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Direct synthesis of formic acid from carbon dioxide
by hydrogenation in acidic media
Séverine Moret1, Paul J. Dyson1 & Gábor Laurenczy1

The chemical transformation of carbon dioxide into useful products becomes increasingly

important as CO2 levels in the atmosphere continue to rise as a consequence of human

activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a

homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO),

without any additives. In water, at 40 �C, 0.2 M formic acid can be obtained under 200 bar,

however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts

can be reused multiple times without a decrease in activity. Worldwide demand for formic

acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and

its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation,

is considerably more sustainable than the existing routes.

DOI: 10.1038/ncomms5017 OPEN

1 Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. Correspondence and
requests for materials should be addressed to G.L. (email: gabor.laurenczy@epfl.ch).

NATURE COMMUNICATIONS | 5:4017 | DOI: 10.1038/ncomms5017 | www.nature.com/naturecommunications 1

& 2014 Macmillan Publishers Limited. All rights reserved.

mailto:gabor.laurenczy@epfl.ch
http://www.nature.com/naturecommunications


C
oncerns over carbon dioxide levels in the atmosphere,
which have reached ca. 400 p.p.m.1,2, are leading to
political targets and scientific/technological efforts to

reduce CO2 emissions and to capture CO2 and store it within
porous rock formations3–6. Converting CO2 into useful feedstock
chemicals and fuels represents another important strategy that
not only removes CO2 from the atmosphere, but also reduces
dependence on petrochemicals7,8. In this context much progress
has been made in recent years and several reactions have been
commercialized. Examples of products now derived from CO2

include urea, salicylic acid and polyols3. Recently, a company in
Iceland started using renewable energy to convert CO2 into
methanol, in the region of 1,600 T per year9. However, human
activity contributes B35 GT of CO2 to the atmosphere per year
and there is clearly a considerable gap between the amount of
CO2 produced and the amount consumed.

Ideally a multitude of chemical products should be derived
from CO2 (ref. 10) and an important one, as it may be employed
as both a feedstock chemical and a fuel, is formic acid. Currently
worldwide production of formic acid, obtained from the
combination of methanol and carbon monoxide with a strong
base, is in the order of 800,000 T per year and is used in the textile
industry, cleaning and as a preservative, to name a few. Demand
could increase considerably due to the development of efficient
formic acid dehydrogenation catalysts that could find widespread
application within the context of a hydrogen economy11. Today,
with the exception of fossil fuels, practical hydrogen storage
systems use pressurized bottles or cryogenic conditions12. As
formic acid (HCOOH) has a volumetric hydrogen density of 53 g
of H2 per liter, a low-toxicity and is a liquid under ambient
conditions, it is an ideal hydrogen storage material for certain
applications13,14. Hydrogen production from formic acid has
been achieved with a variety of homogeneous and heterogeneous
catalysts15,16. Although most catalysts are based on noble metals,
recent complexes based on iron (a cheap and abundant element)
highlight the validity of such systems within the context of a
hydrogen economy17. The concept of the hydrogen storage in the
form of formic acid would, however, be even more attractive
should a viable catalyst for the reverse reaction become available,
that is, a catalyst that reduces carbon dioxide with hydrogen and
in the absence of a base18–22 (Fig. 1).

Several catalysts are available for both reactions, and in general,
hydrogen production or consumption is controlled by the pH of
the solution23–26. However, the conversion of carbon dioxide into
formic acid is difficult owing to the high kinetic and
thermodynamic stability of CO2. The gas phase reaction has a
positive DG value because of an entropic contribution
(DG0¼ þ 33 KJ mol� 1), and the formation of formic acid is
more favourable in aqueous solution (DG0¼ � 4 KJ mol� 1) (ref.
20). For reactions performed in water, the CO2/H2CO3/HCO3

�

equilibrium, as well as the second deprotonation to CO3
2� , must

be taken into account (Supplementary Fig. 1). From these
equilibria and the kinetic studies performed on the hydrogenation
of bicarbonates at different pH values27 it is apparent that the
reaction is favourable in basic media, conditions where the actual
substrate is HCO3

� (DG0¼ � 35 KJ mol� 1) or CO3
2� .

In contrast to the direct reaction of H2 with CO2, the
hydrogenation of carbonate and bicarbonate are well-established
reactions28–30 that have been achieved in a wide variety of organic
solvents, ionic liquids, water and supercritical CO2 (ref. 20).
Currently, catalysts that show high activity in the hydrogenation
of CO2 require additives such as bases31,32, including amines33 or
buffers34,35, producing formate salts. Ogo et al.34,35 were able to
produce formic acid (0.06 M) from the direct reaction of H2 with
CO2 in an acidic buffer. The presence of base also complicates the
separation of formic acid from the reaction mixture although
ingenious approaches have been developed to overcome these
complications30,36. Herein, we describe a homogeneous
ruthenium catalyst that hydrogenates CO2 to formic acid in
acidic media, without the need of any bases, amines or buffers. In
aqueous solution, 0.2 M formic acid can be obtained, in dimethyl
sulphoxide (DMSO) the ruthenium(II) phosphine catalyst
provides 1.9 M formic acid.

Results
Direct carbon dioxide hydrogenation in water. In our initial
studies the hydrogenation of CO2 was explored in acidic
aqueous solutions using ruthenium(II) or rhodium(I) catalysts
with water soluble phosphine ligands, that is, 1,3,5-triaza-7-
phosphaadamantane (PTA), 3-methyl-1,3,5- triaza-7-phosphaa-
damantane (MePTA), meta-monosulphonated triphenylpho-
sphine (TPPMS) and meta-trisulphonated triphenylphosphine
(TPPTS; Supplementary Table 1). From these studies
[RuCl2(PTA)4] was found to be the most active catalyst affording
formic acid as the only product under the reaction conditions (at
the end of the reaction the pH of the solution is 2.70, Fig. 2 and
Supplementary Fig. 2). The ruthenium catalysts were typically 10
times more active than the rhodium analogues and the highest
yields were obtained for complexes containing PTA-type ligands,
that is, similar activities were observed for the PTA and MePTA
ligands, whereas complexes with TPPMS and TPPTS were less
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Figure 1 | The formic acid/carbon dioxide cycle for hydrogen storage.
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Figure 2 | 13C NMR signals of DCOOD in the hydrogenation reactions of

CO2 into formic acid in D2O. [RuCl2(PTA)4] (2.76 mM) was dissolved in

D2O (2 ml) under N2 atmosphere in a medium pressure sapphire NMR

tube. This solution was pressurized at room temperature to 50 bar with

CO2 and completed to 100 bar with H2. The system was heated to 60 �C

and the reaction was followed by 13C NMR (100 MHz) spectroscopy. The

figure shows the evolution of the 13C NMR signals of DCOOD at

166.3 p.p.m. (time difference between spectra Dt¼ 189 min). The triplet

signal of the formic acid is due to the exchange of the hydrogen to

deuterium in HCOOH (as D2O was used as solvent). Reaction time: 148 h.
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active. The reaction conditions were optimized for [RuCl2(PTA)4]
to improve performance and the dependence of the catalyst
concentration, pressure, P(H2)/P(CO2) ratio (Table 1) and tem-
perature (Supplementary Table 2) on formic acid production was
elucidated.

Under relatively mild conditions (60 �C, 30 bar CO2, 30 bar H2,
2.76 mM catalyst), [RuCl2(PTA)4] hydrogenates CO2 to afford a
0.03 M formic acid solution. The concentration of formic acid
produced depends on the gas pressure. With a P(H2)/P(CO2)
ratio of 1 increasing the total gas pressure from 60 bar to 100 bar
affords a 0.083 M formic acid solution (Table 1), and at a total gas
pressure of 200 bar the concentration of formic acid obtained is
0.204 M (Fig. 3).

The reaction was also studied at temperatures ranging from 23
to 90 �C under standard conditions ([RuCl2(PTA)4]¼ 2.76 mM,
total pressure¼ 100 bar and P(H2)/P(CO2) pressure ratio¼ 1, see
Fig. 4 and Supplementary Fig. 3 and Supplementary Table 2). As
the hydrogenation of CO2 is exothermic, increasing temperature
reduces the final formic acid concentration, which decreases to
0.032 M at 90 �C. The temperature dependence of the reaction
rate follows the Arrhenius law from which activation enthalpy of
þ 96 kJ mol� 1 was obtained (Supplementary Fig. 4).

Using the optimized catalytic system, recycling experiments
were performed and it was found that the catalyst could be reused
without the loss of activity (Supplementary Table 3).

Carbon dioxide hydrogenation in other solvents. As
[RuCl2(PTA)4] is able to directly hydrogenate carbon dioxide in
aqueous acidic solution, that is, at pH¼ 2.70, further studies were
performed in water-miscible ionic liquids, that is, 1-butyl-3-
methylimidazolium terafluoroborate ([BMIM][BF4]) and 1-butyl-
3-methylimidazolium tosylate ([BMIM][tos] where tos¼ the
p-CH3C6H4SO3

- anion), and in tetrahydrofuran and DMSO
(Table 2).

High activities were observed in DMSO/H2O with the catalytic
activity increasing as the water/solvent ratio was decreased.

Table 1 | Formic acid formation as function of the catalyst concentration (conc.), pressure and P(H2)/P(CO2) ratio*.

Entry Catalyst conc. (M) Pressure (bar) P(H2)/P(CO2) HCOOHw (M) TONz

1 0.00276 60 1 0.030 11
2 0.00276 70 1 0.042 15
3 0.00276 80 1 0.047 17
4 0.00276 100 1 0.083 30
5 0.00276 100 2.3 0.086 31
6 0.00276 100 4 0.070 25
7 0.00276 120 1.5 0.095 34
8 0.00276 150 2 0.124 45
9 0.00276 200 3 0.204 74
10 0.00063 100 1 0.100 159
11 0.00546 100 1 0.070 13
12 0.00063 60 1 0.035 56
13 0.00546 60 1 0.029 5

*[RuCl2(PTA)4] was dissolved in H2O (2 ml) under N2 atmosphere. This solution was pressurized at room temperature under CO2 followed by H2 to the required pressure. The system was heated at
60 �C and stirred until the equilibrium of the reaction was reached (48–84 h). The final yield of formic acid was determined by 1H NMR spectroscopy with DSS (DSS, 4,4-dimethyl-4-silapentane-1-
sulphonic acid) as an internal standard.
wAverage values from three to six measurements with a reproducibility of ±15%.
zTurn over number (TON), that is, the number of moles of CO2 (or H2) that one mole of catalyst converts into HCOOH.
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Figure 3 | Pressure dependence on the concentration of formic acid

obtained in the catalytic hydrogenation of CO2. Conditions: the catalyst

was dissolved in 2 ml H2O ([RuCl2(PTA)4]¼ 2.76 mM) under N2

atmosphere. This solution was pressurized at room temperature with CO2

(50 bar) and completed with H2 to the desired pressure. The system was

heated at 60 �C and stirred until the equilibrium of the reaction was

reached (72–96 h). The final yield of formic acid was determined by 1H

NMR spectroscopy with DSS as an internal standard. The values are

averaged from three to six measurements with a reproducibility of ±15%.

The trend line is shown as a guide and is not a mathematical fit of the data.
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Figure 4 | Influence of temperature on the hydrogenation of CO2 to

formic acid using [RuCl2(PTA)4] as the catalyst: 90 �C (brown circle),

60 �C (red diamond), 50 �C (blue square), 40 �C (green asterisk) and

30 �C (pink triangle). Conditions: [RuCl2(PTA)4] was dissolved in H2O

(2.76 mM, 2 ml), under N2 atmosphere. The solution was pressurized at

room temperature with CO2 (50 bar) and completed with H2 to 100 bar.

The system was heated to the desired temperature and the reaction was

monitored by 1H NMR spectroscopy until the equilibrium of the reaction

was reached. The values are averaged from three to six measurements with

a reproducibility of ±15%.
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In pure DMSO at 50 �C, a 1.93 M formic acid solution was
obtained at 100 bar with a P(H2)/P(CO2) ratio of 1. Extensive
investigations on the activity of [RuCl2(PTA)4] in pure organic
solvents, that is, alcohols, acetonitrile, propylene carbonate and
toluene (Supplementary Table 4), revealed that the catalyst is active
in several solvents, although none were as effective as DMSO.
Further screening of other catalysts in DMSO (Supplementary
Table 5) confirmed the superiority of [RuCl2(PTA)4] in the
hydrogenation of CO2, that is, [RuCl2(PTA)4] is B20 times more
active in DMSO compared with the other catalysts evaluated.
Hence, the efficiency of [RuCl2(PTA)4] in DMSO was studied as a
function of the total gas pressure (Fig. 5 and Supplementary
Table 6) and the P(H2)/P(CO2) partial pressure. Similar trends
were observed to those in water.

The dependence of the final formic acid concentration and
the reaction rate as function of temperature was determined
in DMSO (Fig. 6, Supplementary Fig. 5 and Supplementary
Table 7). Similar to the aqueous system, the final formic
acid concentration increases as the temperature
decreases, whereas the reaction rate increases with increasing
temperature.

The catalyst, [RuCl2(PTA)4], was recycled and reused several
times (Table 3) without any decrease of activity observed,
resulting in a total turn over number (TON) of 749 after four
recycles and indicating that considerably higher TONs may be
achieved.

Mechanistic studies with [RuCl2(PTA)4] catalyst. Moreover,
possible catalytic intermediates were identified under catalytic
conditions using medium pressure sapphire tubes, by nuclear
magnetic resonance (NMR) spectroscopy. The [RuCl2(PTA)4]

catalyst, both in water and in DMSO-d6, together with DSS (4,4-
dimethyl-4-silapentane-1-sulphonic acid) as an internal standard,
was pressurized to 100 bar with a P(H2)/P(CO2) pressure ratio of
1 and heated at 50 �C. The hydride region of the resulting 1H
NMR spectra reveals the presence of monohydride and dihydride
species, that is, [RuH2(PTA)4] and [RuH(PTA)4Cl], assigned
from a multiplet at � 11.2 p.p.m. and a doublet of quartets
at � 9.2 p.p.m., previously observed in aqueous solution
(Supplementary Fig. 6)37. In the 1H{31P} NMR spectra, the two
hydride signals were shown to collapse into singlet resonances
(Supplementary Fig. 7). On the basis of these observations and
prior literature18,37, a tentative catalytic cycle can be proposed
(Fig. 7).

Discussion
The [RuCl2(PTA)4] complex catalyses the direct hydrogenation of
CO2 in DMSO to afford formic acid at unprecedentedly high
concentrations, that is, 1.9 M (B15% in volume). Importantly,
the catalyst operates in the absence of base (or any other
additives) and is highly stable and can be recycled and reused
without loss of activity. As demand for formic acid continues to
grow, notably as a potential hydrogen carrier (HCOOH can

Table 2 | Catalytic hydrogenation of carbon dioxide to formic acid in different solvent mixtures.

Entry Solvent H2O (%) Solvent (%) HCOOH (M) TON

1 H2O 100 — 0.11 40
2 [BMIM][BF4] 50 50 0.15 54
3 [BMIM][tos] 52 48 0.19 69
4 [BMIM][tos] 40 60 0.10 36
5 [BMIM][BF4] 20 80 0.14 51
6 [BMIM][BF4] 10 90 0.12 43
7 THF 50 50 0.095 34
8 DMSO 50 50 0.34 123
9 DMSO 20 80 0.98 355
10 DMSO 10 90 1.31 475

THF, tetrahydrofuran.
Reaction conditions: [RuCl2(PTA)4] (2.76 mM), P(total)¼ 100 bar, P(H2)/P(CO2) ratio of 1, t¼ 50 �C, reaction time 120 h, solvent (2 ml containing DSS, 0.0130 M), average values of several (two to
three) measurements for each cycle, reproducibility is±15%.
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Figure 5 | Pressure effect on the formic acid yield using [RuCl2(PTA)4]

catalyst in DMSO. Reaction conditions: [RuCl2(PTA)4] (2.76 mM),

t¼ 50 �C, P(H2)/P(CO2) ratio of 1, reaction time 120 h, DMSO (2 ml),

average values of several (two to six) measurements. The trend line is

shown as a guide and is not a mathematical fit of the data.
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Figure 6 | The influence of temperature on the hydrogenation of CO2 to

formic acid using [RuCl2(PTA)4] in DMSO. Conditions: the catalyst was

dissolved in 2 ml DMSO ([RuCl2(PTA)4]¼ 2.76 mM) under N2

atmosphere. This solution was pressurized at room temperature with CO2

(50 bar) and completed with H2 to 200 bar (P(H2)/P(CO2)¼ 3). The

system was heated to the desired temperature and stirred until the

equilibrium of the reaction was reached. The final yield of formic acid was

determined by 1H NMR spectroscopy with DSS as an internal standard. The

trend line is shown as a guide and is not a mathematical fit of the data. The

values are averaged from three to six measurements with a reproducibility

of ±15%.
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selectively decompose into H2 and CO2, Supplementary Figs 8
and 9)38–40; viable catalytic processes that directly convert CO2

into formic acid, such as the one described herein may help to
propel a hydrogen-based economy.

Methods
General considerations. NaHCO3, NaOH, HCl, HCOOH and sodium 3-(tri-
methylsilyl)-1-propanesulfonate (DSS) were purchased from Fluka, BASF or Merck.
H2 (99.95%) and CO2 (99.9%) were acquired from Carbagas-CH, enriched 13CO2

(99% in 13C) was obtained from Cambridge Isotope Laboratories. Double distilled
water, DMSO (Sigma-Aldrich), methanol (Fluka), ethanol (Fluka), acetonitrile
(Merck), propylene carbonate (Acros), toluene (Merk), ionic liquids [BMIM][BF4]
and [BMIM][tos] (Fluka) were used as solvents. Ligands PTA, TPPTS and TPPMS
were purchased from ABCR and Fluka, respectively. The ligand MePTA and the
complexes [RuCl2(PTA)4], [RhCl(TPPMS)3], [RuCl2(PTA)([9]aneS3)],
[Ru(H2O)4(MePTA)2](tos)4, [RuCl2(TPPMS)2], [RuCl2(TPPTS)2]2 and [RuCl2
(p-cymene)]2 were synthesized according to the literature41–50.

All manipulations were carried out under oxygen-free conditions with degassed
solvents, using Schlenk line techniques with N2 as a protective gas. The reactions
were carried out in medium pressure sapphire NMR tubes up to 100 bar and were
followed by 1H and 13C NMR spectroscopy. At higher pressures Parr autoclaves
(25 ml, SS 316) were used. NMR spectra were recorded on a Bruker DRX 400 NMR
spectrometer and the spectra were fitted with the program WIN-NMR. Formic acid
concentrations were determined by quantitative 1H and 13C NMR, by ion
chromatography using an ICS-90 system and by HPLC with an Agilent 1260
Infinity instrument.

Homogeneous catalytic hydrogenation reactions. Preliminary studies with
different catalysts were performed in a multi-autoclave (HEL CAT 7) by preparing
a 2.76� 10� 3 M (2.76 mM) solution of the corresponding catalyst in degassed
water (2 ml). The solutions were then pressurized up to 30 bars of CO2 and then
completed up to 60 bars with H2 (partial H2 pressure¼ 30 bar). The system was
heated to 60 �C and stirred until the reaction was completed. Formic acid yields
were determined by 1H NMR spectroscopy using DSS as an external standard
(c¼ 0.0130 M), and were verified by ionic chromatography and by HPLC.

For kinetic measurements, catalysts were dissolved in degassed solvents (2 ml),
which were introduced into a sapphire NMR tube or into an autoclave under N2

atmosphere. The solutions were pressurized up to 20–55 bars with CO2 and then
completed to 60–200 bar with H2. The system was heated to the required
temperature (23–135 �C) and shaken/stirred. In the sapphire NMR tubes, the
evolution of [HCOOH] and [CO2] was followed by quantitative 1H or 13C NMR
spectroscopy with DSS as an internal standard51. For the autoclaves the yield of
formic acid was determined by 1H NMR measurement in the final solution, with
DSS as external standard (solution of 0.0130 M), and controlled by ionic
chromatography and by HPLC. During the studies using different organic solvents
(in which DSS is insoluble), the final formic acid concentrations were determined
by 1H NMR using the standard addition method (with a known [HCOOH]
solution), and controlled by ionic chromatography and by HPLC.

The dissolved CO2 and H2 concentrations were monitored by 13C and 1H NMR
during the catalytic hydrogenation reactions using medium pressure sapphire
NMR tubes52,53, and display distinct gas and liquid phases under the reaction
conditions.

Recycling experiments. Catalyst recycling experiments were performed using
10 mM [RuCl2(PTA)4] solutions in water or in DMSO, with a pressure
P(total)¼ 100 bar, P(H2)/P(CO2) ratio of 1, t¼ 60 �C. Once the reaction reached
equilibrium, the systems were depressurized, and the formic acid concentrations
were determined. The solvent and the formic acid were removed under vacuum
and the remaining solid catalyst was dissolved in the appropriate solvent (H2O or
DMSO), pressurized to 100 bar, P(H2)/P(CO2) ratio of 1. After each reaction, the
formic acid concentration was determined by 1H NMR spectroscopy and the
recycling procedure was repeated. In addition, the resulting formic acid could be
dehydrogenated into hydrogen and carbon dioxide using an immobilized catalyst
described previously40.
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