expression matrices in binary gene-pair formats,

assigning 1 if the first gene in the pair has higher expression than

the second gene within a sample. In both cases, the results show

that purity does not affect the model estimates: HyperTracker

AUPRC values are very similar when training on low or high purity

TCGA samples, and CancerCellNet mean scores have only a

marginal correlation with mean sample purity (correlation = 0.14).

Finally, single-cell technologies provide a unique opportunity to

clear up tumour infiltrating cells, allowing the comparison between

CCLs and pure populations of malignant cells from a patient tumour

(Vincent & Postovit, 2017; Peng et al, 2021). For instance, Vincent

& Postovit (2017) show an improved correlation among CCLs and

malignant cells from primary tumours in melanoma compared to

accounting for all cell types (0.83 and 0.67 respectively).

In conclusion, while TME effects cannot be entirely removed

from bulk experiments, a proper integration strategy can alleviate

the immune and stromal related differences leading to more reliable

cell-lines versus tumours comparisons.

Feature selection strategies
The quality of CCLs also depends on features and biological states

considered as relevant when they are compared with primary

tumours. Most of the studies reviewed here focus more on compre-

hensive comparisons, aiming at assessing CCLs resemblance to

tumours across the largest possible number of available features. In

this respect, Celligner (Warren et al, 2021) uses the top 1,000 genes

with the highest inter-cluster variance within each data type. After

initially addressing tumour-CCL variability via cPCA, this tool analy-

ses the remaining highest sources of variation that could discrimi-

nate against cancer types. In contrast, other pan-cancer methods

(Yu et al, 2019; Salvadores et al, 2020; Peng et al, 2021) focus on

most variable features across cancer types when analysing tumour

data. For example, CancerCellNet (Peng et al, 2021) selects genes

coming up as highly differentially expressed when contrasting a

cancer type versus all other samples. Similarly, HyperTracker (Sal-

vadores et al, 2020) and CompHealth (Yu et al, 2019) select the

5,000 genes with the most variable expression pattern across all

tumour samples. This type of filtering prioritises features that are

discriminatory across cancer types from the perspective of tumour

samples only, and subsequently leverages the expression of these

genes observed in CCLs, to predict CCLs’ cancer types or to compute

a similarity-to-tumours score.

A distinctively different approach is TumorComparer (Sinha

et al, 2021), which associates a weight to each multi-omic feature

while computing correlation scores between CCLs and primary

tumours. An initial feature selection in this method is based on gene

expression, CNAs and somatic mutations and outputs the 2,000

most variable features across all tumour types. Subsequently,

TumorComparer assigns a weight to each feature in a 0–1 range

based on their frequency of observation across primary tumours.

Despite being a very useful framework due to the possibility of cus-

tomising the feature weights (based on novel observational tumour

data), assigning a bigger relevance to recurrent features in tumours

might reward CCLs that are similar to very common cancer sub-

types, possibly missing CCL that are good models of less recurrent

ones. Still emphasising relevant features observed only in tumours,

CELLector (Najgebauer et al, 2020) focuses on cancer functional

events (CFEs) comprising recurrent mutated cancer genes, focal

amplifications or deletions, and methylated gene promoters identi-

fied in patient tumours (Iorio et al, 2016). In cancer-specific studies

(Vincent et al, 2015; Jiang et al, 2016; Vincent & Postovit, 2017;

Ronen et al, 2019; Batchu et al, 2020), features are instead filtered

based on their variability observed jointly in the considered CCL

and tumour data sets, weighting more features that are discrimina-

tive between in vitro models and patient tumours. Finally, in studies

that include somatic mutations, the retained features are known

(non-synonymous) functional mutations present in both CCLs and

tumours (Sinha et al, 2021; Najgebauer et al, 2020; Ronen

et al, 2019; Zhao et al, 2017; Jiang et al, 2016) or a subset of the

most relevant ones for a certain cancer type (Domcke et al, 2013).

In conclusion, as the aim of all the studies is to investigate the

resemblance of CCLs to tumours, all the considered methods built

on a wide range of features rather than reduced selections of onco-

genic genes, but adopt disparate strategies to define a feature as

informative.

Multi-omic integration and discordant cell line selection
Among the reviewed studies, 5 data types are considered for match-

ing CCLs to primary tumours: gene expression (GE), somatic muta-

tions (Mut), copy number alterations (CNAs), DNA methylation

(HypMet) and protein expression (PE) (Table 2). In particular, we

observe a tendency to include gene expression, either to investigate

CCL-tumour resemblance or as an additional means of validation,

with 19 of 22 studies using gene expression from microarrays and

bulk or single-cell RNA-seq. Only 12 studies consider more than one

data type, among which 9 apply a multi-omic integration method to

combine multiple data modalities.

Specifically, CELLector (Najgebauer et al, 2020) combines

multi-omic cancer functional events (CFEs) encoded as binary

matrices for CNA, Mut and HypMet. This allows accounting for

most of the analysed patients when assembling the CELLector sig-

natures (recurrent combination of CFEs) and hence led to large

percentages of patient samples that are represented by at least

one CCLs. That said, late integration is the most frequently

adopted strategy, with CCLs/tumour mappings performed sepa-

rately across individual omics and then combined at a later stage.
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For instance, studies based on an unsupervised method aggregate

the rankings of CCL-tumours similarities obtained from each omic

type (Sun & Liu, 2015; Zhao et al, 2017; Sinha et al, 2021) then

sum the omic-specific correlations (Jiang et al, 2016), or just

incorporate correlation scores together with selected mutation

occurrences (Domcke et al, 2013). Supervised methods, such as

HyperTracker (Salvadores et al, 2020) on the other hand, build a

predictive model for each omics data type then combine the clas-

sification results. This strategy prevents capturing interactions

between omics and a proper representation of underlying biologi-

cal mechanisms. A more refined strategy, intermediate integra-

tion, is developed in Maui (Ronen et al, 2019) and MFmap

(Zhang & Kschischo, 2021). Briefly, Maui considers GE, CNA, and

Mut omics and builds a multimodal stacked variational autoen-

coder (VAE) to represent tumour samples and CCLs in a low

dimension latent space, with the latent factors regarded as higher-

order genomic features. Similarly, MFmap transforms GE, CNA

and Mut data into a low dimensional latent space via VAE that is

then applied on the concatenated omics. This intermediate strat-

egy enables a joint integration of all available data and projects

them onto a common shared space, although less interpretable

than the original molecular features. For example, the application

of Maui to colorectal cancer (CRC) (Ronen et al, 2019) allowed

the identification of a more refined subgrouping compared with

the widely adopted CMS classification (Guinney et al, 2015),

which associates with more pronounced differences in biological

pathway activities and survival outcomes.

The use of multi-omics also unveils discrepancies arising across

omic-specific CCL/tumour matching cases, emphasising different

biological mechanisms controlling genetic, transcriptional or epige-

netic changes. For instance, Jiang et al (2016) compute Pearson’s

correlation scores between CCLs and patient tumours in breast

cancer across four different data modalities and find very different

ranges, with GE exhibiting the highest values, followed by CNA,

Mut and PE. In accordance with these results, TumorComparer

(Sinha et al, 2021) finds GE as the data modality with the widest

range of CCL/tumour similarity across 24 cancer types, followed by

CNAs and Muts. In addition, Sinha et al (2021) showed that only 18

of 594 CCLs can be consistently assigned to a cancer type with a

normalised rank > 0.9 (meaning that the CCL is more similar to the

tumours type of origin than 90% of the considered panel) for all the

3 data omics, while several CCLs had a rank > 0.9 only for a single

omic data modality. This highlights for example that CCLs with high

gene expression similarity might retain tissue-specific expression

but lack characteristic genomic features (mutations or CNAs). Like-

wise confirmed by Zhao et al (2017), CCL similarity rankings result-

ing from different data omics are discordant. In CompHealth (Yu

et al, 2019), transcriptional correlation scores for ovarian CCLs are

compared with the results by Domcke et al (2013) that are instead

based on CNAs together with informative Muts presence. This high-

lights a significant consistency (Spearman’s corr. = 0.59, P-

value = 5.84e-05). However, the two studies (Domcke et al, 2013;

Yu et al, 2019) disagree on the CCL that are most transcriptionally

and genomically similar to tumours, with CAOV4 ranking 1st when

considering transcriptomic data and only 9th when considering

genomics.

By implementing a supervised approach, HyperTracker (Sal-

vadores et al, 2020) compares GE and HypMet classification results.

One hundred and thirty-one of 614 CCLs (silver set) are discordantly

assigned to a cancer type but with the outcome resulting from

analysing only one omic concordant to the annotated label. In the

same study, 67 CCLs (undetermined set) are discordantly classified

across all omics. Although partially discordant, the authors show

that CCLs in the silver set could still be informative: joining CCLs in

the silver and golden sets (composed of CCLs with correctly classi-

fied across all omics) and considering the result in the context of

drug response datasets significantly changes drug response selectiv-

ity, in cancer types such as PAAD, and increased the number of sig-

nificant pharmacogenomic associations. Finally, despite Celligner

(Warren et al, 2021) is based on GE only, the authors compared

their k-NN assignments built on corrected GE with the k-NN result-

ing from computing Jaccard similarity scores on CFEs (Muts, CNAs,

HypMet) and found a similar classification accuracy (60% and 61%

respectively). Nevertheless, CCL rankings change substantially, indi-

cating that the different omics are representative of different pro-

cesses and states.

In summary, the discrepancies arising from data underlying dif-

ferent states highlights the necessity of a proper multi-omic integra-

tion to comprehensively capture tumour mechanisms.

Extension to more complex in vitro and in vivo models

Complex models such as tumour organoids, patient-derived xeno-

grafts (PDx) and genetically engineered mice (GEMM) have been

compared with patient tumours in some of the studies we discuss in

this Review. In particular, CancerCellNet (Peng et al, 2021) has also

been applied to a collection of organoids, GEMM and PDx other

than CCLs, to predict their cancer type and subtype in a supervised

manner. Collectively, GEMM and organoids achieve the highest

median correct classification scores in 4 of 5 tested cancer types,

with organoids exhibiting the best classification rate, hence suppos-

edly being the most appropriate tumour models. Indeed, compared

with CCLs, GEMM are influenced by their native immune system

and organoids benefit from cell–cell interactions arising from their

3D nature. Conversely, classification scores for PDxs demonstrated

a bigger variability, with only few models yielding better scores than

any of the organoids or GEMM. In the context of inter-tumour

heterogeneity, GEMM are the only models able to reflect a mixture

of subtypes rather than modelling a single one, possibly due to a

plasticity that is also influenced by the host environment. Although

providing many insights, a proper comparison with different models

derived from the same donor would be necessary to identify the

most appropriate ones in representing patient tumours. Liu

et al (2019a) also considered patient-derived organoids for breast

cancer and compared them to metastatic tumours, highlighting a

better transcriptome resemblance compared with CCLs across breast

cancer subtypes.

Beside highlighting the expected better performances of complex

models in resembling tumours with respect to CCLs, these studies

also demonstrate the adaptability of the CCLs versus tumours com-

parative analyses. While continuing to characterise increasingly

larger collections of CCLs, the interest of the community is in paral-

lel moving towards the development of large-scale novel cancer

models matched with original patient data. For instance, the

recently established Human Cancer Models Initiative (HCMI) aims
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at creating a large collection of patient-derived next-generation

cancer models that will include organoids and conditionally repro-

grammed cells from diverse tumour subtypes and populations, with

a particular attention to rare cancers that are at the moment widely

unrepresented in in vitro models. Most importantly, collecting

matched patients’ samples and normal tissues will provide a unique

opportunity to better understand the molecular changes introduced

selectively in the in vitro model derivation phase.

Along the same lines, the PDXNet consortium has established

more than 1,400 PDx samples with matched patient tumours, col-

lecting sequencing data across multiple cancer types, and highlight-

ing the suitability of this biobank for preclinical drug testing (Woo

et al, 2021).

Looking at rare tumour models, a recent paediatric high-grade

glioma PDx collection comprising 21 models that included DNA

methylation, mutation, and gene expression profiles was assembled

from matched patient tumours (He et al, 2021). Analogous efforts

are made to properly represent the interactive effect between

in vitro models and TME, although so far at a smaller scale. For

example, co-culturing strategies for 3D patient-derived organoids

have been developed to include stromal and immune components

(Neal et al, 2018; Tsai et al, 2018) and cell culture media have been

modified to resemble human plasma (Cantor et al, 2017; Rossiter

et al, 2021) or to include cancer-associated fibroblasts (Cheteh

et al, 2017).

Future directions

Advanced multi-omic integration
Up to now, computational methods have generally focused on using

particular feature types or employing simple strategies to combine

features across modalities such as late or early integration.

However, different omics modalities encode for distinct but com-

plementary information in cancer biology, with the genome

regarded as the first affected layer when the tumour originates that

constantly undergoes selective pressure, and the epigenome and

transcriptome as more malleable and consequential states that are

disrupted both by oncogene mutations and the environment.

Because of the intricate interplay among the different biological

components, and considering the large available collection of wide

molecular characterizations, now more than ever we need integra-

tion methods able to learn a unified representation of cancer fea-

tures. With a proper multi-omic integration, the mapping of CCLs to

tumours would focus on resembling as much as possible the under-

lying tumour-specific mechanisms rather than the approximation of

a single state.

Such considerations necessitate approaches that address the

omic-specific technical challenges (e.g. batch effects), while flexibly

and efficiently integrating information across data modalities and

potentially capturing variable information content across diverse

data sets/cancer types. In this direction, Maui (Ronen et al, 2019)

and MFmap (Zhang & Kschischo, 2021) are the only methods

among the reviewed studies that adopt a joint representation of the

multiple data modalities via a VAE approach. In general, similar

challenges have emerged in the context of single-cell methodologies

and advanced methods have been proposed, focussing on the inte-

gration of multimodal simultaneously measured data (e.g. CITE-seq

or SHARE-seq) such as MOFA+, totalVI and WNN (Argelaguet

et al, 2020; Gayoso et al, 2021; Hao et al, 2021). For example,

MOFA+ and totalVI, built on variational inference, are highly effi-

cient in a large-scale context and can incorporate multiple data

omics measured across different batches while accounting for noise

and technical biases of each omic modality. In the context of bridg-

ing CCLs and tumours, these methods could be adapted regarding

different batches as tumour and in vitro model division.

Finally, none of the studies reviewed here employ a hierarchical

integration strategy combining the different omic components from

a regulatory point of view, despite the clear evidence of genetic drift

leading to changes in gene expression and consequently drug

screenings (Ben-David et al, 2018). This sort of approach could

reveal complex mechanisms that would otherwise remain unde-

tected, building a regulatory network of a tumour and then mapping

single CCLs in it leveraging conserved and shared mechanisms.

Indeed, from a holistic point of view, Webber et al (2018) high-

lighted that inferred gene regulatory networks for tumours com-

pared with those built on CCLs include preserved modules that are

highly predictive of therapeutic response.

Transfer learning
With the goal of developing personalised treatments, translating

in vitro measured key phenotypes to patient tumours rely on our

ability to understand these relationships. In this context, transfer

learning is a powerful tool to leverage drug sensitivity data in CCLs

training machine learning models and transfer those predictions to

patient tumours. Particularly prominent in the framework of image

classification at pathologist level accuracy (Esteva et al, 2017;

Coudray et al, 2018) and molecular subtyping from gene expression

(Sevakula et al, 2019), transfer learning relies on the assumption

that a predictive feature learned in a certain domain can be applied

and adapted to a different but analogous one, even of limited sam-

ple size. Although promising, the main challenges are rooted in the

inconsistencies between protocols and techniques used in different

studies possibly leading to batch effects hard to be generalised, for

example the way drug response is assessed. Specifically, transfer

learning methods in model-tumour context for drug sensitivity

should consider fundamental differences between their genomic

profiles, ultimately aiming at understanding which results can be

robustly transferred, and how to optimally adjust model predictions.

In this context, pioneer works aim at learning a shared structure

that can be leveraged for drug response prediction on patient

tumour. For example, Geelher et al (Geeleher et al, 2014) used

batch correction (ComBat) on gene and miRNA expression data

between in vitro model and patient tumour to build a predictive

model of drug sensitivity on CCLs and further validated the pre-

dicted drug response in primary tumours with respect to known

clinical trial results. More recent methodologies such as PRECISE

(Mourragui et al, 2019) and TRANSACT (Mourragui et al, 2021)

first learn a shared feature subspace (linear and non-linear, respec-

tively) and then use it to build a predictive model for drug response.

Sharifi-Noghabi et al (2020) proposed an adversarial inductive

transfer learning method that focuses on discrepancies in both gene

expression (input) and drug response (output), adapting both

aspects in the two different domains.

Across model domains, Ma et al (2021) developed a transfer

learning method (few-shot learning) based on a neural network
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trained to identify relevant input features (mutations and gene

expression) for cell-based screenings by optimising their transfer-

ability to patient-derived tumour cells and patient-derived xeno-

grafts, in a small sample size setting for the target domain. They

also evaluated the ability of their transfer learning model to predict

CRISPR-Cas9 screening outcomes of CCLs considering as target

domain another tissue with reduced sample size. A similar

approach, from one large tissue to an underrepresented one,

showed promising results in terms of drug synergy prediction (Kim

et al, 2021). Finally, Villemin et al (2021) used a transfer learning

strategy to identify biomarkers for basal A and B subtypes in breast

CCLs in a supervised way, while iteratively adapting this model pre-

diction to the tumour and integrating those that are classified with

confidence.

Leveraging single-cell data sets
The reviewed studies do not investigate intra-tumour heterogeneity

(with few exceptions (Vincent & Postovit, 2017; Peng et al, 2021))

neither do they address population heterogeneity in in vitro models.

Nevertheless, large-scale single-cell genomics investigation could

potentially help with resolving relationships between in vitro mod-

els and tumour cell populations more precisely and with greater res-

olution. First, comparing in vitro models and tumours at the single-

cell level could mitigate the limitations arising from tumour purity

by comparing CCLs solely with malignant cells. Second, single-cell

studies could enable a more fine-grained mapping of the relation-

ship of the subclonal populations and cell states in heterogeneous

tumour populations to representative in vitro models, effectively

delineating each tumour as a mixture of in vitro models. For exam-

ple, Gambardella et al (2022) created a single-cell atlas of 32 breast

CCLs and showed that the single-cell transcriptional profile from a

single patient could be mapped into the in vitro model atlas

to assign a CCL model to each patient’s cells. Strikingly, the

tumours were found to be highly heterogeneous as none was

mapped into a single CCL and they were overall represented by a

mixture of models.

Pan-cancer tumour single-cell atlas studies could also reveal the

predominant sources of intra-tumour heterogeneity and their rela-

tionship to different in vitro models. Indeed, pan-cancer single-cell

characterisation of CCLs (Kinker et al, 2020) has revealed that many

of the recurrent drivers of transcriptional heterogeneity in tumours

(preprint: Gavish et al, 2021) are also observed in CCLs, suggesting

that individual CCLs might be evaluated as models for different

components of intra-tumour heterogeneity.

More generally, the development of large single-cell atlases for

both in vitro models and tumour patients offer a unique opportunity

to create an integrated reference, enabling direct comparisons of

tumours and models with single-cell resolution.

Increasing interpretability
Despite the advantages in obtaining a similarity score representative

for each cell type, the majority of the methods developed so far do

not investigate the underlying factors that are driving these similari-

ties (with the exception of CELLector (Najgebauer et al, 2020)). To

adequately interpret the results arising from a matching procedure,

we need interpretable methods, with the goal of understanding the

shared mechanisms between tumours and a CCL and possibly their

connection to treatment responses or genetic dependencies.

Network and pathway approaches could be leveraged to enhance

interpretability. These approaches use information from Reactome,

Gene Ontology and protein–protein interaction databases to guide a

more biologically relevant comparison of the underlying cell states.

Filling the gap in ancestry representation
As previously noted, currently available in vitro models are not rep-

resentative of the human population and are mostly skewed towards

European and Asian cohorts (Dutil et al, 2019). New in vitro mod-

els should be generated keeping in mind panel heterogeneity (e.g.

HCMI), as ethnicity is reflected in differences in mutation frequency

and transcriptional signatures that may cover specific mechanisms

that are not present in the current panel. On the contrary, before a

reasonable size can be reached to reliably build models for each

ancestry and because of the heterogeneity of the concept itself, it

would be important to also address this aspect in new computa-

tional approaches, for example via linear mixed models, a concept

established in genome-wide association studies (Loh et al, 2015).

Concluding remarks

The methods developed so far guided the evaluation of CCLs as

proper tumour models, identified problematic cell lines showing

putative misclassification as well as undifferentiation, directed

towards CCLs representative of tumour subpopulation (known or

estimated) and pointed out gaps in in vitro models. These studies

provide a systematic framework to assess tumour patient popula-

tions lacking in vitro models and allow guiding gap-filling efforts,

consequently generating new hypotheses for under-represented

groups.

In all the reviewed studies, the assessment of the in vitro CCL as

a proper model is built upon its closeness to the selected tumour

population based on genomic features. Although resembling the

tumour as close as possible can reveal both shared mechanisms and

aid the translational medicine process, a feature-specific approach

could be preferred for targeted purposes. For example, in vitro mod-

els of microsatellite instability might be useful to identify dependen-

cies, regardless of their similarity to primary tumours. In addition,

the field still lacks methods capable of properly handling and inte-

grating multi-omic datasets. Matching CCLs to primary tumour from

a more “global” perspective can only be addressed via methods that

take into consideration the landscape of available multi-omic data

and the discrepancies observed across individual omic comparisons.

Looking forward, characterisation at the single-cell level could

circumvent some of the intrinsic limitations of CCLs repurposing

them as more close models of specific tumour cellular states and

intra-tumour heterogeneity components. Despite all the limitations,

we envision that the large data collection available for CCLs, readily

available to the entire community via public repositories, will still

be widely used in the future to model and understand cancer mech-

anisms and to aid early anti-cancer drug discovery. On the contrary,

large panels of newly developed models will help recapitulating and

validating mechanisms that are impossible to observe in the actual

available 2D models, among which genomic features characteristic

solely of the model establishment, three-dimensional assembly, the

interplay with TME, drug assimilation and half-life in blood

streams.
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Developing computational methods to align and compare exist-

ing or newly generated cancer models and tumour patients will con-

tinue to play a pivotal role for the effective use of these models in

investigating the biology of cancer, as well as for contributing to the

realisation of the personalised medicine paradigm.
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