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Abstract

Introduction

To observe the early change of metabolic tumor heterogeneity during chemoradiotherapy

and to determine its prognostic value for patients with locally advanced non-small cell lung

cancer (NSCLC).

Methods

From January 2007 to March 2010, 58 patients with NSCLC were included who were

received 18F-fluorodeoxyglucose (18F-FDG) PET/CT before and following 40 Gy radio-

therapy with the concurrent cisplatin-based chemotherapy (CCRT). Primary tumor FDG

uptake heterogeneity was determined using global and local scale textural features

extracted from standardized uptake value (SUV) histogram analysis (coefficient of varia-

tion [COV], skewness, kurtosis, area under the curve of the cumulative SUV histogram

[AUC-CSH]) and normalized gray-level co-occurrence matrix (contrast, dissimilarity,

entropy, homogeneity). SUVmax and metabolic tumor volume (MTV) were also evaluated.

Correlations were analyzed between parameters on baseline or during treatments with

tumor response, progression-free survival (PFS), and overall survival (OS).

Results

Compared with non-responders, responders showed significantly greater pre-treatment

COV, contrast and MTV (AUC = 0.781, 0.804, 0.686, respectively). Receiver-operating-

characteristic curve analysis showed that early change of tumor textural analysis serves as
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a response predictor with higher sensitivity (73.2%~92.1%) and specificity (80.0%~83.6%)

than baseline parameters. Change in AUC-CSH and dissimilarity during CCRT could

also predict response with optimal cut-off values (33.0% and 28.7%, respectively). The

patients with greater changes in contrast and AUC-CSH had significantly higher 5-year OS

(P = 0.008, P = 0.034) and PFS (P = 0.007, P = 0.039). In multivariate analysis, only change

in contrast was found as the independent prognostic factor of PFS (HR 0.476, P = 0.021)

and OS (HR 0.519, P = 0.015).

Conclusions

The metabolic tumor heterogeneity change during CCRT characterized by global and local

scale textural features may be valuable for predicting treatment response and survival for

patients with locally advanced NSCLC.

Introduction
Concurrent chemoradiotherapy (CCRT) is the standard of care in patients with locally
advanced (stage III, inoperable) non-small cell lung cancer (NSCLC) [1]. However, even using
escalated radiotherapy dose to 74Gy and adding cetuximab, no benefit in overall survival was
obtained for these patients [2]. Patients with locally advanced NSCLC are a very heterogeneous
population with varying degrees of tumor biology, comorbidity, and other characteristics.
Therefore, a need arises to predict treatment response and long-term outcome at the early
phase. By better stratification of patients, it could possibly result in improved tumor control
and reduced side effects, and eventually avoidance of futile costs of ineffective treatments [3].

Efforts have been made to address this issue by identify prognostic signatures using func-
tional imaging approaches such as 18F-fluorodeoxyglucose (FDG) positron emission tomogra-
phy (PET) [4]. Quantification of tumor metabolism by means of standardized uptake value
(SUV) is now widely used and a number of studies have demonstrated the prognostic value of
tumor PET SUV obtained either before treatments, after treatments or by measuring early
change during treatments [4–6]. However, no relationship between baseline SUV and outcome
was found in other studies. It remains unclear whether SUV is an independent prognostic fac-
tor [5]. Previous research also describes metabolic tumor volume (MTV) and the total lesion
glycolysis (TLG) using semiautomatic segmentation methods based on PET for prognostic
parameters [7]. It has been shown that pretreatment MTV is a predictor of clinical outcomes
for NSCLC patients treated with chemoradiotherapy [8]. The degree of change in MTV and
TLG was reported to be predictive for response and long-term survival after CCRT [6,9].

Quantification of intratumoral 18F-FDG uptake heterogeneity has recently generated inter-
est to predict the treatment response [10]. Kang et al reported that intratumoral metabolic het-
erogeneity in FDG PET could predict disease progression after CCRT in inoperable stage III
NSCLC, which defined by the area under the curve of the cumulative SUV-volume histograms
(AUC-CSH) [11]. Pretreatment PET features including histogram, shape and volume and co-
occurrence matric features were associated with overall survival when adjusting for conven-
tional prognostic factor in NSCLC [12,13,14]. However, to our knowledge, there was no report
of change in heterogeneity features at 18F-FDG PET in NSCLC receiving CCRT. The purpose
of our study was to observe the early change of metabolic tumor heterogeneity during CCRT
and to determine its prognostic value for patients with locally advanced NSCLC.
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Materials and Methods

Patients
This study was approved by the institutional review board at Shandong Cancer Hospital.
Informed consent was waived due to the retrospective design of the study. All patient record
and information was anonymized and de-identified prior to analysis. From 1st November
2015, clinical data was collected. Authors only have access to collect anonymous patient infor-
mation. Patients were recruited with eligibility criteria as: (1) NSCLC confirmed by histological
or cytological diagnosis, (2) stage III (TNM sixth edition, UICC), inoperable or refuse opera-
tion, (3) ECOG performance status 0–1, (4) adequate normal organ function. Patients were
excluded if received surgery, chemotherapy, or radiotherapy for cancer previously.

Staging and Treatments
Routine staging procedures consisted of contrast-enhanced CT of the chest and abdomen, mag-
netic resonance imaging of the brain and whole-body 18F-FDG PET/CT scanning. Radiation
was delivered using intensity-modulated radiotherapy (IMRT) or 3-dimensional conformal
radiotherapy (3D-CRT) techniques. Late course accelerated hyper fractionated radiotherapy
was performed as 2Gy/fractionation/day to 40Gy and 1.4 Gy twice daily to a total dose of 62.4–
68.0Gy [6]. Concomitant chemotherapy consisted of 2 cycles of cisplatin-based regimen con-
taining paclitaxel, pemetrexed, vinorelbine, or etoposide. 2–4 cycles of consolidation chemother-
apy were given in 42 patients.

18F-FDG PET/CT Scan
Two PET/CT scans were performed for each patient. One was baseline for the initial staging
and another during treatments (40Gy radiotherapy). The time between two PET/CT scans was
28±3 days. The blood glucose level was<1.4g/L before scans for all patients. The FDG PET/CT
images were obtained using a GE Discovery LS system 60 minutes (range 55–70 min) after
injection of 18F-FDG (4.4 MBq/kg) with a rigid protocol [15]. CT data were acquired first
(120 kV and 90mA, no contrast enhancement). PET images were subsequently reconstructed
with the built-in GE Advance software, using the ordered subset expectation maximization
(OSEM) algorithm with 2 iterations and 28 subsets, and a 5.0 mm full-width at half-maximum
(FWHM) Gaussian post-filtering. The PET (128 × 128, pixels of 3.91 × 3.91mm, 4.25-mm slice
thickness) and the CT images (512 × 512, pixels of 0.98 × 0.98mm, 5.0mm slice thickness) were
systematically co-registered using the GE software.

PET Imaging Analysis
Our previous study demonstrated that the tumor volume seen on an 18F-FDG PET image with
a cut-off value of 3.0 was the closest to the pathologic gross tumor volume [15]. On the basis of
this result, the regions equal to or greater than SUV 3.0 were selected to automatically delineate
the region of interest (ROI). Two clinical oncologists with the help of a specialist radiologist
adjusted the regions of interest manually by visually inspecting the primary tumor borders to
avoid overlapping on adjacent 18F-FDG-avid structures or lesions. Nodal disease was not
included in the analysis. Both SUV and tumor heterogeneity parameters were extracted from
the ROI. The SUVmax in each ROI was determined using the whole-body attenuation corrected
image. The MTV was automatically generated from the ROI in cubic centimeters (cm3) using
the Xeleris workstation.

For assessment of tumor metabolic heterogeneity, global and local scale textural features
were extracted from SUV histogram analysis and normalized gray-level co-occurrence matrix

Early Change in Metabolic Tumor Heterogeneity during CCRT of NSCLC

PLOSONE | DOI:10.1371/journal.pone.0157836 June 20, 2016 3 / 14



(NGLCM), respectively. The selected parameters have been widely used in PET and shown
robust to depict intra-tumor heterogeneity in previous studies [10,11,16,17]. All image process-
ing process such as ROI segmentation, denoising and texture feature extraction was performed
using an in-house MATLAB code (Mathworks Inc, Natick, USA). The SUV histogram analysis
was used to calculate coefficient of variation of SUVs (COV), skewness, kurtosis and area
under the curve of the cumulative SUV-volume histogram (AUC-CSH) [11,18]. Four parame-
ters, including contrast, dissimilarity, entropy and homogeneity, were calculated from the
NGLCM contained three-dimensional (13 different angular directions) gray-level information,
as previously described [19,20]. The definitions of NGLCM are given in S1 Table. All subse-
quent reported results were obtained using 64 discrete values in the resampling normalization
process, which were considered sufficient given the range of SUVs encountered. The parame-
ters in baseline scan was labelled as P1, and those in the second scan as P2. Change in percent-
age (ΔP %) was calculated by [(P2-P1)/P1]x100%.

Treatment Response and Follow-up
Tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors
(RECIST) 1.1 [21], at 12 weeks after treatments using diagnostic contrast-enhanced CT. Com-
plete response (CR), partial response (PR), stable disease (SD) or progress disease (PD) was
recorded. The patients were followed up every 3 months at the first two years and every 6
months thereafter. Overall survival (OS) was calculated from the first day of treatment to the
data of death or the last follow-up. Progression free survival (PFS) was calculated from the first
day of treatment to the date of local or distal failure.

Statistical Analysis
The statistics analysis was performed using SPSS for Mac (version 22, IBM). Data are presented
as the mean ± standard deviation (SD). Difference between P1 and P2 was defined using the
Wilcoxon signed-rank test or paired t test after confirming whether the parameters were nor-
mally distributed or not by the Shapiro-Wilks test. Receiver-operating characteristic (ROC)
analysis was performed to estimate the optimal cut-off value for the parameters in predicting
treatment response. Specificity and sensitivity were derived from areas under the ROC curves
(AUC-ROC). To evaluate the prognostic value of the parameters, 5-y OS and PFS were chosen
as main end-points. The survival curves were generated using the Kaplan–Meier method. The
difference in survival rates among groups was compared using the log-rank test. Multivariate
analysis was carried out to identify the independent prognostic factors using Cox proportional
hazards regression model. All statistical tests were conducted at a two-sided level of signifi-
cance as P<0.05.

Results

Patient Characteristics
From January 2007 to March 2010, fifty-eight patients (38 men and 20 women) were included
with median age of 58 years. Patient demographic and clinical characteristics were listed in
Table 1.

FDG Uptake Change During CCRT
All metabolic parameters’ change at baseline and intra-treatment PET images is shown in
Table 2. SUVmax was 17.6±10.9 at baseline and decreased 43.6%± 22.5% (4% to 72.7%) during
treatment. The primary tumor MTV decreased 59.7%±21.3% (6% to 96.8%) in the middle of
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CCRT. The textural parameters changed in different directions and degrees. Entropy, skewness
and homogeneity were normally distributed, while the other parameters were not, including
SUVmax, MTV, COV, kurtosis, contrast and AUC-CSH. For the entire group of patients, signif-
icant differences were found between baseline and intra-treatment for contrast, AUC-CSH,
dissimilarity, SUVmax, MTV and COV. During CCRT, the biggest increase (79.0%±54.6%) was
found in contrast, on the other hand, COV had the biggest decline (-72.7%±4.0%).

Treatment Response Analysis
Thirty-eight patients (9 CR and 29 PR) were classified as responders and other 20 patients (16
SD and 4 PD) were defined as non-responders. The overall response rate was 66.2%. The capa-
bility of baseline parameters to predict tumor response was shown by the ROC in Fig 1A. The

Table 1. Patient Clinical Characteristics and Univariate Analysis of Survival.

Patient characteristic No. (%) PFS OS

HR (95%CI) P HR (95%CI) P

Age (�58) 30 (51.7%) 2.371 (1.482–4.262) 0.047 3.127(1.192–5.269) 0.032

Gender (Male) 38 (65.5%) 1.357 (1.526–3.682) 0.045 1.751 (0.589–2.435) 0.067

AJCC Stage (IIIA) 24 (41.3%) 1.352 (0.392–2.623) 0.093 1.528 (0.263–1.813) 0.298

T Stage (1 or 2) 25 (43.1%) 0.509 (0.241–1.872) 0.389 1.625 (0.282–2.173) 0.267

N Stage (0, 1 or 2) 36 (62.1%) 0.929 (0.316–1.708) 0.684 0.872 (0.355–1.806) 0.256

Location (Left) 18 (31.1%) 1.485 (0.771–2.638) 0.962 1.756 (0.718–1.958) 0.637

Smoking 47 (81.0%) 2.467 (0.977–4.392) 0.057 2.653 (1.242–5.925) 0.043

Histology

Adenocarcinoma 25 (43.1%) 1.391 (1.034–2.554) 0.032 0.079 (0.005–1.154) 0.072

Squamous cell carcinoma 30 (51.7%) 1.063 (0.523–2.151) 0.053 1.356 (0.518–1.578) 0.064

Other 3 (5.2%) 0.621 (0.415–6.543) 0.305 0.684 (0.111–4.204) 0.681

Radiotherapy techniques (IMRT) 20 (34.5%) 0.359 (0.196–2.570) 0.278 0.773 (0.415–1.462) 0.674

Radiotherapy dose (�66Gy) 43 (74.1%) 1.723 (0.291–3.130) 0.073 1.432 (0.351–2.149) 0.086

Chemotherapy regimen

Cisplatin/etoposide 10 (17.2%) 1.232 (0.241–2.538) 0.756 0.727 (0.481–1.219) 0.837

Cisplatin/paclitaxel 25 (43.1%) 0.241 (0.027–2.161) 0.204 0.874 (0.433–1.765) 0.707

Cisplatin/pemetrexed 16 (27.6%) 1.307 (0.214–7.986) 0.772 2.007 (0.809–4.976) 0.133

Cisplatin/vinorelbine 7 (12.1%) 0.892 (0.229–4.395) 0.992 0.998 (0.737–3.366) 0.241

doi:10.1371/journal.pone.0157836.t001

Table 2. Metabolic parameters at baseline and intra-treatment PET images.

Parameters Baseline Intra-treatment Change (%) P Value

SUVmax 17.6±10.9 9.6±4.3 -43.6± 22.5 0.027

MTV 80.4±61.8 cm3 31.8±20.0 cm3 -59.7±21.3 0.010

Contrast 80.8±33.5 158.9±21.8 79.0±54.6 0.001

AUC-CSH 0.423±0.162 0.639±0.236 45.0±31.3 0.029

Dissimilarity 6.1±1.6 7.8±2.9 28.2±24.8 0.042

Entropy 6.4±0.6 5.9±1.3 -4.8±3.9 0.682

Kurtosis 3.6±2.5 3.4±3.1 -5.2±2.8 0.245

Skewness 0.8±0.4 0.7±0.5 -10.3±35.8 0.587

Homogeneity 0.23±0.05 0.19±0.07 -12.3±15.9 0.483

COV 11.4±6.6 5.8±3.2 -72.7±4.0 0.000

doi:10.1371/journal.pone.0157836.t002
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highest AUC values of ROC were found for contrast, COV, and MTV, which had the statisti-
cally significant predictive capability. Contrast and COV predicted treatment response
(AUC = 0.804 and 0.781, respectively) more accurately than that MTV did (AUC = 0.686).

Comparing the performance of baseline PET parameters, change of tumor textural parame-
ters during treatment could stratify non-responder and responder with higher AUC than base-
line parameters, as shown in Fig 1B. The ROC curve analysis results were summarized in
Table 3 as comparison of different parameters in terms of sensitivity and specificity. Δcontrast
%, with an AUC of 0.862, allowed the identification of responders with a maximum sensitivity
of 92.3% and specificity of 83.6%, when the threshold is set at 70.3%. Increasingly, ΔCOV%
with a threshold of -58.6% also differentiated responders and non-responders with a higher
sensitivity (92.1% vs 61.5%) and specificity (81.1% vs 76.2%) than the baseline values. Baseline
AUC-CSH and dissimilarity were not significant predictive factors, but with optimal cut-off
values (33.0% and 28.7%, respectively), ΔAUC-CSH% and Δdissimilarity% showed statistically
significant predictive capability. Neither SUVmax nor other first- and second-order textural fea-
tures extracted from the intensity histogram and NGLCM could significantly predict treat-
ments response. Figs 2 and 3 show typical examples of metabolic heterogeneity change in PET
image and cumulative SUV-volume histogram for patients with responding and non-respond-
ing tumors.

Fig 1. ROC curves for identifying responders vs. non-responders.ROC curves for identifying
responders vs. non-responders with baseline (A) and intra-treatment change (B) of metabolic tumor
heterogeneity parameters.

doi:10.1371/journal.pone.0157836.g001

Table 3. The specificity, sensitivity, and AUC-ROC in predicting tumor response.

Parameters Cut-off values Sensitivity (%) Specificity (%) AUC-ROC (%)

Baseline parameters

MTV 42.5cm3 71.8 74.9 0.686

Contrast 63.5 82.1 75.0 0.804

COV 6.0 61.5 76.2 0.781

Parameters change

ΔMTV% -57.2% 73.2 80.0 0.768

ΔContrast% 70.3% 92.3 83.6 0.862

ΔCOV% -58.6% 92.1 81.1 0.799

ΔAUC-CSH% 33.0% 78.9 65.6 0.708

ΔDissimilarity% 28.7% 60.5 70.8 0.665

doi:10.1371/journal.pone.0157836.t003
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Long-term Survival Analysis
At a median follow-up of 60 months (4.9–68 months), median PFS was 21±15.6 months with
a 5-year PFS of 16%. Kaplan–Meier analysis showed that in baseline PET parameter, only con-
trast and COV were statistically significant prognostic factors for PFS. In addition, Δcontrast
%>70.3% was associated with improved PFS with statistical significance (median PFS: 29.6
months vs.17.9 months not reached, P = 0.007) as shown in Fig 4A. PFS was lower in patients
with lower ΔAUC-CSH% (median PFS 27.9 months vs.18.8 months not reached, P = 0.039), as
shown in Fig 4C.

Fig 2. Typical examples of FDG uptake heterogeneity. Typical examples of FDG uptake heterogeneity in
patients with responding (A, B) and non-responding tumors (C, D).

doi:10.1371/journal.pone.0157836.g002

Fig 3. Cumulative SUV-volume histogram changes of patients in Fig 2. Compared to non-responder (B),
change of AUC-CSH in the responder (A) is more obvious.

doi:10.1371/journal.pone.0157836.g003
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The median OS was 26±16.5 months with a 5-year OS of 21%. In the dead, 1 patient died
from hepatocirrhosis related upper gastrointestinal massive hemorrhage after disease progres-
sion. One patient died in home, the precise cause of death is not specified. All other patients
died from NSCLC. In the univariate analysis, both baseline contrast and Δcontrast% were sig-
nificantly associated with OS. OS was shorter in patients with low Δcontrast% (median OS:
21.2 months vs. 35.1months, P = 0.008), as Fig 4B shown. Although the trend for baseline
AUC-CSH did not significant correlate with OS statistically (P = 0.062), ΔAUC-CSH% was a
significant prognostic factor of OS (P = 0.034), as shown in Fig 4D. Neither baseline nor change
of other parameters could predict PFS or OS in the analysis.

Age, gender, histology, and smoke status, despite showing little prognostic potential in the
univariate analyses (Table 1), were included in the multivariate model to assess any potential
interactions or confounding factors. Multivariate Cox regression analysis was then used to
identify the independent predictors of PFS and OS after adjustment for potential confounders.
Because of the high degree of collinearity among the various PET textural features, each of
them was entered separately in the multivariate Cox regression model. It was found thatΔcon-
trast% was the only textural feature with significant independent prognostic value for OS and
PFS. Higher Δcontrast % was associated with decreased risk of tumor progression and death.
The regression model analysis showed that the Odds Ratios of Δcontrast% for PFS and OS
were 0.476 (95%CI 0.253–0.896, P = 0.021) and 0.519 (95%CI 0.267–0.997, P = 0.015), respec-
tively. Univariate and multivariate survival analyses of metabolic features is shown is Table 4.

Fig 4. Kaplan–Meier plots for probability of PFS and OS. Kaplan–Meier plots for probability of
progression-free survival (A: Δcontrast%, C: ΔAUC-CSH%) and overall survival (B: Δcontrast%, D:
ΔAUC-CSH%). Time of censoring is marked by a dot.

doi:10.1371/journal.pone.0157836.g004
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Discussion
18F-FDG PET has been increasingly used to assess treatment response and predict patient
outcome [22]. 18F-FDG uptake has been associated not only with increased metabolism but
also other pathophysiologic factors such as perfusion, cell proliferation and hypoxia, all of
which may cause for tumor heterogeneity. Therefore, the hypothesis can be made that charac-
terizing tumor FDG distribution, through its relationship to underlying tumor biologic char-
acterizing, may be useful in predicting treatment response [10]. In present study, we found
that, in addition to the baseline parameters, temporal change of FDG uptake heterogeneity
characterized by global and local textural features provided more reliable information to pre-
dict treatment response and long-term survival. Δcontrast% was not only the parameter dif-
ferentiating responders and non-responders, but also the only independent prognostic factor
for OS and PFS.

The underlying mechanisms, which might explain why tumor FDG uptake heterogeneity,
either at baseline or change during treatments, correlated with treatments and survival, are
not well established. FDG uptake is related to the expression of GLUT and hexokinase, cell pro-
liferation, vascularization and hypoxia [23]. All these physiologic processes correlated with
response to treatments [24]. One of our important finding was that higher Δcontrast % value

Table 4. Univariate andmultivariate survival analyses of metabolic features.

PFS OS

HR (95%CI) P Value HR (95%CI) P Value

Univariate analysis

SUVmax 2.612 (0.523–6.819) 0.118 3.484 (0.219–7.521) 0.122

MTV 4.587 (0.418–7.167) 0.077 5.523 (0.371–6.548) 0.165

Contrast 0.692 (0.146–0.924) 0.023 0.463 (0.273–0.632) 0.021

AUC-CSH 0.499 (0.238–1.561) 0.057 0.750 (0.339–0.805) 0.062

Dissimilarity 1.245 (0.792–2.129) 0.108 1.205 (0.463–1.675) 0.858

Entropy 2.043 (0.587–2.134) 0.154 1.114 (0.167–1.394) 0.635

Kurtosis 2.447 (0.484–5.359) 0.182 5.939 (0.851–7.493) 0.985

Skewness 1.273 (0.491–3.303) 0.097 1.136 (0.751–2.349) 0.760

Homogeneity 0.594 (0.293–2.270) 0.088 1.466 (0.282–2.461) 0.200

COV 0.432 (0.162–0.788) 0.036 0.833 (0.238–1.210) 0.075

ΔSUVmax% 3.245 (0.592–5.129) 0.108 2.050 (0.632–6.755) 0.858

ΔMTV% 4.343 (0.587–8.134) 0.154 5.145 (0.667–7.924) 0.635

ΔContrast% 0.476 (0.277–0.693) 0.007 0.623 (0.242–0.995) 0.008

ΔAUC-CSH% 0.582 (0.149–0.758) 0.039 0.402 (0.192–0.824) 0.034

ΔDissimilarity% 0.952 (0.516–1.552) 0.746 0.612 (0.354–1.510) 0.098

ΔEntropy% 1.235 (0.721–2.138) 0.438 1.356 (0.518–1.578) 0.876

ΔKurtosis% 0.426 (0.322–4.644) 0.080 0.773 (0.431–1.330) 0.284

ΔSkewness% 1.063 (0.523–2.151) 0.879 0.724 (0.221–1.465) 0.420

ΔHomogeneity% 1.243 (0.578–2.646) 0.582 1.272 (0.871–2.426) 0.427

ΔCOV% 1.123 (0.651–2.549) 0.760 0.997 (0.651–1.293) 0.985

Multivariate analysis

Contrast 0.723 (0.291–3.130) 0.097 0.432 (0.351–2.149) 0.760

COV 0.359 (0.196–2.570) 0.086 0.946 (0.522–2.061) 0.213

ΔContrast% 0.476 (0.253–0.896) 0.021 0.519 (0.267–0.997) 0.015

ΔAUC-CSH% 1.062 (0.532–2.115) 0.879 0.773 (0.415–1.462) 0.420

doi:10.1371/journal.pone.0157836.t004
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was associated with decreased risk of progression and death. Contrast is the difference in gray
scale that makes an image distinguishable. In NGLCM, contrast increase means the intensity
difference between two neighboring pixels (i and j) increased (S1 Fig).

In tumor, we assume a pixel correspond to a cluster of tumor cell. High intensity in PET
image pixels corresponds to high metabolic activity of tumor cells. As we know, tumors show
regression of metabolic activity of during CCRT. Thus, intensity of pixel i and j decreased dur-
ing CCRT. If the intensity of pixel i is higher than j in baseline PET, j must decrease much
more than the neighboring pixel i did during treatment, and then the intensity difference
between pixel i and j increased as contrast raise. Therefore, the hypothesis can be made that
neighboring tumor cells show significant different response to CCRT due to tumor innate het-
erogeneity. CCRT expanded the metabolic activity gap among neighboring tumor cells. Both
higher metabolic activity tumor cells and lower ones decreased during treatment, but the base-
line lower metabolic tumor cells are more sensitive to CCRT than the cells with higher meta-
bolic activity. As reflected to images, the contrast of PET increased.

Limited studies in other tumor types have investigated the predictive value of tumor meta-
bolic heterogeneity change for assessment of therapy response. In locally advanced rectal can-
cer, Bundschuh et al. reported that textural parameter (COV) and its change during treatments
had significant capability to assess histopathologic response and PFS, but not OS [25]. They
found that higher COV indicated better histopathologic response. Besides, a decrease of COV
during and after therapy indicated better histopathologic response. This is consistent with the
results of our study. However, they only observed change in global scale parameters. Yang et al.
found that the temporal change in the heterogeneity of intratumoral FDG distribution may
provide information for understanding tumor response to chemoradiotherapy in patients with
malignant cervical tumors [26]. However, only regional scale texture features were used in
their study and the prognostic value of these parameters was not reported. Recently, Cook et al
found that in patients with advanced NSCLC (IIIB and IV stage) treated by erlotinib, decrease
in first-order entropy of FDG PET were independently associated with treatment response and
OS [27]. Because of treatment-induced inflammation, the capability of SUVs in response evalu-
ation is arguable during radiation. Measurement of heterogeneity based on 18F-FDG PET
images and its change would provide at least a complement for response assessment and prog-
nostic prediction.

Our results also add new evidence that textural features of 18F-FDG uptake within pre-treat-
ment PET images can predict response and survival. Cook et al. used contrast in pre-therapeu-
tic 18F-FDG PET to assess the tumor response to chemoradiation in 53 patients with NSCLC
[28]. Compared with non-responders, RECIST responders showed higher contrast. Although
the trend for contrast to predict OS did not reach statistical significance, PFS were longer in
patients with high contrast (P = 0.015). However, none of any SUV parameters predicted
RECIST responds and survival. Recently, Lovinfosse et al. also found that textural feature mea-
sured on the baseline 18F-FDG PET/CT appears to be a strong independent predictor of the
outcome in patients with NSCLC treated by SBRT [14]. As shown in present study tumor FDG
uptake heterogeneity indices were better parameters for predicting response and survival than
the conventional ones.

Clinically, there is controversy about the use of multiple time-point imaging for treatment
guidance. Using baseline PET imaging is ideal, but confront ethical challenges. It is more useful
and safe to use post-treatment PET images [4], but might be too late for salvage therapy. At clin-
ical scenario, more attention should be paid to the early changes of FDG uptake during treat-
ment, as attempts in response-adapted treatments for lymphoma and breast cancer [29–31].

Several methodologies have been proposed to assess intratumoral FDG uptake heterogene-
ity and its correlation with the treatment outcome, include visual scoring [32], COV [25],
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AUC-CSH [11], and textural features analysis [10]. There is no consensus on the best way to
define the intra-tumor FDG uptake heterogeneity. We will adapt more textural parameters in
further studies. Histogram indices were highly correlated with metabolic volume, whereas
some the texture indices were robust with respect to tumor segmentation [33]. Meanwhile, tex-
tural features constitute an objective heterogeneity quantification, with reduced inter-observer
variability [34]. More importantly, textural analysis can also be used for CT or MR images [35].
It was demonstrated that textural parameters derived from CT images of NSCLC have the
potential to serve as imaging biomarkers for tumor hypoxia and angiogenesis [36]. The nomo-
gram from PET and CT images improved stratification amongst patients with stage II and III
NSCLC, allowing identification of patients with the poorest prognosis [37]. Pretreatment CT
imaging texture features could also provide prognostic information beyond that obtained from
conventional prognostic factors for patients with stage III NSCLC [38]. We are conducting a
study to cooperate imaging (PET and CT) parameters with conventional factors (the 7th edition
AJCC stage, performance status, etc) for a prognostic model for NSCLC, as reported by Vaidya
et al [39] and Fried et al [12].

One major limitation of the present study was the relatively small number of patients
included. Consequently, it is important to confirm our findings in larger study cohorts. Another
limitation of our study is that we only analyzed the primary tumor. Including the lymph nodes
could be important because of its impact on prognosis. However, considering the limited spatial
resolution in PET imaging, it could be meaningless to assess FDG uptake heterogeneity on small
structures such as lymph nodes [40]. Finally, the ROI for textural analysis in our study were
automatically delineated with a fixed threshold and adjusted manually. For post-radiation infil-
trates, we didn’t adjust the regions manually. It is possible that inter- and intra- observer varia-
tion would be reduced if more advanced segmentation technique were used, particularly for
multicenter prospective studies in the future. For comparison among different research, the
basic analysis procedure of texture feature should also be unified too.

Conclusions
We demonstrated that the metabolic tumor heterogeneity changes during CCRT characterized
by global and local scale textural features may provide independent information to predict
treatment response and survival for patients with locally advanced NSCLC. Change in imaging
contrast is not the only parameter differentiating responders from non-responders. However,
it serves as the only independent prognostic factor for OS and PFS. Our results suggest that
characterization of FDG PET uptake heterogeneity early during treatment holds the potential
to revolutionize the predictive role of PET in personalized treatment for locally advanced
NSCLC.

Supporting Information
S1 Fig. A model of change in imaging intensity and contrast after treatments. At baseline
image, intensity of pixel i is higher than pixel j. For intra-treatment image, the intensity of pixel
i & j decreased. But, the original lower intensity pixel j decreased much more than pixel i.
Therefore, contrast of image increased.
(TIF)

S1 Table. Formulas for normalized gray-level co-occurrence matrix texture parameters.
From each of the primary tumor, we got one GLCM, the element of GLCM contains the num-
ber of incidences having intensity values i and j occur in two voxels separated by distance (d) in
direction (a). In our implementation d was set to a single voxel size, and a was selected to cover
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the 13-connected neighborhood in 3D space.
(PDF)
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