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Background: Implementation of deep learning systems (DLSs) for analysis of barium
esophagram, a cost-effective diagnostic test for esophageal cancer detection, is expected
to reduce the burden to radiologists while ensuring the accuracy of diagnosis.

Objective: To develop an automated DLS to detect esophageal cancer on barium
esophagram.

Methods: This was a retrospective study using deep learning for esophageal cancer
detection. A two-stage DLS (including a Selection network and a Classification network)
was developed. Five datasets based on barium esophagram were used for stepwise
training, validation, and testing of the DLS. Datasets 1 and 2 were used to respectively
train and test the Selection network, while Datasets 3, 4, and 5 were respectively used to
train, validate, and test the Classification network. Finally, a positioning box with a
probability value was outputted by the DLS. A region of interest delineated by
experienced radiologists was selected as the ground truth to evaluate the detection
and classification efficiency of the DLS. Standard machine learning metrics (accuracy,
recall, precision, sensitivity, and specificity) were calculated. A comparison with the
conventional visual inspection approach was also conducted.

Results: The accuracy, sensitivity, and specificity of our DLS in detecting esophageal
cancer were 90.3%, 92.5%, and 88.7%, respectively. With the aid of DLS, the
radiologists’ interpretation time was significantly shortened (Reader1, 45.7 s vs. 72.2 s
without DLS aid; Reader2, 54.1 s vs. 108.7 s without DLS aid). Respective diagnostic
efficiencies for Reader1 with and without DLS aid were 96.8% vs. 89.3% for accuracy,
97.5% vs. 87.5% for sensitivity, 96.2% vs. 90.6% for specificity, and 0.969 vs. 0.890 for
AUC. Respective diagnostic efficiencies for Reader2 with and without DLS aid were
95.7% vs. 88.2% for accuracy, 92.5% vs. 77.5% for sensitivity, 98.1% vs. 96.2% for
specificity, and 0.953 vs. 0.869 for AUC. Of note, the positioning boxes outputted by the
DLS almost overlapped with those manually labeled by the radiologists on Dataset 5.
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Conclusions: The proposed two-stage DLS for detecting esophageal cancer on barium
esophagram could effectively shorten the interpretation time with an excellent diagnostic
performance. It may well assist radiologists in clinical practice to reduce their burden.
Keywords: esophageal cancer, barium esophagram, deep learning, image detection, image classification,
artificial intelligence
INTRODUCTION

Esophageal cancer is the sixth leading cause of cancer-related
mortality and the eighth most common cancer worldwide (1). It
affects more than 500,000 people globally and its incidence is
rapidly increasing (2). Esophagoscopy is the gold standard for
esophageal cancer diagnosis, but it is both invasive and expensive
(3). Barium esophagram can simultaneously detect morphologic
and functional abnormalities in the esophagus and is thus a
valuable technique for the assessment of esophageal cancer (4–
7). In addition, due to its inexpensive and noninvasive features,
as well as its widespread availability, the barium esophagram is
usually prioritized over other techniques, such as endoscopy, for
clinical diagnostic selection (4). Indeed, in the detection of
esophageal malignancy, barium esophagram and endoscopic
findings show a good correlation (8). Therefore, barium
esophagography represents a cost-effective and useful approach
for screening patients with dysphagia (4, 8).

A previous study suggested that barium esophagram is a
sensitive modality to diagnose esophageal cancer, and that
endoscopy is not routinely recommended to rule out missed
tumors in patients who have normal esophagram findings
(3). However, inconsistent interobserver interpretations are
inevitable among radiologists over diagnosis by conventional
visual assessment. In some cases, even experienced radiologists
may misinterpret esophagram images and miss esophageal
cancer indicators (9). Furthermore, multi-positional
esophagography often involves laborious and time-consuming
steps that can lead to diagnostic errors. Therefore, in clinical
practice, there is a clear need for a method to efficiently interpret
a large number of esophagrams, reduce radiologists’ workload,
and improve the interpretation accuracy of radiologists with
different experience levels.

In recent years, artificial intelligence using deep learning
algorithms has made remarkable progress in medical imaging.
Researchers have used deep learning to improve the diagnosis of
various gastrointestinal cancers and precursor lesions, such as
esophageal cancer, gastric cancer, and colorectal neoplasm (10–
23). Gehrung et al. (10) used a deep learning framework to
analyze samples of Cytosponge-TFF3 test, a minimally invasive
alternative to endoscopy, for detecting Barrett’s esophagus, a
precursor of esophageal adenocarcinoma. Guo et al. (11)
developed a deep learning model for real-time diagnosis of
precancerous lesions and early esophageal cancer both in
endoscopic images and video settings. However, most of these
studies are based on endoscopy or histopathology, and no
reports have so far assessed the usefulness of deep learning in
the diagnosis of esophageal cancer based on barium
2

esophagrams. To the best of our knowledge, the study by Yang
et al. (9) in 2017 is the only report focused on the computer-
aided diagnosis of esophageal barium meal; however, the
researchers used traditional machine learning algorithms (SVM
and KNN), and the extracted features were limited. In 2019,
Togo et al. (24) developed a deep learning model based on gastric
barium images to investigate automated gastritis detection,
reporting a sensitivity of 0.962 and a specificity of 0.983. Their
study suggested that deep learning techniques can live up to
expectations and perform well in barium meal examinations.
Therefore, in view of the wide application and important clinical
value of the barium esophagram, we used a deep learning
approach for detecting esophageal cancer using a large number
of barium esophagram images.

In this study, we developed an automated DLS to detect
esophageal cancer on barium esophagram. The two-stage deep
learning architecture applied in our study is a major advantage
because it makes full use of the effective esophagography features
so as to improve the final diagnostic accuracy. Additionally, we
compare the diagnostic efficacy of our DLS with that of
radiologists and three popular detection networks, namely
YOLO (You Only Look Once) (25), MobileNetV3 (26), and
EfficientnetV2 (27).
METHODS

This study was approved by the Institutional Review Board of
our hospital. Written informed consent was waived for this
retrospective anonymized study.

Overview of the Algorithm Framework
A schematic diagram of the proposed method is shown in
Figure 1. In this study, we designed a DLS with two network
models: a Selection network, used to identify the candidate
regions, and a Classification network, employed to classify the
proposed regions. The selected candidate regions from the
Selection network were defined as the input of the Classification
network. Finally, a test set was used for assessing the efficiency of
the two-stage DLS (combination of the Selection network and the
Classification network).

Datasets
Images were retrospectively collected from patients who
underwent barium esophagography in our hospital from January
2017 to June 2019. Positive and negative groups were set based on
clinical, radiographic, endoscopic, and surgical findings. Before
study initiation, cases with unmatched results between the
June 2022 | Volume 12 | Article 766243
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radiographic report and esophagoscopy or pathology, as well as
those with poor image quality, were excluded. All barium
examinations of the patients with dysphagia were completed by
gastrointestinal radiologists. X-ray images taken at multiple
positions were used for a comprehensive evaluation of the
condition of the esophagus. In the vast majority of patients,
these images were obtained at: 1) the anteroposterior view; 2)
the right anterior oblique view; and 3) the left anterior
oblique view. All data were stored in Digital Imaging and
Communications in Medicine (DICOM) format. All included
cases of esophageal cancer were confirmed pathologically. In
total, 6445 images were obtained from 200 patients with
esophageal cancer, and 11,352 images were obtained from 299
patients without esophageal cancer. All images of esophageal
cancer lesions were annotated by a board-certified radiologist.
Using LabelImage software (GitHub, Inc., San Francisco, CA,
USA), a rectangular bounding box was drawn on the barium
esophagram for esophageal cancer detection. During the
annotation process, the results of the radiographic report,
esophagoscopy, or surgical pathology were referred to side-by-
side. The labeled images were then reviewed by another radiologist
with 12 years of clinical experience.
Frontiers in Oncology | www.frontiersin.org 3
Five datasets were used for stepwise training, validation, and
testing of the DLS: 1) 5279 images with annotated esophageal
cancer lesions from 160 patients were retrieved as training set for
the Selection network; 2) 1166 images with esophageal cancer
lesions from 40 patients were retrieved as testing set for the
Selection network; 3) 4611 cancer/7815 no-cancer images
derived from 112 cancer/182 no-cancer patients, respectively,
were used to train the Classification network; 4) 668 cancer/1990
no-cancer images from 48 cancer/64 no-cancer patients were
used to validate the efficiency of the Classification network; 5)
1166 cancer/1547 no-cancer images from 40 cancer/53 no-
cancer patients were used to test the Classification network.
Dataset 5 was also interpreted by two radiologists, with and
without the aid of our DLS, to evaluate the accuracy of the latter
in detecting esophageal cancer.

Preprocessing
Images in the datasets were preprocessed before the construction
of the deep learning networks. The images were subjected to
image augmentation techniques such as horizontal flipping,
cropping, and random rotation, and normalized by dividing
each pixel value by 255 before being input into the networks.
FIGURE 1 | Overview of our two-stage DLS for esophageal cancer detection. Faster R-CNN, faster region-based convolutional neural network; VGG, visual
geometry group; DLS, deep learning system.
June 2022 | Volume 12 | Article 766243
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Development of the Algorithm
Two deep learning networks were used to develop our two-stage
DLS. The DLS was implemented with TensorFlow as the
backend, on a desktop computer equipped with a Linux
operating system, 64 GB RAM, and a single GeForce RTX
2080 Ti GPU (Nvidia, Santa Clara, CA, USA).

First, to detect suspected esophageal cancer regions, we designed
the Selection network based on the faster region-based
convolutional neural network (Faster R-CNN). The Selection
network was developed to extract relevant regions related to
esophageal cancer and discard irrelevant ones. In the Selection
network, barium esophagram images are input to the backbone
network to extract features. Region proposal network generates
region proposals by these features. For region proposals of different
sizes, ROI pooling layer maps their feature vectors to the same size.
Finally, the feature vectors of these region proposals are input into
the Fast R-CNN predictor network to output the probability and
location of suspected esophageal cancer regions. The Keras API
(https://keras.io/) with TensorFlow (https://www.tensorflow.org/)
backend was used for the implementation of the Faster R-CNN.
While training the Faster R-CNN, only images with esophageal
cancer lesions were used to develop the Selection network. Datasets
1 and 2 were retrieved as training and validation sets, respectively.

Then, to refine the classification results and reduce false positives,
the Classification network was developed to classify the candidate
regions extracted in the Selection network. The Classification network
is mainly composed of convolutional layers, which extract features
from candidate regions, and linear layers, into which these features
are input to derive classification results. The Classification network
outputted the probability of whether the detection result obtained
from the Selection network was esophageal cancer or no esophageal
cancer. Datasets 3 and 4, described in the previous subsection, were
used for training and validating the Classification network, which was
derived from the Visual Geometry Group 16 (VGG16) convolutional
neural network. During the development of the Classification
network, all the images were first fed into the Selection network,
and the proposed candidate regions were then fed into the
Classification network.

We utilized the ImageNet to pretrain the backbone
subnetwork in the Selection Network. For other subnetworks
in the Selection network, we used truncated normal distribution
(mean=0.0, stddev=0.001) to initialize network parameters. We
fine-tuned the parameters with the images of barium
esophagram included in the current study. The momentum
method was used to optimize the parameters of the Selection
network. The initial learning rate and momentum coefficient in
the momentum optimizer were set as 0.001 and 0.9, respectively.
The batch size was set at a value of 1 and the intimal iterations
were set as 70000. Similarly, we utilized the ImageNet to pretrain
the Classification network. We fine-tuned the parameters with
the regions of interest included in the current study. The Adam
was used to optimize the parameters of the Classification
network. The initial learning rate was set as 0.001. The batch
size was set at a value of 32 and the intimal epochs were set as 50.

To mimic the real clinical interpretation of images by
radiologists, for the evaluation of the testing data (Dataset 5), a
Frontiers in Oncology | www.frontiersin.org 4
majority voting method was applied to integrate estimated results of
images acquired in each position. For patients in the testing data, a
patient was defined as a cancer patient if at least one position was
predicted as esophageal cancer; otherwise, the patient was defined as
a no-cancer patient. Once a position was predicted as esophageal
cancer, the prediction location integrated by majority voting was
selected as the cancer location (see Figure 2).

Evaluation of the Algorithm
First, we used Dataset 2 to test recall, precision, and average
precision (AP) of the Selection network and compared these
metrics with those of the YOLO network (25). Our Selection
network was based on the Faster R-CNN architecture, a two-stage
detection method, while YOLO is a single-stage object detection
method. Second, we used Dataset 5 to test the accuracy, sensitivity,
specificity, and AUC of our two-stage DLS and compared these
metrics with two other networks, MobileNetV3 (26) and
EfficientnetV2 (27). MobileNetV3 is a relatively popular
lightweight network, while EfficientV2 is a popular high-
performance network. If the Intersection over Union (IoU)
between the detection result of the classification dataset and
annotation data was more than 0.3, the detection result was
defined as a true positive; otherwise, it was defined as a false positive.

Dataset 5 was assigned to two radiologists (with 6 and 4 years
of clinical experience) for random interpretation either with or
without the aid of the algorithm. Following a 2-week washout
period, the same selected sample was randomly interpreted again
by the same corresponding radiologist without or with aid of the
algorithm in a crossover design (i.e., if the first read was with
algorithm aid, then the second read was without algorithm aid,
and vice versa). Patient classification, cancer location, and time
to diagnosis were recorded for each interpreted position.

Statistical Analysis
We evaluated the efficacy of the Selection network using the
precision-recall (PR) curve to assess AP in Dataset 2. Receiver
operating characteristic (ROC) analysis was performed to
evaluate the classification performance of the DLS. The
sensitivity and specificity for both image-based analysis and
case-based analysis of the DLS on the testing dataset were
calculated. In addition, ROC curves were also generated for the
detection results of two radiologists with or without DLS aid.
The paired sample t-test was used to assess the difference in the
interpretation time for evaluating each case. P-values of less
than 0.05 were considered statistically significant. R (version
3.6.0, available at http://www.R-project.org/) was used for
statistical analyses.
RESULTS

The AP, precision, and recall of the Selection network on the
testing dataset were 70.6%, 74.7%, and 91.7%, respectively,
suggesting that 1069 of the 1166 positive lesions can be
identified. In turn, the AP, precision, and recall of the YOLO
network on the testing dataset were 60.8%, 64.1%, and 82.9%,
June 2022 | Volume 12 | Article 766243
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respectively. On case-based analysis, the accuracy, sensitivity,
specificity, and AUC of our DLS on the testing dataset were
83.7%, 92.5%, 88.7%, and 0.906, respectively. This means that 37
of the 40 esophageal cancer patients could be identified. On case-
based analysis, the accuracy, sensitivity, specificity, and AUC of
MobileNetV3 on the testing dataset were 80.5%, 81.6%, 78.6%, and
0.891, respectively. On case-based analysis, the accuracy,
sensitivity, specificity, and AUC of EfficientNetV2 on the testing
dataset were 81.2%, 87.8%, 70.0%, and 0.881, respectively.

Classification results of the testing dataset for the five
classification methods are presented in Table 1 and Figure 3.
For Reader1, case-based AUC with and without DLS aid was
Frontiers in Oncology | www.frontiersin.org 5
0.969 and 0.890, respectively. For Reader1 without DLS aid, the
accuracy, sensitivity, and specificity for detecting esophageal
cancer were 89.3%, 87.5%, and 90.6%, respectively. For
Reader2, case-based AUC with and without DLS aid was 0.953
and 0.869, respectively. For Reader2 without DLS aid, the
accuracy, sensitivity, and specificity for detecting esophageal
cancer were 88.2%, 77.5%, and 96.2%, respectively (Table 2).
The classification efficiency of the combination of radiologists’
conventional visual inspection approach and DLS was
significantly higher than that of the two methods alone
(P<0.05). Thus, for both radiologists, diagnostic efficiency was
significantly improved by DLS (Figure 3).
FIGURE 2 | Flow chart of the DLS approach for esophagram-based esophageal cancer diagnosis. (+) esophageal cancer; (-) no esophageal cancer; DLS, deep
learning system.
June 2022 | Volume 12 | Article 766243

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Deep Learning for Esophageal Cancer
Applying the DLS alone, three false negative and six false
positive cases were detected. For Reader1, with DLS aid 4/5 false
negative cases were correctly classified into the positive group
and 5/5 false positive cases were correctly classified into the
negative group. For Reader2, with DLS aid 6/9 false negative
cases were correctly classified into the positive group and 2/2
false positive cases were correctly classified into the negative
group. Figure 4 shows examples of false negative and false
positive barium esophagrams.

The interpretation time of Reader1 without and with DLS aid
took on average 72.2 s and 45.8 s, respectively. For Reader2,
interpretation time without and with DLS aid took 108.7 s and
54.1 s, respectively. With the aid of DLS, the interpretation time
was significantly shortened for both radiologists (both
P<0.01) (Figure 5).
DISCUSSION

In this study, we show that DLS-based automatic detection of
esophageal cancer on barium esophagram can significantly aid
radiologists’ diagnosing task by relieving the burden of a time-
consuming image review process and minimizing the
Frontiers in Oncology | www.frontiersin.org 6
heterogeneity caused by variable experiences of radiologists in
clinical practice. Additionally, the proposed DLS can ensure the
robustness and effectiveness of fully automated detection and
location of cancerous foci through decoupling the identification
and classification features. Our results indicate that deep learning
has the potential to become an important add-on for radiologists
facing a large number of barium esophagram images by
facilitating esophageal cancer screening. The present study
further suggests that DLS can reduce unnecessary endoscopy
for negative patients so as to save labor and resources. To the
best of our knowledge, this is the first report that evaluates the
ability of a CNN model to detect esophageal cancer in
barium esophagrams.

Deep learning has been applied for the detection of
esophageal cancer mostly based on endoscopy or pathological
images. Only a few studies applied it to barium examination.
Togo et al. (24) developed a DCNN-based automated gastritis
detection system by using 6520 gastric barium images from 815
subjects. Sensitivity and specificity of this study were 0.962 and
0.983, respectively. The authors claimed that deep learning
techniques may be effective for differentiating gastritis and
non-gastritis on gastric barium images. In addition, Yang et al.
(9) proposed a CAD system for diagnosing esophageal cancer by
A B

FIGURE 3 | Confusion matrixes (A) and ROC curves (B) for the five classification methods. The AUC of Reader1+DLS and Reader2+DLS are significantly higher
than the AUC of Reader1, Reader2, and DLS (all P < 0.05). DLS, deep learning system; ROC, receiver operating characteristic; AUC, area under the ROC curve.
TABLE 1 | Classification results for the testing dataset.

DLS Reader1 Reader1+DLS Reader2 Reader2+DLS

(+) (–) (+) (-) (+) (-) (+) (-) (+) (-)

True label (+) 37 3 35 5 39 1 31 9 37 3
(-) 6 47 5 48 2 51 2 51 1 52
June 2022 | Volu
me 12 | Article 7
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using 300 original esophageal X-ray images and found that the
classification performance of the SVM and K-nearest neighbors
outperformed the conventional visual inspection approaches in
terms of diagnostic quality and processing time. However, in
contrast to our study, those reports provided neither a
positioning box nor evaluated the added value to radiologists.

Our DLS can accurately identify and locate esophageal cancer
on barium esophagram and provide a positioning box with a
probability value. A comparison of the diagnostic value of
Frontiers in Oncology | www.frontiersin.org 7
radiologists’ conventional visual inspection approach and DLS
showed higher sensitivity and AUC for the DLS method. In turn,
our study indicated that the classification efficiency of combined
conventional visual inspection and DLS is significantly higher
than that of the two methods alone. Thus, diagnostic efficiency is
significantly improved by the implementation of the proposed
DLS. Moreover, interpretation time is significantly shortened for
radiologists when aided by the DLS. In line with previous studies
(28–34), our results further confirm the potential of deep
FIGURE 4 | Examples of DLS-diagnosed images. The green boxes indicate the ground truth annotated by radiologists. The red boxes and blue numbers indicate
the positioning boxes and probability values outputted by the DLS. A-1-A-3 are true positive cases. B-1-B-4 are false positive cases. (C) is a false negative case.
A-1-3 represent three positions (anteroposterior, right anterior oblique, and left anterior oblique view) of barium esophagrams from a 71-year-old male esophageal
cancer patient. A filling defect and eccentric stenosis in the middle of the esophagus can be noticed. B-1, B-2 represent misdiagnosis of esophageal cancer based
on the false filling defect caused by gas. B-3, B-4 represent misdiagnosis of esophageal cancer based on tertiary waves (red boxes) in a 64- and a 78-year-old
patient, respectively. (C) represents missed diagnosis of esophagogastric junction cancer. DLS, deep learning system.
TABLE 2 | Comparison of esophageal cancer detection performance for the five classification methods.

Time (Seconds) AUC Sensitivity (%) Specificity (%) Accuracy(%)

DLS NA 0.906 92.5 88.7 83.7
Reader1 72.2 0.890 87.5 90.6 89.3
Reader1+DLS 45.8 0.969 97.5 96.2 96.8
Reader2 108.7 0.869 77.5 96.2 88.2
Reader2+DLS 54.1 0.953 92.5 98.1 95.7
June 2022 | Volume 12 |
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learning in medical image classification and detection through
the ability of deep learning networks to extract and analyze
massive data features.

The two-stage deep learning architecture of the model
proposed in our study is a major advantage, in that it makes
full use of the effective esophagram features so as to improve the
final diagnostic accuracy. In the first step, the Selection network
extracted important regions related to esophageal cancer as
candidate regions. Next, the Classification network classified
these candidate regions into positive and negative groups.
As a consequence, interference from irrelevant information
was reduced in the Classification network. Comparative
experiments showed that the recall, precision, and AP of our
Selection network are higher than those computed using YOLO,
while the accuracy, sensitivity, specification, and AUC of our
Classification network are higher than those of MobileNetV3
and EfficientNetV2. Nevertheless, some false positive and false
negative cases were also observed in our DLS. The prediction
results showed that the tertiary waves are a major factor leading
to misdiagnosis in the proposed DLS. Tertiary waves are
characterized by intermittently weakened or absent peristalsis
associated with multiple nonperistaltic contractions of varying
severity (4, 35), whose incidence increases in older patients and
in many primary or secondary esophageal motility disorders
(36, 37).

Distinguishing tertiary waves from esophageal cancer is
difficult for DLS but easy for experienced radiologists. Benign
esophageal strictures typically appear as relatively symmetric
segments of narrowing with smooth contours and tapered
margins, whereas malignant structures are more asymmetric
and have nodular, irregular, or ulcerated contours and abrupt,
shelflike margins (4). Other reasons, such as the inability of the
entire esophageal circumferential sheath to contract freely, or
delayed bolus clearance due to adhesions to the aorta or
Frontiers in Oncology | www.frontiersin.org 8
mediastinal lymph nodes, can also be responsible for the false
positive/negative classification (36). Additionally, the radiologic
identification of some cancers at the distal esophagus and
esophagogastric junction remains a challenge to the deep
learning detection system. In general, the conventional visual
inspection approach and the DLS are complementary in the
detection of esophageal cancer, and their combination can
achieve an almost perfect diagnostic performance. In this
regard, the higher sensitivity of the DLS greatly helps in
meeting the clinical need to minimize false negatives. These
results are important to consider in terms of daily practice where
false positives are generally more acceptable than false negatives.
To improve this system, we need to select training images that
include such cases more often.

Many gastroenterologists traditionally believe that endoscopy
is required to detect esophageal cancer possibly missed on
barium esophagography (4). However, studies showed that the
latter can detect esophageal cancer with a sensitivity greater than
95% (3, 8, 38). In addition, only about 1% of patients
who underwent barium esophagography are recommended to
receive endoscopy for malignancy exclusion (3). Some
gastroenterologists advocate in turn the use of endoscopy and
biopsy to exclude esophageal cancer for all patients with
radiographically diagnosed esophageal strictures, because
it is relatively difficult to identify benign strictures from
circumferentially infiltrating cancers on barium esophagram
(4). Nevertheless, a study reported that no malignant tumors
were identified through endoscopic biopsy in subjects who were
diagnosed with unequivocally benign-appearing strictures on
barium esophagram (39). Therefore, endoscopy may not be
necessary to rule out esophageal cancer in these patients.
Along these lines, the present study also supports the notion
that endoscopy is not required for patients with negative
esophageal cancer screening results on barium examination.
FIGURE 5 | Statistical comparison of radiologists’ interpretation time. **P<0.01. DLS, deep learning system.
June 2022 | Volume 12 | Article 766243
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In summary, we designed a DLS for automatized and accurate
detection of esophageal cancer based on barium esophagram.
The usefulness of our model in clinical practice can be further
anticipated in light of the diagnostic effectiveness of X-ray
imaging-based deep learning techniques demonstrated by
previous studies (40–42). Admittedly, our study has some
inevitable limitations. First, all data were collected from a
single medical center, hence there was a potential for selection
bias. Further multi-center studies are thus warranted to confirm
the reliability of our prediction system. Second, the image
sequences used in our study were not always consistent. Due
to the case-based tailored and flexible approach to image
acquisition for different medical scenarios, variability existed
for the position and number of images for each patient. In
future studies, image standardization should be highly
considered. Third, we used only high-quality barium
esophagram images for the training and test images. Thus, we
are not sure if the DLS can effectively diagnose esophageal cancer
using low-quality images, such as those with halation, mucus,
blur, or that are out of focus. Therefore, we will further verify the
generalization ability of our system while normalizing the images
in the future.
CONCLUSIONS

To date, no research had been conducted on the detection of
esophageal cancer on barium esophagography using deep
learning methods. Our study showed that a DLS involving a
two-stage model can achieve a positioning box with a probability
value, significantly shorten interpretation time, and improve the
sensitivity and accuracy of esophageal cancer detection
by radiologists.
Frontiers in Oncology | www.frontiersin.org 9
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding authors.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Tongji Hospital, Tongji Medical College, Huazhong
University of Science & Technology. The ethics committee
waived the requirement of written informed consent
for participation.
AUTHOR CONTRIBUTIONS

XM and SX contributed to the study conception and design.
Material preparation and data collection were performed by PZ,
ZF, and QT. Data analysis and interpretation: YS, PZ, XM, and
SX. The first draft of the manuscript was written by PZ, YS, and
JG. All authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.
FUNDING

This research was supported by the National Natural Science
Foundation of China Grant No. 81801668, 61773408, the Natural
Science Foundation of Hubei Province Grant No. 2020CFB541, and
the Fundamental Research Funds for the Central Universities,
South-Central MinZu University (CZY22015).
REFERENCES
1. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al.

Oesophageal Cancer. Nat Rev Dis Primers (2017) 3:17048. doi: 10.1038/
nrdp.2017.48

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

3. Levine MS, Chu P, Furth EE, Rubesin SE, Laufer I, Herlinger H. Carcinoma of
the Esophagus and Esophagogastric Junction: Sensitivity of Radiographic
Diagnosis. AJR Am J Roentgenol (1997) 168(6):1423–6. doi: 10.2214/
ajr.168.6.9168701

4. Levine MS. Ten Questions About Barium Esophagography and Dysphagia.
Gastroenterol Clin North Am (2018) 47(3):449–73. doi: 10.1016/j.gtc.2018.04.001

5. Zambito G, Roether R, Kern B, Conway R, Scheeres D, Banks-Venegoni A. Is
Barium Esophagram Enough? Comparison of Esophageal Motility Found on
Barium Esophagram to High Resolution Manometry. Am J Surg (2021) 221
(3):575–7. doi: 10.1016/j.amjsurg.2020.11.028

6. Haisley KR, DeSouza ML, Dewey EN, Drexel SE, Vigneswaran Y, Hunter JG,
et al. Assessment of Routine Esophagram for Detecting Anastomotic Leak
After Esophagectomy. JAMA Surg (2019) 154(9):879–81. doi: 10.1001/
jamasurg.2019.2162

7. Sanaka MR, Chadalavada P, Covut F, Khoudari G, Gabbard S, Thota PN, et al.
Clinical Success and Correlation of Eckardt Scores With Barium Esophagram
After Peroral Endoscopic Myotomy in Achalasia. J Gastrointest Surg (2021)
25(1):278–81. doi: 10.1007/s11605-020-04763-8

8. Halpert RD, Feczko PJ, Spickler EM, Ackerman LV. Radiological Assessment
of Dysphagia With Endoscopic Correlation. Radiology (1985) 157(3):599–
602. doi: 10.1148/radiology.157.3.4059545

9. Yang F, Hamit M, Yan CB, Yao J, Kutluk A, Kong XM, et al. Feature
Extraction and Classification on Esophageal X-Ray Images of Xinjiang Kazak
Nationality. J Healthc Eng (2017) 2017:4620732. doi: 10.1155/2017/4620732

10. Gehrung M, Crispin-Ortuzar M, Berman AG, O'Donovan M, Fitzgerald RC,
Markowetz F. Triage-Driven Diagnosis of Barrett's Esophagus for Early
Detection of Esophageal Adenocarcinoma Using Deep Learning. Nat Med
(2021) 27(5):833–41. doi: 10.1038/s41591-021-01287-9

11. Guo L, Xiao X, Wu C, Zeng X, Zhang Y, Du J, et al. Real-Time Automated
Diagnosis of Precancerous Lesions and Early Esophageal Squamous Cell
Carcinoma Using a Deep Learning Model (With Videos). Gastrointest
Endosc (2020) 91(1):41–51. doi: 10.1016/j.gie.2019.08.018

12. Cai SL, Li B, Tan WM, Niu XJ, Yu HH, Yao LQ, et al. Using a Deep Learning
System in Endoscopy for Screening of Early Esophageal Squamous Cell
Carcinoma (With Video). Gastrointest Endosc (2019) 90(5):745–53.e2.
doi: 10.1016/j.gie.2019.06.044

13. Guimaraes P, Keller A, Fehlmann T, Lammert F, Casper M. Deep Learning-
Based Detection of Eosinophilic Esophagitis. Endoscopy (2022) 54(3):299–
304. doi: 10.1055/a-1520-811

14. Ohmori M, Ishihara R, Aoyama K, Nakagawa K, Iwagami H, Matsuura N,
et al. Endoscopic Detection and Differentiation of Esophageal Lesions Using a
June 2022 | Volume 12 | Article 766243

https://doi.org/10.1038/nrdp.2017.48
https://doi.org/10.1038/nrdp.2017.48
https://doi.org/10.3322/caac.21492
https://doi.org/10.2214/ajr.168.6.9168701
https://doi.org/10.2214/ajr.168.6.9168701
https://doi.org/10.1016/j.gtc.2018.04.001
https://doi.org/10.1016/j.amjsurg.2020.11.028
https://doi.org/10.1001/jamasurg.2019.2162
https://doi.org/10.1001/jamasurg.2019.2162
https://doi.org/10.1007/s11605-020-04763-8
https://doi.org/10.1148/radiology.157.3.4059545
https://doi.org/10.1155/2017/4620732
https://doi.org/10.1038/s41591-021-01287-9
https://doi.org/10.1016/j.gie.2019.08.018
https://doi.org/10.1016/j.gie.2019.06.044
https://doi.org/10.1055/a-1520-811
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Deep Learning for Esophageal Cancer
Deep Neural Network. Gastrointest Endosc (2020) 91(2):301–9.e1.
doi: 10.1016/j.gie.2019.09.034

15. de Groof AJ, Struyvenberg MR, van der Putten J, van der Sommen F,
Fockens KN, Curvers WL, et al. Deep-Learning System Detects Neoplasia in
Patients With Barrett's Esophagus With Higher Accuracy Than
Endoscopists in a Multistep Training and Validation Study With
Benchmarking. Gastroenterology (2020) 158(4):915–29.e4. doi: 10.1053/
j.gastro.2019.11.030

16. Ebigbo A, Mendel R, Probst A, Manzeneder J, Souza LAJr., Papa JP, et al.
Computer-Aided Diagnosis Using Deep Learning in the Evaluation of Early
Oesophageal Adenocarcinoma. Gut (2019) 68(7):1143–5. doi: 10.1136/gutjnl-
2018-317573

17. Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, et al.
Diagnostic Outcomes of Esophageal Cancer by Artificial Intelligence Using
Convolutional Neural Networks. Gastrointest Endosc (2019) 89(1):25–32.
doi: 10.1016/j.gie.2018.07.037

18. Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, de Souza LAJr., et al.
Real-Time Use of Artificial Intelligence in the Evaluation of Cancer in
Barrett's Oesophagus. Gut (2020) 69(4):615–6. doi: 10.1136/gutjnl-2019-
319460

19. Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-Time Artificial
Intelligence for Detection of Upper Gastrointestinal Cancer by Endoscopy:
A Multicentre, Case-Control, Diagnostic Study. Lancet Oncol (2019) 20
(12):1645–54. doi: 10.1016/S1470-2045(19)30637-0

20. Park J, Jang BG, Kim YW, Park H, Kim BH, Kim MJ, et al. A Prospective
Validation and Observer Performance Study of a Deep Learning Algorithm
for Pathologic Diagnosis of Gastric Tumors in Endoscopic Biopsies. Clin
Cancer Res (2021) 27(3):719–28. doi: 10.1158/1078-0432.CCR-20-3159

21. Song Z, Zou S, ZhouW, Huang Y, Shao L, Yuan J, et al. Clinically Applicable
Histopathological Diagnosis System for Gastric Cancer Detection Using
Deep Learning. Nat Commun (2020) 11(1):4294. doi: 10.1038/s41467-020-
18147-8

22. Kudo SE, Misawa M, Mori Y, Hotta K, Ohtsuka K, Ikematsu H, et al. Artificial
Intelligence-Assisted System Improves Endoscopic Identification of
Colorectal Neoplasms. Clin Gastroenterol Hepatol (2020) 18(8):1874–81.e2.
doi: 10.1016/j.cgh.2019.09.009

23. Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E,
et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal
Neoplasia in a Randomized Trial. Gastroenterology (2020) 159(2):512–20.e7.
doi: 10.1053/j.gastro.2020.04.062

24. Togo R, Yamamichi N, Mabe K, Takahashi Y, Takeuchi C, Kato M, et al.
Detection of Gastritis by a Deep Convolutional Neural Network From
Double-Contrast Upper Gastrointestinal Barium X-Ray Radiography.
J Gastroenterol (2019) 54(4):321–9. doi: 10.1007/s00535-018-1514-7

25. Redmon J, Divvala S, Girshick R and Farhadi A. You Only Look Once:
Unified, Real-Time Object Detection. In: IEEE Conference on Computer
Vision and Pattern Recognition. Las Vegas: IEEE (Institute of Electrical and
Electronics Engineers) (2016). 779–88. doi: 10.1109/CVPR.2016.91

26. Howard A, Sandler M, Chu G, Chen L, Chen B, Tan M, et al. Searching for
Mobilenetv3. In: IEEE International Conference on Computer Vision (2019). p.
1314–24. Available at: https://arxiv.org/abs/1905.02244.

27. Tan M, Le Q. Efficientnetv2: Smaller Models and Faster Training. In:
International Conference on Machine Learning (2021). Available at: https://
arxiv.org/abs/2104.00298v2.

28. Kido S, Hirano Y, Mabu S. Deep Learning for Pulmonary Image Analysis:
Classification, Detection, and Segmentation. Adv Exp Med Biol (2020)
1213:47–58. doi: 10.1007/978-3-030-33128-3_3

29. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al.
Artificial Intelligence and Deep Learning in Ophthalmology. Br J Ophthalmol
(2019) 103(2):167–75. doi: 10.1136/bjophthalmol-2018-313173
Frontiers in Oncology | www.frontiersin.org 10
30. Craik A, He Y, Contreras-Vidal JL. Deep Learning for Electroencephalogram
(EEG) Classification Tasks: A Review. J Neural Eng (2019) 16(3):031001.
doi: 10.1088/1741-2552/ab0ab5

31. Chung SW, Han SS, Lee JW, Oh KS, Kim NR, Yoon JP, et al. Automated
Detection and Classification of the Proximal Humerus Fracture by Using
Deep Learning Algorithm. Acta Orthop (2018) 89(4):468–73. doi: 10.1080/
17453674.2018.1453714

32. Al-Antari MA, Han SM, Kim TS. Evaluation of Deep Learning Detection and
Classification Towards Computer-Aided Diagnosis of Breast Lesions in
Digital X-Ray Mammograms. Comput Methods Programs Biomed (2020)
196:105584. doi: 10.1016/j.cmpb.2020.105584

33. Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al.
Deep Learning Approach for Evaluating Knee MR Images: Achieving High
Diagnostic Performance for Cartilage Lesion Detection. Radiology (2018) 289
(1):160–9. doi: 10.1148/radiol.2018172986

34. Hwang EJ, Park CM. Clinical Implementation of Deep Learning in Thoracic
Radiology: Potential Applications and Challenges. Korean J Radiol (2020) 21
(5):511–25. doi: 10.3348/kjr.2019.0821

35. Halland M, Ravi K, Barlow J, Arora A. Correlation Between the Radiological
Observation of Isolated Tertiary Waves on an Esophagram and Findings on
High-Resolution Esophageal Manometry. Dis Esophagus (2016) 29(1):22–6.
doi: 10.1111/dote.12292

36. Stiennon OA. On the Cause of Tertiary Contractions and Related
Disturbances of the Esophagus. Am J Roentgenol Radium Ther Nucl Med
(1968) 104(3):617–24. doi: 10.2214/ajr.104.3.617

37. Triadafilopoulos G, Castillo T. Nonpropulsive Esophageal Contractions and
Gastroesophageal Reflux. Am J Gastroenterol (1991) 86(2):153–9.
doi: 10.1007/BF02761018

38. DiPalma JA, Prechter GC, Brady CE3rd. X-Ray-Negative Dysphagia: Is
Endoscopy Necessary? J Clin Gastroenterol (1984) 6(5):409–11.
doi: 10.1097/00004836-198410000-00003

39. Gupta S, Levine MS, Rubesin SE, Katzka DA, Laufer I. Usefulness of Barium
Studies for Differentiating Benign and Malignant Strictures of the Esophagus.
AJR Am J Roentgenol (2003) 180(3):737–44. doi: 10.2214/ajr.180.3.1800737

40. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated
Classification of Pulmonary Tuberculosis by Using Convolutional Neural
Networks. Radiology (2017) 284(2):574–82. doi: 10.1148/radiol.2017162326

41. Kim KH, Choi SH, Park SH. Improving Arterial Spin Labeling by Using Deep
Learning. Radiology (2018) 287(2):658–66. doi: 10.1148/radiol.2017171154

42. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP.
Performance of a Deep-Learning Neural Network Model in Assessing Skeletal
Maturity on Pediatric Hand Radiographs. Radiology (2018) 287(1):313–22.
doi: 10.1148/radiol.2017170236

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, She, Gao, Feng, Tan, Min and Xu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
June 2022 | Volume 12 | Article 766243

https://doi.org/10.1016/j.gie.2019.09.034
https://doi.org/10.1053/j.gastro.2019.11.030
https://doi.org/10.1053/j.gastro.2019.11.030
https://doi.org/10.1136/gutjnl-2018-317573
https://doi.org/10.1136/gutjnl-2018-317573
https://doi.org/10.1016/j.gie.2018.07.037
https://doi.org/10.1136/gutjnl-2019-319460
https://doi.org/10.1136/gutjnl-2019-319460
https://doi.org/10.1016/S1470-2045(19)30637-0
https://doi.org/10.1158/1078-0432.CCR-20-3159
https://doi.org/10.1038/s41467-020-18147-8
https://doi.org/10.1038/s41467-020-18147-8
https://doi.org/10.1016/j.cgh.2019.09.009
https://doi.org/10.1053/j.gastro.2020.04.062
https://doi.org/10.1007/s00535-018-1514-7
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/2104.00298v2
https://arxiv.org/abs/2104.00298v2
https://doi.org/10.1007/978-3-030-33128-3_3
https://doi.org/10.1136/bjophthalmol-2018-313173
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1080/17453674.2018.1453714
https://doi.org/10.1080/17453674.2018.1453714
https://doi.org/10.1016/j.cmpb.2020.105584
https://doi.org/10.1148/radiol.2018172986
https://doi.org/10.3348/kjr.2019.0821
https://doi.org/10.1111/dote.12292
https://doi.org/10.2214/ajr.104.3.617
https://doi.org/10.1007/BF02761018
https://doi.org/10.1097/00004836-198410000-00003
https://doi.org/10.2214/ajr.180.3.1800737
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1148/radiol.2017171154
https://doi.org/10.1148/radiol.2017170236
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Development of a Deep Learning System to Detect Esophageal Cancer by Barium Esophagram
	Introduction
	Methods
	Overview of the Algorithm Framework
	Datasets
	Preprocessing
	Development of the Algorithm
	Evaluation of the Algorithm
	Statistical Analysis

	Results
	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


