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ABSTRACT

Background/objective: The application of Micro-Electro-Mechanical Sensors (MEMS) as measurements of
energy expenditure (EE) has certain disadvantages. For example, the inertial sensors cannot easily
distinguish changes in ground slope during walking/running conditions, so the accuracy of EE calculation
is biased. To resolve this issue, heart rate (HR) and heart rate reserve (HRR) were used as compensatory
factors respectively to correct the classical empirical formula of the accelerometer analyzer for EE in this
study.
Methods: To explore the improvement of the accuracy of EE during uphill exercise and compare the
correction levels between HR and HRR, oxygen uptake was used as a criterion measure (CM). Thirty
healthy adult males wore an ActiGraph GT3X with the Polar HR monitor and Vmax indirect calorimeter
during twelve treadmill activities (3 gradients and 4 speeds).
Results: When the slopes were increased by 0%, 3%, and 6%, the measurement accuracy of the acceler-
ometers, calculated by intraclass correlation coefficient (ICC), decreased by 0.877, 0.755, and 0.504,
respectively (p < 0.05). The HR and HRR parameters of linear regression were used to correct the classical
formula. The results showed that HR had higher coefficients of determination (R2) (0.801, 0.700, and
0.642 respectively) and ICCs (0.887, 0.825, and 0.785 respectively) than did the accelerometer outputs.
HRR showed the highest coefficients of determination (R2) (0.821, 0.728, and 0.656 respectively) and
ICCs (0.901, 0.844, and 0.795 respectively).
Conclusions: Through adding HRR parameters, the accuracy of the classical prediction formula EE was
significantly improved during walking/running on sloping ground.
© 2019 The Society of Chinese Scholars on Exercise Physiology and Fitness. Published by Elsevier
(Singapore) Pte Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

healthcare services.”

Running or hiking is a whole body physical activity that is

It is known that engaging in regular physical activity has many
health benefits. A higher level of physical activity is closely related
to a lower risk of chronic disease and a lower general mortality
rate.! > It was suggested by the American Heart Association (AHA)
in 2016* that for adults, moderate exercise for at least 150 min per
week or vigorous exercise for at least 75 min per week (or the
combination of moderate and vigorous exercise) could improve
cardiovascular health. In addition, periodic physical activity
assessment is recommended for inclusion in treatment plans and
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(C.-C. Huang).

https://doi.org/10.1016/j.jesf.2019.01.003

increasingly popular. It provides many health benefits for the
lowest cost.® For busy people, running or hiking may be the easiest
form of exercise and a high priority activity chosen by beginners in
exercises. In Taiwan, with the advantage of mountainous terrain, it
is suitable for running or hiking of various intensities. To increase
the energy expenditure (EE), the intensity of exercise for people can
be changed by varying the running speed and the slope.” In fact,
sports scientists have paid much attention to the accuracy of
measuring EE. Through using oxygen uptake (VO, or METSs) or
doubly-labelled water as a gold standard, EE and the intensity of
physical activity can be quantified accurately in different research
designs.®? This approach is unfeasible for the public to use in daily
life, however, because metabolic carts are expensive and has many
usage limitations. In its stead, a growing number of effective
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techniques are now available to measure physical activity. One
example is the inertial sensor, which has received considerable
attention in recent years. The inertial sensor is user-friendly and
affordable, and it can be used to measure physical activity accu-
rately and continuously over days or weeks.!%!!

Inertial sensors are also known as activity monitors. For
instance, accelerometers and pedometers are used to monitor and
quantize physical activities in daily life, exercise, and research. The
accelerations of movements in one or three vertical axes across
time are quantized by accelerometers, allowing physical activity to
be monitored continuously for a controlled period of time. The
values measured by the accelerations can be outputted as steps,
activity counts, intensity counts, vector magnitudes (VM), and
calories.'”~'* The activity monitors most widely used in research
are ActiGraph activity monitors."> Also, through group calibration
equations, the data output (counts per time unit) can be trans-
formed into EE (VO,) and the intensity of physical activity.'>!”

Accelerometers are limited by the characteristics of biome-
chanics because of the acceleration—physical activity intensity re-
lationships of different activities. For example, running, stepping,
riding bicycles, and loading activities performed on flat surfaces are
highly different from the same activities performed on sloped
surfaces.’®~?! Changes in ground slope or loading in certain dy-
namic exercises cannot be easily monitored by accelerometers. This
inability is an important disadvantage of the MEMS. In undulating
terrain environment, to accurately predict EE, not only the method
of topographic maps is applied, but also the use of regression to
correct the error. Previous studies have reported overestimation or
underestimation of different intensities or exercises types when EE
was measured by the accelerometers in ActiGraph activity mon-
itors.”>~?* To ameliorate this issue, methods of reducing the
amount of error have been suggested in past research. For example,
HR can be measured as the basis for exercise intensity,>> %’ and
corrected parameters can be provided for the prediction equation.
To date, 3-axis accelerometers and HR have rarely been used
together in studies to estimate EE during exercise on slopes. Kuo
et al.?® used the parameters of accelerometers and HR to develop
prediction equations that can be applied in EE estimation during
walking on slopes. On the other hand, heart rate can be influenced
by individual physical fitness or environmental factors, such as fear,
excitement, or related emotional stress. Those factors could in-
crease HR and affect the accuracy of estimations of EE.%” Therefore,
the difference between individual physical fitness and resting HR
was considered in the concept of HRR, suggested by Karvonen.>°
The difference between maximum HR during exercise and resting
HR was used to revise individual standardization and judge exer-
cise intensity.>*>' Accordingly, the hypothesis of this study was that
the personal HRR should be one of the most important parameters
to improve more accurate in calculation of energy expenditure.
Thus, the purpose of this study was to revise the prediction formula
of EE estimation during exercise on slopes. Considering the limi-
tation that accelerometers are unable to distinguish changes in
slope (loading) in specific walking/running conditions, HRR was
included in the prediction formula as a compensatory factor to
explore whether the accuracy of EE estimation during sloped ex-
ercise could be improved.

Methods
Participants

A total of 30 healthy adult males (M + SD; age 24.53 + 1.55 years;
body weight 75.13 + 10.40 kgw; body height 1.78 + 0.16 m; body

mass index 23.86 +2.67 kg/m2) voluntarily participated in this
study. Before the start of the study, all participants completed

informed consent forms approved by the Landseed Hospital Insti-
tutional Review Board. The participants were excluded if they had
any contraindications to exercises, were taking drugs that could
affect their metabolic rate, or had a diagnosis of cardiovascular
disease that might stop them from completing the evaluation
procedures safely. After completing the informed consent forms,
the subjects were included in this study. The subjects were required
to wear research equipment and complete the 1.5-h test in the
laboratory environment. The personal information and data would
be excluded if a failure in the testing process was found (for
example, the speed of the subject was too slow or the subject quit
before completing the test).

Indirect calorimeter

VO; and VCO; were tested by Cardiopulmonary Exercise Testing
System (Vmax Encore 29 System, VIASYS Healthcare Inc., Yorba
Linda, CA) for the metabolic criterion measure (CM). The subjects
wore small-sized masks (Hans-Rudolph) to cover their mouths and
noses. The volume of air breath-by-breath and the O, and CO,
compositions were measured by sampling gas lines and digital flow
sensors connected to the masks.

Activity monitor

The ActiGraph GT3X (Actigraph Corporation, Pensacola, FL, USA)
is a triaxial accelerometer that can collect data from 3-axis activ-
ities. This monitor is small (3.8 x 3.7 x 1.8 cm) and light (27 g).
Before the test, initialization of the GT3X was completed by the
ActiLife6 software (version 6.12.1, Cary, NC, USA). The sampling
frequency of this monitor was set at 30 Hz and 10-sec epochs to
collect activity counts in this study. According to the ActiGraph
user's manual, the GT3X was affixed to the right hip of each subject
on the midaxillary line by an adjustable soft elastic belt.

Heart rate monitor

The Polar RS800CX Heart Rate Monitor (Polar, Kempele, Finland)
was placed just below the chest, with sampling at 1000 Hz to
collect HR (beat-by-beat) during the whole test. HR data were
downloaded using Polar Precision Performance Software (Polar).

Experimental protocol

Subjects presented at the laboratory at individually scheduled
times to check their height and weight and to calculate individual
predicted maximum HR (HRmax =220 - Age) as the indicator of
exercise safety. Before the experiment started, the resting heart rate
in the sitting position was first measured. The subject sat in a
resting position for 20 min, and the lowest HR recorded during the
last 5 min was set as the resting value.>? The subjects conducted 12
treadmill walking/running trials in a random sequence. The interval
between two trials was 4 min. The volumes of VO, during the
testing process were recorded continuously and synchronously by
indirect calorimetry, HR, and accelerometer counts.

Treadmill test

In a laboratory setting, the subjects were required to complete
treadmill (h/p cosmos mercury 4.0, Nussdorf-Traunstein, Germany)
walking/running tests at speeds of 5.61 kmh~, 720 kmh~! (fast
walking), 7.20 km h~! (slow running), and 8.02 km h~! on slopes of
0%, 3%, and 6%. Each test was 7 min, and the interval between two
tests was 4 min.>>>* The speed of 7.2 km/h was used because it is
the preferred transition speed (PTS) from walking to running.>*3>
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In any exercise test, if the safe heart rate was exceeded or the
subject could not complete the test safely (for example, the speed of
the treadmill was too fast), the test was terminated and the data
were excluded from the analysis.

Data processing and analysis

All thirty subjects completed the exercise tests safely. The data
from the Vmax, Polar, and GT3X were outputted into Excel. The
data from the Vmax and Polar were used to calculate the parameter
of 10s-by-10s and synchronized with the data from the GT3X. In
accordance with the data processing method by Lyden et al.,>® the
first 120 s of each test were excluded to ensure the data were in a
steady state, and the last 10 s were excluded to minimize timing
synchronization errors between the monitor and metabolic mea-
surements by researchers. The VO, and VCO, were calculated to
determine EE by Weir's formula: EE (Kcal-min~') = 3.491 (VO, in L/
min) + 1.106 (VCO, in L/min).>® The data from the GT3X were
analyzed in ActiLife6. EE was calculated by the Freedson VM3
Combination equation®’ with the following formula: EE
(Kcal-min~1) = 0.001064 VM + 0.087512 BW (body weight in kgw)
- 5.500229. The values of EE were divided by body weight
(kcal-kgw™!-min~!) as the standardization. The parameter of HHR
in each test was calculated by the formula HRmax — HRrest in each
stage.

Statistical analysis

All data were summarized as means + standard deviations.
Two-way ANOVA with Bonferroni correction for multiple paired t-
test was used to analyze the differences between criterion mea-
sure EE (CMEE) and Freedson VM3 Combination EE in the 12
treadmill walking/running tests. Linear regression was used to
revise the EE prediction models, including Model A: VM activity
counts, BW, and HR; and Model B: VM activity counts, BW, and
HRR. Pearson's correlation coefficient was applied to evaluate the
relationships between CMEE and VM activity counts, HR, and HRR.
It was also used to analyze the relationships between CMEE and
different prediction formulas (Freedson VM3 Combination, Model
A and Model B). In addition, the reliability of EE calculation was
further analyzed with the Pearson coefficient of determination
and Intraclass correlation coefficient (ICC). The statistical software
IBM SPSS Statistics version 20 (IBM Corp., New York, NY, USA) was
used for statistical analysis. The significance level was set to
p <0.05.

Results

The data collected in the laboratory research are listed in Table 1,
including the means and standard deviations of CMEE and GT3X EE
and ICCs of CMEE and GT3X EE in treadmill tests with three slope
values. During treadmill activities, according to the result of the
Two-Way ANOVA test, different measurement methods (CM and
GT3X) and the change of the slope (0%, 3%, and 6%) have a signifi-
cant effect on the calculation of EE (F = 16.55, p < 0.000). Increasing
the exercise intensity (slope and speed) increased the difference
between CMEE and GT3X EE (p <0.05, t-test with Bonferroni
correction). As the slope ratio was increased, the ICC was lowered
(0%: 0.877, 3%: 0.755, 6%: 0.504). Significant linear correlations
were found between CMEE and VM activity counts (r=0.773), HR
(r=0.719), and HRR (r = 0.776), with the highest correlation found
between CMEE and HRR. To examine the effect of slope, EE values
(kcal-kg~'-min~!) were predicted by two multifactorial line
regression models, including Model A: VM activity counts, body
weight, and HR; and Model B: VM activity counts, body weight, and
HRR.

The results of two multifactorial line regression models
composed of VM activity counts, body weight, HR, and HRR are
shown in Table 2. A significantly higher coefficient of determination
(R?) and lower standard error of estimate (SEE) were found in
Model B than in Model A with different slopes. The correlation
coefficient (r) and ICC between the measured EE and CMEE in
models with different slopes are listed in Table 3. It was found that
the r and ICC in Model B (r=0.810 to 0.905: strong to high corre-
lation; ICC=0.795 to 0.901: high ICC) were higher than those in
Model A and the Freedson VM3 Combination formula. The r and ICC
in model B were higher than those in the Freedson VM3 Combi-
nation formula. The main differences between Model A and Model
B were the HR and HRR factors. Based on the above results, HRR was
a precise predictor of the change in slope. HRR could improve the
ICC and the validity of predicted values and increase the reliability
of the prediction models.

Discussion

The subjects in this study wore the ActiGraph GT3X and Polar
RS800CX to complete the treadmill tests at three slope ratios. The
differences of measured EE accuracy between the regression
equations with HR (Model A) and HRR (Model B) parameters were
compared. The Freedson VM3 Combination equation®’ was also
compared. Based on this equation, the EE, and CMEE of ICC for the
three slopes were 0%: 0.877; 3%: 0.755; and 6%: 0.504, respectively.

Table 1
Comparison of measured EE by Vmax (indirect calorimetry) and estimated EE by GT3X EE in 12 treadmill walking/running tests (mean + SD).
Grade Treadmill Speed (km/h) CMEE (kcal-kgw~'-min~") GT3X EE (kcal-kgw~!-min~1) MPE (%) IcC
0% 5.61 0.080 + 0.007 0.083 +0.010 227 .877
7.20 0.113+0.012 0.110 £ 0.014
7.20 0.137 +0.012 0.138 +0.022
8.02 0.153+0.012 0.150 + 0.021
3% 5.61 0.097 + 0.009 0.088 + 0.009 10.85 755
7.20 0.130+0.013 0.112+0.015
7.20 0.154+0.012 0.141 + 0.022
8.02 0.169 + 0.014 0.149 + 0.020
6% 5.61 0.111+0.010 0.088 +0.013 20.97 504
7.20 0.151 +0.017 0.112+0.016
7.20 0.171+0.012 0.141 +0.023
8.02 0.187 +0.013 0.150 +0.021

Mean values + standard deviation (SD). CMEE, criterion measure energy expenditure; GT3X, ActiGraph GT3X accelerometer; Mean Percentage Error (MPE) = {[(Predict value-

Actual value)/Actual value] * 100}/n; ICC, intraclass correlation coefficient.
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Table 2
Models to predict EE (kcal-kg~'-min~') from VM, BW, and HR/HRR.
Model Grade Prediction equation R? SEE
Model A 0% 0.000010 VM - 0.000195 BW -+ 0.000286 HR + 0.024446 .801 0.013
3% 0.000011 VM - 0.000376 BW + 0.000185 HR + 0.058023 .700 0.016
6% 0.000012 VM - 0.000423 BW -+ 0.000086 HR + 0.085319 .642 0.019
Model B 0% 0.000009 VM - 0.000166 BW -+ 0.000493 HRR + 0.044276 821 0.013
3% 0.000009 VM - 0.000379 BW -+ 0.000445 HRR + 0.068036 728 0.016
6% 0.000011 VM - 0.000361 BW -+ 0.000256 HRR + 0.081400 .656 0.018

VM, vector magnitudes; BW, body weight in kgw; HR, heart rate; HRR, heart rate reserve; R?, coefficient of determination; SEE, standard error of estimate.

Table 3
Correlation and reliability analysis of the measured EE and CMEE in models with
different slopes.

Grade Freedson VM3 Combination Model A Model B

r ICC r ICC r ICC
0% .878 877 .895 .887 .905 901
3% .848 755 .836 825 .854 .844
6% .780 504 .801 785 .810 795

r, Pearson's correlation coefficient.

These results indicated that with a higher slope, the reliability of
the accelerometer was reduced. The reliability of EE calculation was
improved by revising Model A and Model B. The ICCs between
Model A and CMEE were 0%: 0.887; 3%: 0.825; and 6%: 0.785,
respectively, and the ICCs between Model B and CM were 0%: 0.901;
3%: 0.844; 6%: 0.795, respectively. Accordingly, better effects of
revising the measured EE during sloped exercise were found for
Model B.

The results of this study showed that the error rate of the
ActiGraph GT3X was increased by increasing the slope of
the treadmill, and significantly underestimated EE at all walking.
The average underestimation rates were 0%: 2.27%, 3%: 10.85% and
6%: 20.97% (slope: mean percentage error), respectively. The ICC fell
from 0.877 to 0.504. The results of this study are consistent with
findings in Brage et al.‘s?! study that the variability of exercise in-
tensity in accelerometers is higher during exercise on sloped
ground than during exercise on flat ground, and that the greater
variability further resulted in imprecise EE results. The results of
previous studies on walking/running tests of the ActiGraph indi-
cated that overestimation or underestimation of EE by prediction
formula was evident in diverse types of physical activity intensity
tests.?>>* Schneller et al.>®> compared the accuracies of different
brands of activity monitors and, for the ActiGraph, found over-
estimation of EE by 17% in stationary activity-type tests and un-
derestimation of EE by 24% in physical activity-type tests. However,
in this study, the main independent variable was the change in
slope of a treadmill. As the slope was increased, VM activity counts
were non-significantly increased by physical metabolism. Due to
the functional limits of the accelerometer, the change in slope could
not be distinguished precisely during walking or running. Accord-
ingly, the calculation of EE became less accurate.

HR is controlled by the autonomic nervous system and induced
by exercise. This modification process is complex and dynamic.
Cardiovascular functions are modified by the autonomic nervous
system to meet metabolic requirements during skeletal muscle
exercise.>* 4 Previous studies on diverse types of physical activity
measures have suggested that the accuracy of EE calculation could
be improved by combining an accelerometer with a device capable
of monitoring the change in HR. It has been indicated in studies that
HR and VO, are closely related and have a linear
correlation.25—274? The results in this study also showed CMEE
to have significant linear correlations with VM activity counts

(r=0.773), HR (r=0.719), and HRR (r=0.776), with the highest
correlation between CMEE and HRR. Thus, linear regression was
used to explore the prediction equation, considering these pa-
rameters. The results of the regression equations in this study
showed that the outcomes of EE calculation and gold standard air
analysis had good validity and a lower amplitude of variation when
the EE calculation was revised with the HR parameter on diverse
loading (slope). Villars et al.?® found that the ICC between
measured EE, calculated by Actiheart with HR, accelerometers, and
standard-measured by doubly labelled water was 0.81. Altini et al.*>
pointed out that the EE estimation error of measuring low intensity
activities of daily living (ADLs) such as sedentary activities and low-
speed walk (3—4 km/h) could be decreased by the HR standardized
parameter. Kuo et al.?® explored the accuracy of activity energy
expenditure during walking uphill, measured by 3-axis acceler-
ometers and ECG. The results showed increases in the coefficient of
determination (R?) (>0.842) and reliability (87.9%) when the ac-
celerometers and HR parameter were included in the linear
regression formula. The results of this study are consistent with
those in previous research. It was further indicated in this research
that, after the HR parameter was replaced by HRR in the equation,
the accuracy of predicting exercise intensity of model B was
elevated from moderate to high (ICC: 0%: 0.901, 3%: 0.844, 6%:
0.795). On the other hand, it is known that unstable initial values of
HR can be caused by individual physical fitness and psychological
factors, which can affect the accuracy of EE calculation. Therefore,
HRR was used to reduce the error rate in our study. HRR is the
difference between maximum heart rate and resting heart rate in
each stage. Great differences in resting heart rate caused by dif-
ferences in individual physical fitness could be standardized to
serve as the basis for energy expenditure or exercise intensity
calculation. The results of this study indicated that HRR had better
anticipation of EE calculation.

In this study, HRR was hypothesized to be a crucial factor, as
compared with the formula with only VM activity counts, or the
formula including VM activity counts and HR both, could be closer
to the actual measured value, and the validity of the hypothesis was
examined. Including HRR in EE calculation improved the reliability
of the predicted value; the error rates of the standard measure were
0%: 1.44%; 3%: 0.30%; and 6%: 1.63%, respectively. From physiolog-
ical and physical viewpoints, this finding seems reasonable. For
future research, if the prediction formula can be further revised, the
reliability of predicted results will be increased. In this experiment,
only specific slopes were applied, the result may differ from
applying in real life. However, as the development of 3D mapping,
the accuracy and practicality of EE measurement in this study
would be improved. However, it must be noted that all subjects in
this study were healthy adult males. If the equation in this study is
used in other populations, such as females, children, the elderly,
athletes, or populations with specific diseases, the usage of this
equation might be limited. During EE calculation, it is essential to
consider age, body weight, and height because these factors may
cause variance. Overall, future research is necessary to apply the
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results of this study to calculating the EEs of more types of
activities.

Conclusion

The wearable inertial sensor is a significant product. Vibration
signals produced by exercise are processed and calculated as pre-
dicted EE values to facilitate the measurement of physical activity
for the general population. Practically, an essential issue is the
increased loading with changes in energy metabolism during an
appropriate sports training plan in athletes or the general public.
Thus, having an effective method of EE calculation is critical. The
results of this study showed that combining the vector magnitude
parameters of the accelerometer with HRR parameters had good
compensatory effects and led to more precise prediction of EE
during exercise on slopes.
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