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This study examines the status of nonmodal phonation (e.g. breathy and creaky voice) in
British English using smartphone recordings from over 2,500 speakers. With this novel
data collection method, it uncovers effects that have not been reported in past work, such
as a relationship between speakers’ education and their production of nonmodal
phonation. The results also confirm that previous findings on nonmodal phonation,
including the greater use of creaky voice by male speakers than female speakers,
extend to a much larger and more diverse sample than has been considered
previously. This confirmation supports the validity of using crowd-sourced data for
phonetic analyses. The acoustic correlates that were examined include fundamental
frequency, H1*-H2*, cepstral peak prominence, and harmonic-to-noise ratio.
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1 INTRODUCTION

Creaky voice—a type of nonmodal phonation resulting from the constriction of the glottis—has
inspired a steady stream of frenzied editorials and news pieces in the American and British media
over the past decade. The Spectator asked whether “creaky voice make[s] you a female yuppie—or an
updated Vicki Pollard?” The Washington Post claimed that it hurts young women’s job prospects,
and AARP The Magazine warned that it could damage their vocal cords. Despite this attention from
the popular media, there has been little scholarly inquiry into the status of nonmodal phonation in
British English since the 1980s (Henton and Bladon, 1985). While nonmodal phonation has received
more attention in American English, most studies of it have relied on sample sizes of less than 50
participants and have been limited to speakers from specific geographical areas, age groups, and
socioeconomic classes. This study attempts to address these gaps by investigating the use of
nonmodal phonation in a diverse group of over 2,500 speakers from across the United Kingdom.

1.1 Phonation Types
Phonation types refer to the different methods of producing sound through the vibration of the vocal
cords (Keating et al., 2015). These types can be divided into two broad categories: modal and
nonmodal. In modal phonation, the vocal folds make full contact during the closed phase of the
phonatory cycle; this is not the case in nonmodal phonation (Titze, 1995). Ladefoged (1971)
represented phonation types as falling on a one-dimensional articulatory continuum based on the
degree of glottal constriction, an assumption that underlies much of the literature on this topic
(Yuasa, 2010; Keating et al., 2015; Lancia et al., 2016).

Creaky voice and breathy voice are specific types of nonmodal phonation. In this paper, the
umbrella term is used when discussing multiple types of nonmodal phonation simultaneously or
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when the acoustic correlates in question would not allow the
authors to distinguish between different kinds of nonmodal
phonation. When appropriate, the more specific terms
are used.

1.2 Acoustic Correlates of Nonmodal
Phonation
Multiple acoustic measures may be necessary to fully describe
the phonation types on this articulatory continuum, the most
common of which are H1-H2 and harmonics-to-noise ratio
(HNR). H1-H2 is the difference between the first and second
harmonics. The first harmonic is the fundamental frequency,
and the second harmonic is the first multiple of the
fundamental. H1-H2 serves as a measure of spectral tilt,
which is highly correlated with the degree of glottal
constriction. In general, lower H1-H2 is associated with
creaky voice, while higher H1-H2 occurs with breathy voice
(Keating and Esposito, 2006). HNR describes the periodicity of
the speech signal; nonmodal phonation results in lower HNR
values than modal phonation, as the vibration of the vocal
cords is usually less regular (Garellek and Seyfarth, 2016).
Cepstral peak prominence (CPP), another measure of
periodicity, has also been used to distinguish between
modal and nonmodal phonation (Heman-Ackah et al.,
2014; Garellek and Seyfarth, 2016). Heman-Ackah et al.
(2014) suggested that CPP is a better measure of periodicity
than HNR because it does not rely on pitch tracking and is
therefore reliable even for very aperiodic signals. The relative
values of H1-H2, HNR, and CPP typically associated with
modal, breathy, and prototypical creaky voice are represented
in Figure 1 (Garellek, 2012).

Dallaston and Docherty (2020) conducted a systematic review
of studies of creaky voice in different varieties of British and
American English. They suggested increasing the use of
automated acoustic measurement of phonation types, as only
one of the nine studies that met their inclusion criteria used this
methodology. They argued that using such methods could
increase the replicability and scalability of previous
conclusions about the status of creaky voice in English, a gap
which the present study addresses.

1.3 Sex Differences in the Production of
Nonmodal Phonation
Previous work has found differences in the production of
nonmodal phonation between men and women using read
and spontaneous speech, typically with sample sizes of less
than 50 participants and manual coding of phonation types.
Henton and Bladon (1985) investigated sex and dialect
differences in breathy voice in Received Pronunciation (RP)
and Northern British English speakers’ open vowels. They
selected citation forms of the open vowels /æ/, /Λ/, /ɒ/, and
/ɒ/ from 61 speakers in a preexisting corpus and measured their
rawH1-H2 values. The study found that British women produced
breathy voice more often than their male counterparts, and that
male speakers used creaky voice more frequently than female
speakers. Hanson et al. (2001) examined sex differences in the
production of open vowels in non-spontaneous speech as part of
a larger study on models of phonation types. Specifically, they
elicited the vowels /æ/, /Λ/, and /ϵ/ in carrier phrases from 21
male and 22 female participants. The authors reported two
measures of spectral tilt, both corrected for the boosting
effects of nearby formants: H1*-A3*, the difference between
the amplitude of the first harmonic and the third formant,
and H1*-A1, the difference between the amplitude of the first
harmonic and the first formant. They concluded that these
measures were useful for distinguishing between male and
female speakers and that there was wide variation in glottal
configuration for both male and female speakers.

Yuasa (2010) investigated sex differences in American English
speakers’ production of creaky voice. She elicited spontaneous
speech from 23 California English speakers, randomly selected
401-word samples from each one, and impressionistically coded
occurrences of creaky voice. She found that women produced
more creaky voice than men, a finding which was supported by
Podesva (2011). However, Dallaston and Docherty (2020)—who
included Yuasa (2010) in their systematic review of creaky voice
in English—did not find conclusive evidence to substantiate
claims of a widespread increase in the use of creak by young
American women.

Garellek and Seyfarth (2016) examined acoustic differences
between /t/ glottalization and phrasal creak. They used
recordings of spontaneous speech from a gender-balanced
corpus of 40 adults in Ohio. The researchers identified
creaky phonation using preexisting annotations in the
corpus and manual inspection. They concluded that linear
discriminant models could be used to distinguish between
different sources of creaky voice and that CPP was
important for identifying this distinction.

1.4 Accent and Ethnicity in the Production
of Nonmodal Phonation
The roles of demographic factors such as accent and ethnicity
in the production of nonmodal phonation have been studied
less extensively than that of sex. However, existing literature
suggests that they may be related as well. Within British males,
Henton and Bladon (1985) found that RP speakers creaked

FIGURE 1 | Acoustic measures of breathy and creaky nonmodal
phonation. Values (higher and lower) are presented relative to those for modal
phonation (adapted from Garellek (2012)).
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more than Northern British English speakers. More recently,
San Segundo et al. (2019) identified instances of creaky voice in
“nearly all” of the 99 Standard Southern British English
speakers they studied.

Ethnicity may also play a role in nonmodal phonation. For
instance, Alim (2004) linked African American identity to falsetto
and “strained” voice qualities. Podesva and Callier (2015) noted
that listeners could distinguish African American English
speakers from white ones, even in the absence of lexical and
syntactic features of African American Vernacular English. They
suggested that nonmodal phonation could be responsible for this
result.

In this study, we present the first large-scale acoustic analysis
of nonmodal phonation for more than 2,500 speakers of British
English. We examine how geography, word duration, and social
factors such as sex, age, and education level affect the production
of nonmodal phonation.

1.5 Hypotheses
We investigated the following hypotheses based on the findings
described in Sections 1.1 through 1.4. The acoustic correlates
used to investigate each hypothesis are described in greater detail
in Section 2.5.

• Young, highly educated women creak more than men of a
similar age (Yuasa, 2010; Podesva, 2011; Melvin and
Clopper, 2015).

• These young, highly educated women also creak more than
older men and women (Yuasa, 2010; Podesva, 2011; Melvin
and Clopper, 2015).

• Men (of all ages) creak more than women (Henton and
Bladon, 1985; Foulkes and Docherty, 1999).

2 METHODS

2.1 Recording Method
Phonetic studies typically investigate research questions by having
speakers utter words and short sentences in recording chambers at a
university. Experiments under laboratory conditions allow
researchers maximal control over the context of the recording
and the material. However, the recording environment affects the
variables of interest (Wagner et al., 2015). For example, these
recording chambers do not provide the most naturalistic
environment for communication, and this environment typically
limits the diversity of the recorded speakers (Henrich et al., 2010;
Arnett, 2016). Results are therefore biased toward the group to which
scholars have access, which is typically young students. Furthermore,
experiments on the university campus limit the number of
participants, which ranges from five to 20 in many phonetic
studies and as high as 100 or 200 on rare occasions. Small
sample sizes lower the probability of detecting a true effect and
raise the probability of false positives (Button et al., 2013).

With the rise of the internet, researchers can access a larger
and more diverse group of participants than ever before. In
addition, speakers can perform experiments in surroundings in
which they feel the most comfortable. Though it requires a trade-

off with potential variation in recording quality, the use of social
media and private recording devices increases researchers’ ability
to obtain more natural speech from a larger and more diverse
group of participants.

In the present paper, we follow this argumentation. In order to
record as many speakers as possible from as different
backgrounds as possible, we opted to investigate phonation
types not in a laboratory but rather by allowing speakers to
record their voices on their own phones. To do so, we used the
English Dialects App (Leemann et al., 2018), a smartphone
program that allows users to record short passages in their
native accents and dialects.

2.2 Materials
Before recording the passage, users provided data about their age,
gender, education level, mobility, and ethnicity and identified their
dialect by placing a pin on the locality that best corresponded to it.
They then consented to the privacy agreement shown on the
metadata screen. Next, participants were shown the following
recording instructions: “Please record your voice in a quiet place.
Hold your device approximately 6 inches/15 cm from your mouth.
Please use your regional accent or dialect and speak in the way you
would talk to your friends from home.” After reading these
instructions, users created and uploaded recordings, in which
they read a passage from “The Boy Who Cried Wolf” sentence
by sentence (Deterding, 2006). The user interface then prompted
speakers to self-declare their dialect by placing a pin on amap and to
provide other metadata, such as age and gender. After recording,
users were able to click “play” to hear their recordings and were able
to re-record them if they were unsatisfied. Once satisfied, they could
then navigate an interactive map where their and others’ recordings
were uploaded. Upon submitting the recordings, users were shown
the following notification: “by clicking ‘start recording’, you agree
with our privacy policy, see info tab.” None of the information
elicited–about accent, age, gender, et cetera–allows for
identification of a user in the database, either individually or
when considered in combination. Please see Leemann et al.
(2018) for more detail about the corpus structure and
demographic makeup of the speakers.

2.3 Speakers
Because the original data did not contain any participant identifiers,
we created a participant ID using latitude, longitude, age, gender,
education level and ethnicity. This yielded 2,931 participants. On
that basis, we found that some participants had recorded the same
stimuli more than once in different sessions. We excluded those
participants (N � 159) from the analysis, leaving 2,772 speakers. We
also excluded speakers from the analysis who had not yet finished
school (N � 208), leaving us with a total of N � 2,564 on whom
acoustic analyses were performed.

2.4 Signal Processing
The words used in this study were selected from the 10 sentences
in “The Boy Who Cried Wolf.” Words were considered if and
only if they consisted solely of vowels and voiced consonants, i.e.
sonorants or phonemically voiced obstruents. The sole exception
was the /h/ in “however.”
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To narrow down this word list, recordings were automatically
segmented using WebMAUS (Kisler et al., 2017), which aligned
recordings with the corresponding sentence’s orthographic and
phonemic transcription. The SAMPA phonemic transcriptions of
these utterances were generated using the MAUS grapheme-to-
phoneme (G2P) model and were manually verified before use.
For each word, a random subset of 25 recordings was examined
by hand to ensure that the forced alignments were correct. Words
were only selected for analysis if at least 24 out of the 25
recordings were correctly aligned. This process led to a final
list of six words in utterance-initial, medial, and final positions:
“being,” “boy,” “gave,” “however,” “one,” and “while.” These
words were then extracted from their respective utterances
using a Praat (Boersma and Weenink, 2020) script and the
TextGrids generated by WebMAUS.

We applied several methods to ensure that the extracted
recordings actually contained the words of interest. We flagged
words automatically on the basis of duration comparison and a
calculation of zero crossing. The accuracy of the word boundaries
in these recordings was then manually verified. We furthermore
trimmed white spaces in an automatic procedure using the
amplitude envelope as a measure of signal onset and offset.
After this procedure, we analyzed all six words for 1,958
speakers, five words for 423 speakers, four words for 103
speakers, three words for 24 speakers, two words for 24
speakers, and one word for 32 speakers.

2.5 Data Analysis
As noted in Section 1.2, a wide variety of acoustic correlates have
been used to study nonmodal phonation in previous literature.
All commonly used metrics were investigated in this study to
ensure comparability with prior work. These included HNR35,
H1*-H2*, CPP, and F0. We used the corrected H1*-H2* rather
than the rawH1-H2measure to account for the fact that formants
raise the amplitudes of nearby harmonics, making it difficult to
compare H1-H2 values across different vowels (Hanson et al.,
2001). This study used the correction formula described by Iseli
et al. (2007) and implemented in VoiceSauce, which subtracts the
amount by which the formants raise the harmonics to recover the
magnitudes of the source spectrum. HNR35 is the harmonic-to-
noise ratio measured between zero and 3,500 Hz. Each of the
measures was calculated for 10 time steps across the word, and the
mean value of those measurements was used for analysis.
Numerical predictors were z-scaled to allow for comparability
of the effect sizes. The following variables were used as predictors
in our analyses:

• Gender (reference “female”).
• Age (mean � 34.3, sd � 14.8).
• Latitude and longitude of the location where the recording

was performed. Pilot analyses revealed no effect of latitude
and longitude, so these variables were omitted in the final
models.

• Education level. Speakers were asked to select the degree of
their education level. Possible answers were, in decreasing
rank: “Higher Education (BA, BSc, MA etc., PGCE) and
professional/vocational equivalents”; “A levels, Bac,

vocational level 3 etc.”; “5 GCSE grade A*-C, 5 O-Levels,
vocational level 2 etc.”; “Fewer than 5 GCSE grade A*-C, or
fewer than 5 O-Levels,” “unknown,” and “No
qualifications.” We transformed education level into a
ranked scale, where higher values corresponded to higher
education levels and vice versa. It is possible that education
level is strongly correlated with age, posing a problem of
collinearity in the model. Although the Spearman’s rank-
correlation between education level and age was significant
in the present study, it was not strong enough to be harmful
to the regression analysis (ρ � 0.23, p < 0.001).

• The duration of the word. Word duration was log-
transformed to reduce overly strong influence from outliers.

• Mean fundamental frequency in the extracted word (F0).

We used linear mixed-effects regression (LMER, Bates et al.
(2015)) to investigate the relationship between these predictors
and our measures of nonmodal phonation. We accounted for
systematic effects of speakers by including random intercepts for
subjects and for systematic effects of items by including random
intercepts for words. Given that random intercepts shrink strong
outliers more towards the mean than those already close to the
mean, an estimate of p-values is not possible. Rather, the
significance of LMER models is derived from the t-value.
Absolute t-values (with t � estimate/standard error) larger
than 2 are regarded to indicate a significant effect. We also
included random slopes by participant. The predictors that
were included as random slopes are indicated below in the
Results section.

We performed an exploratory top-down and bottom-up
statistical analysis, comparing different models using AIC and
inspecting the significance of predictors and interactions. The
final model structure included a main effect for word duration,
gender, education level and an interaction between Gender and
Speaker Age. In addition, F0 was used as a main effect in models
fitting HNR35, H1*-H2*, and CPP.

3 RESULTS

3.1 The F0 Measure
We tested models with three different F0 trackers: Snack
(Sjölander, et al., 1998), STRAIGHT (Kawahara et al., 1998),
and SHR (Sun, 2002). We used the output from each of these
trackers as dependent variables and found that STRAIGHT

TABLE 1 | Linear mixed-effects regression summary table for F0. Absolute
t-values larger than 2 are regarded to indicate significance and are highlighted
in bold.

Estimate Std. Error t-value

(Intercept) 221.267 7.527 29.398
Word duration −2.468 0.350 −7.073
Gender � Male −85.131 0.940 −90.742
Speaker age −7.855 0.660 −11.894
Education level −2.954 0.411 −7.172
Gender � Male : Speaker age 5.929 0.935 6.341
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yielded the best model fit (total AIC decrease of 5,280 between
Snack and Straight, with SHR in between). We included word
duration as correlated random slopes by participant.

The final model, summarized in Table 1, found lower F0 values
in longer words and for male, older, and less educated speakers. The
first row of Figure 2 visualizes the results, where F0 is represented on
the y-axis and the predictor on the x-axis. Furthermore, the
significant gender and age interaction indicates that the effect of
age was smaller in male speakers than in female speakers.

3.2 The HNR35 Measure
Testing models with HNR05, HNR15, HNR25 and HNR35 as
dependent variables against each other, we found that the HNR35
measure resulted in the best model fit (AIC decrease of 7,031
between HNR05 and HNR35, with HNR15 and HNR25 in
between). In addition to the predictors presented above, we
included F0 as a predictor for HNR. In spite of its significant
correlation with all other predictors, no effects of suppression, i.e.
changes in signs, and enhancement, i.e. anti-conservative
p-values, were present in this and all of the following models,
which is why we regard its inclusion as safe (cf. Tomaschek et al.
(2018)). We included F0 as correlated random slopes by
participant. The model failed to converge with word duration
as random slopes.

The second row of Figure 2 illustrates the results. We found
significantly lower HNR values in words with lower mean F0, in
shorter words, in male speakers relative to female speakers, and in
speakers with higher education levels. The significant gender and
age interaction indicates that female speakers’ HNR values
increase as they get older, while this effect is reversed for male
speakers. Note that the effect size is strongest for F0 and smaller
by an order of 10 for all other predictors. This difference in effect
size is mirrored in the other measures.

3.3 The H1*-H2* Measure
We included F0 as uncorrelated random slopes by participant to
the model fitting H1*-H2*. The model failed to converge with
word duration as random slopes. The third row of Figure 2 shows
the results for H1*-H2*. We found lower H1*-H2* values in
words with lower mean F0, in male speakers than in female
speakers, and in longer words than in shorter words. The
significant gender-age interaction indicates that older male
speakers have lower H1*-H2* values. No effect of age was
found for female speakers. Also, no effect was found for

education level. Overall, the size of the effects is comparatively
smaller for H1*-H2* than for F0 and HNR.

3.4 The CPP Measure
We included F0 as correlated random slopes by participant to the
model fitting CPP. The model failed to converge with word
duration as random slopes. The bottom row of Figure 2
displays the effects of CPP. Pitting the CPP measure against
our predictors, we found significantly lower CPP values
associated with higher F0 values and with older age (see
Table 4). None of the other effects yielded significance.

4 DISCUSSION

This discussion will consider the effect of demographic variables
(sex, age, and education level) and F0 on the production of
nonmodal phonation in British English. The results indicate
that male speakers, older speakers, and more educated
speakers produce more nonmodal phonation than female,
younger, and less educated speakers and that more nonmodal
phonation is associated with lower F0. We will end the discussion
with a note on limitations.

4.1 Sex
Overall, our findings demonstrated that male speakers produced
more creaky voice than female speakers. This was borne out in the
fact that men had lower HNR than women, where lower HNR is
associated with less periodicity in the speech signal and more
nonmodal phonation. H1*-H2*, which measures the difference
between the first and second harmonics, was also lower for men
than for women, confirming that men creaked more than women.
These findings are consistent with Henton and Bladon (1985) and
Foulkes and Docherty (1999), who, for a subset of UK speakers,
found that male speakers tended to produce more creaky voice
than female speakers. In American English, two relatively recent
studies (Yuasa, 2010; Podesva, 2011) demonstrated that women
creaked more than men; the present results indicate that this
phenomenon is not present in British English.

4.2 Age
Older speakers generally produced more creaky voice than
younger speakers, though this effect was modulated by sex.
Overall, older participants exhibited lower HNR35 and H1*-
H2* values than younger ones. These findings on HNR are
consistent with research on presbyphonia, or age-related
changes to the vocal tract. For instance, Lortie et al. (2015)
similarly found that older speakers tended to have lower HNR
values than younger and middle aged ones.

Further investigation revealed that this relationship differed
between sexes. For men, HNR35 and H1*-H2* followed the
overall trend of decreasing with age, indicating that older men
produced more creaky voice than younger ones. However, the
opposite was true for women. This finding contrasts with that of
Ferrand (2002), who found that elderly females had substantially
lower HNR35 values than the two other age cohorts they
compared to.

TABLE 2 | Linear mixed-effects regression summary table for HNR35. Absolute
t-values larger than 2 are regarded to indicate significance and are highlighted
in bold.

Estimate Std. Error t-value

(Intercept) 36.871 1.374 26.823
F0 2.661 0.096 27.787
Word duration 0.678 0.058 11.777
Gender � Male −3.750 0.239 −15.705
Speaker age 0.608 0.136 4.469
Education level −0.244 0.087 −2.796
Gender � Male : Speaker age −0.808 0.199 −4.068
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4.3 Education Level
The results for education level suggest that more educated
speakers produced more creaky voice. Specifically, they
exhibited both lower F0 and HNR values. Lower HNR

indicates increased likelihood of nonmodal phonation—either
creaky or breathy—while lower F0 suggests that the speakers
produce creaky voice. These findings mirror those found for
highly educated women in the U.S. (as described in Section 1.3).

FIGURE 2 |Model estimates for the four measures of modal voice. First row: F0, second row: HNR, third row: H1*-H2*, bottom row: CPP. Predictors are illustrated
in the columns (adapted from Garellek (2012)).
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Voice disorders, such as dysphonia, may also help explain this
association between education level and the production of creaky
voice. Roy et al. (2005) reported that the lifetime prevalence of
self-reported voice disorders could be as high as 29.9 percent in
the general population, while Bhattacharyya (2014) found that it
was closer to 7.6 percent. Occupational voice users, such as
teachers and singers, report a high prevalence of such
disorders and may tend to be more highly educated
(Timmermans et al., 2002). Timmermans et al. (2002)
reported a statistically significant difference in acoustic
measures of voice disorders between a group of occupational
voice users and a control group. These measures included jitter
and the highest possible F0 produced by each subject.

However, other investigations such as Niebudek-Bogusz et al.
(2006) and Lehto et al. (2006) have not established a significant
relationship between self reports of voice disorders in
occupational voice users and objective acoustic measures of
these disorders. Furthermore, the effect found in this
investigation was a significant relationship between education
and HNR35; this relationship was not significant for CPP, which
Heman-Ackah et al. (2014) indicated was a better acoustic
measure of dysphonia.

4.4 F0
Findings on sex and age differences in F0 align with previous
research in this area, suggesting that the large-scale automated F0
tracking produced valid results. For instance, men exhibited a
lower F0 than women. We also found that women’s F0 decreased
with age, an effect that is consistent with research on
presbyphonia (Linville and Fisher, 1985; Bruzzi et al., 2017).
Lower F0 was generally associated with more nonmodal
phonation, even when sex was taken into account. Lower
values of H1*-H2*, HNR, and CPP, all of which indicate an
increased likelihood of nonmodal phonation, were associated
with lower F0. This may occur because lower frequencies of
vocal fold vibration make it more likely that phonation becomes
irregular, and thus creaky (Keating et al., 2015).

4.5 Comparison of Measures
We found that the strongest effects of gender, age and education
level could be observed for F0, followed by HNR35, H1*-H2*.
Our predictors showed the weakest effects for CPP. The small
effect sizes for the non-F0 measures could be a result of the fact

that F0 was used as a predictor in these models, accounting for a
large proportion of the variance.

4.6 Limitations
Mobile phone recordings allowed for the development of a large
and diverse data set, but this data collection method is not
without its limitations. For example, European privacy
regulations prohibited the collection of information about the
sampling rate, bit rate, and type of encoding used by the different
smartphone devices. Unknown recording conditions may have
have also negatively impacted signal quality, as signals with more
noise produce less reliable acoustic analyses and forced
alignments. Despite a lack of a control of signal type, we still
found the same patterns of phonation type variation across the
United Kingdom as in previous studies that used controlled
acoustic measurements. Crowd-sourced data requires a trade-
off between a relative lack of control of signal quality and large,
diverse data sets.

A number of studies have demonstrated that smartphone
devices produce similar acoustic measurements to those found
in laboratory recordings. Smartphone recordings have been
shown to be sufficient for formant analysis (Decker and Nycz,
2011). Grillo et al. (2016) demonstrated that various Apple and
Samsung smartphones produced similar F0, HNR, and CPP
measurements to laboratory-quality microphones. A more
recent study by Jannetts et al. (2019) considered four different
devices (Samsung Galaxy S8+, iPhone 6s, iPhone 7, and Samsung
Galaxy J3) and their effects on acoustic parameters. When
compared to a reference microphone (Neumann U89i), they
reported that acoustic parameters could be measured with
smartphones with varying degrees of reliability. F0 and CPP,
for example, provided relatively robust measures, while jitter and
shimmer, which were not included in this study, did not. Jannetts
et al. (2019) found that Samsung phones produced F0 values that
were slightly higher than the reference measurements, while the
Apple phones were slightly too low, though these errors never
exceeded 2Hz. For CPP measures, all phones revealed somewhat
lower values than the reference measures (Samsung c. -0.5dB;
Apple -08 to -1dB). Note, though, that the authors state that these
errors are so low that “their practical relevance is probably
limited.” Furthermore, CPP measures did not provide
significant effects in our statistical models. Unfortunately,
Jannetts et al. (2019) did not study the devices’ effects on
HNR parameters.

TABLE 3 | Linear mixed-effects regression summary table for H1*-H2*. Absolute
t-values larger than 2 are regarded to indicate significance and are highlighted
in bold.

Estimate Std. Error t-value

(Intercept) 2.695 0.368 7.320
F0 4.563 0.113 40.134
Word duration −0.115 0.048 −2.415
Gender � Male −0.740 0.173 −4.274
Speaker age 0.186 0.095 1.962
Education level −0.032 0.063 −0.507
Gender � Male : Speaker age −0.303 0.141 −2.140

TABLE 4 | Linear mixed-effects regression summary table for CPP. Absolute
t-values larger than 2 are regarded to indicate significance and are highlighted
in bold.

Estimate Std. Error t-value

(Intercept) 19.310 0.276 69.924
F0 −0.468 0.040 −11.678
Word duration −0.039 0.026 −1.497
Gender � Male 0.082 0.096 0.854
Speaker age −0.277 0.052 −5.369
Education level 0.064 0.033 1.907
Gender � Male : Speaker age −0.081 0.076 −1.062
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As an anonymous reviewer has pointed out, voiced plosives
and glides create F0 contours (Ladd and Schmid, 2018), which
will influence the HNR values. These kind of dynamic changes are
inherent to the natural speech that was the focus of the current
study. As a consequence, it is almost impossible to extract
phonetic signals with constant F0. We therefore rather focus
on a large number of samples with dynamic F0, such that any
effects of dynamic transitions will be averaged across words and
speakers in a large data set like the present one. Our results mirror
the findings from studies that used highly controlled recording
environments and measurements from vowels, which suggests
that this was a valid approach.

We did not collect data on the socioeconomic or health status
of our subjects due to privacy concerns, and these variables could
have impacted our findings, particularly to the extent that they
may be related to dysphonia. For example, Cohen et al. (2012)
found that a plurality of dysphonia-related health insurance
claims in the United States were filed by workers in lower
paid manufacturing jobs. Dysphonia also frequently co-occurs
with other health conditions, such as bronchitis and pneumonia
(Cohen et al., 2012). Future studies should consider whether and
how to collect such data at scale and its relationship with the
production of nonmodal phonation.

5 CONCLUSION

Further research should attempt to address these concerns and
consider the perceptual and phonological implications of this
study’s findings. A natural progression of this work would be to
conduct a perceptual study of phonation type measures. That is,
do listeners perceive a difference in phonation type if words or
utterances are resynthesized with different values for F0, H1*-
H2*, CPP, HNR, etc.? Future studies should also consider the
effect of phrase position on nonmodal phonation, as it has been
suggested that creaky voice often occurs phrase-finally (Henton,
1986; Podesva and Callier, 2015).

The results of this study indicate that conclusions about the
interaction of age, sex and nonmodal phonation from the 1980s
and 1990s with small and geographically limited samples hold true
for a large and demographically diverse group of current-day
British English speakers. The use of crowd-sourced big data also
allowed this study to uncover previously unobserved effects, such
as a relationship between nonmodal phonation and education
level. Taken as a whole, these results support the validity of using
big data in phonetic studies and demonstrate that other researchers
should use such data sets to confirm or challenge previous
conclusions about the acoustic properties of British English speech.
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