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Purpose of review

We review current knowledge regarding HDL and Alzheimer’s disease, focusing on HDL's vasoprotective
functions and potential as a biomarker and therapeutic target for the vascular contributions of Alzheimer’s

disease.

Recent findings

Many epidemiological studies have observed that circulating HDL levels associate with decreased
Alzheimer’s disease risk. However, it is now understood that the functions of HDL may be more informative
than levels of HDL cholesterol (HDL-C). Animal model studies demonstrate that HDL protects against memory
deficits, neuroinflammation, and cerebral amyloid angiopathy (CAA). In-vitro studies using state-of-the-art
3D models of the human blood—brain barrier (BBB) confirm that HDL reduces vascular AB accumulation
and attenuates AB-induced endothelial inflammation. Although HDL-based therapeutics have not been
tested in clinical trials for Alzheimer’s disease , several HDL formulations are in advanced phase clinical
trials for coronary artery disease and atherosclerosis and could be leveraged toward Alzheimer’s disease .

Summary

Evidence from human studies, animal models, and bioengineered arteries supports the hypothesis that HDL
protects against cerebrovascular dysfunction in Alzheimer’s disease. Assays of HDL functions relevant to
Alzheimer’s disease may be desirable biomarkers of cerebrovascular health. HDL-based therapeutics may
also be of interest for Alzheimer’s disease, using stand-alone or combination therapy approaches.
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Alzheimer’s disease is the leading cause of senile
dementia with over 44 million affected persons
and an economic burden of over $600 billion [1].
Beyond the beta-amyloid (AB) plaques and neurofi-
brillary tangles that define Alzheimer’s disease, 60—
90% of Alzheimer’s disease brains have evidence of
cerebral vessel disease [2]. No effective disease-mod-
ifying drugs for Alzheimer’s disease exist despite
decades of promising research [3]. This may be
due, in part, to the complex interplay of amyloid
and tau disorders, neuroinflammation and cerebro-
vascular compromise, and significant challenges in
defining and staging Alzheimer’s disease. Studies in
humans, animals, and in-vitro models support the
hypothesis that circulating HDL, which have estab-
lished vasoprotective properties, may also provide
resilience to cerebrovascular dysfunction in Alz-
heimer’s disease. In this review, we synthesize these
data toward a rationale to develop HDL functional
assays as potential biomarkers of cerebrovascular
health and to consider clinical trials that evaluate
HDL-based therapies for Alzheimer’s disease.
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Despite constituting only 2% of total body mass, the
brain consumes approximately 20% of total cardiac
output [4]. The brain’s high metabolic activity and
lack of glucose stores requires extensive vasculariza-
tion to enable oxygen and glucose influx, maintain
ion balance, and remove neurotoxic waste products
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KEY POINTS

e Cerebrovascular dysfunction is commonly observed in
Alzheimer’s disease patients.

e Higher plasma HDL levels are offen associated with a
lower risk of dementia.

e HDL can protect mice from CAA, memory deficits,
and neuroinflammation.

o HDL protects against CAA and AB-induced

inflammation in 3D artery models.

e HDL-based biomarkers may identify Alzheimer’s disease
subjects with vascular dysfunction.

e Repurposing existing HDL therapies for Alzheimer's
disease is promising because of positive safety data.

[5]. Most dementia cases exhibit vascular disorders
that may underlie compromised cerebrovascular
function [6]. Histopathological evidence for cere-
brovascular dysfunction in Alzheimer’s disease
includes arteriole and precapillary deformities [7],
reduced vascular density [8,9], increased vessel tor-
tuosity [9], and vessel remnants that lack endothe-
lial cells [10-12]. Large-scale autopsy studies by the
National Alzheimer’s Coordinating Center and the
Religious Orders Study and Rush Memory and Aging
Project found a greater burden of macroinfarcts and
microinfarcts, atherosclerosis, arteriosclerosis, and
cerebral amyloid angiopathy (CAA) in Alzheimer’s
disease compared with other neurodegenerative dis-
eases [6], and increased Alzheimer’s disease risk in
cases with infarcts and more severe atherosclerosis
or arteriosclerosis [13], respectively.

Analysis of 7700 multimodality images from the
Alzheimer’s Disease Neuroimaging Initiative identi-
fied cerebrovascular dysfunction as an early event in
Alzheimer’s disease. This study compared cerebral
blood flow (CBF) alterations measured with arterial
spin labelling MRI to the progression of amyloid,
structural, metabolic, and functional brain changes
in Alzheimer’s disease [14"]. Others have found that
dementia risk is higher in subjects with reduced CBF
measured with transcranial Doppler [15] and in peo-
ple with microbleeds observed on MRI [16,17].
Greater arterial stiffness measured by pulse wave
velocity associates with greater AR burden on PET
imaging, lower brain volume in certain brain regions,
and more white matter hyperintensities (WMH) on
MRI [18]. Dynamic contrast-enhanced MRI shows
that hippocampal blood-brain barrier (BBB) break-
down is age-dependent, worsens in mild cognitive
impairment (MCI) [19], and occurs in early stages
of cognitive impairment independent of AR or tau
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biomarker changes [20"]. MRI sequences evaluating
disrupted CBF and cerebral small vessel disease were
proposed as vascular biomarkers for the new amyloid,
tau, and neurodegeneration (ATN) research frame-
work developed by the National Institute on Aging
and Alzheimer’s Association (NIA-AA) to provide a
biological definition of Alzheimer’s disease [21].

The cerebrovasculature plays a pivotal role in
removing AR from the brain through active trans-
port across brain endothelial cells in a process
involving various receptors including LDL recep-
tor-related protein (LRP1), p-glycoprotein, and
LDLR. A is also cleared from the brain via perivas-
cular drainage in mid-sized and large-sized arteries
along smooth muscle cell basement membranes
[22]. Disruption of AR clearance via cerebrovascular
pathways may contribute to CAA [23].

Vascular comorbidities in Alzheimer’s
disease

The importance of the vasculature in Alzheimer’s
disease is further supported by associations between
cardiovascular diseases (CVD) and Alzheimer’s dis-
ease risk [24-26]. Genetic variations in human apo-
lipoprotein E (apoE) increase Alzheimer’s disease
risk and reduce age of Alzheimer’s disease onset with
APOE-¢4 being detrimental, APOE-¢3 neutral and
APOE-¢2 protective [27]. In addition to accelerating
amyloidogenesis [28], APOE-¢4 contributes to
reduced CBF, CAA, cerebrovascular inflammation,
altered neurovascular coupling, BBB leakiness, and
reduced cerebrovascular resilience to cardiometa-
bolic risk factors (reviewed in [29,30]). Alzheimer’s
disease and CVD also share many cardiometabolic
risk factors including age, sex, smoking, blood pres-
sure, physical activity, blood lipids, and type II
diabetes mellitus (T2DM) [31%,32,33]. Several of
these factors have been combined into the Cardio-
vascular Risk Factors Aging and Dementia risk score,
which correlates with executive function, visual
perception, and construction, WMH and CSF AB
and tau in healthy adults [34]. Furthermore, the
population-based Rotterdam Study found that an
MRI-based cerebral small vessel disease score was
associated with greater dementia risk [35] and the
Framingham cardiovascular risk profile score pre-
dicts conversion from MCI to Alzheimer’s disease
within 24 months [36].

Circulating HDL is best known for its pivotal role in
reverse cholesterol transport [37]. Only one-third
of the identified 95 proteins on HDL [38] have
roles in lipid metabolism [39,40] whereas others
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function in protease inhibition, complement
regulation, hemostasis, and inflammation [41].
Known vasoprotective functions of HDL include
promoting endothelial nitric oxide (NO) synthase
activity, reducing inflammation, and suppressing
vascular adhesion molecule expression [42-46].
Importantly, aging and vascular disease can impair
these functions [42,47-49].

Mendelian randomization aims to determine the
causality of a modifiable risk factor on disease risk
by measuring how disease risk changes based on
randomly distributed genetic variants that affect
the risk factor [50]. Although it is well accepted that
high plasma HDL-C levels associate with reduced
heart disease mortality [51], Mendelian randomiza-
tion questions the causality of this relationship.
Several groups observe that genetic variants associ-
ated with HDL-C do not alter coronary heart disease
(CHD), myocardial infarction, or carotid atheroscle-
rosis risk [52-54], although one study found that an
allele score based on all known genetic variants
associated with HDL-C was significantly associated
with CHD risk [52]. Two Mendelian randomization
studies also suggest HDL-C levels are not causal for
Alzheimer’s disease risk [55,56]. Importantly, these
studies address only a causal link between disease
risk and elevated HDL-C levels mediated by particu-
lar genes; they do not take into account the complex
changes to HDL function and composition that can
occur in disease and that can be superior predictors
of disease risk [47-49,57-62]. Recently, two large
genome-wide association studies (GWAS) for Alz-
heimer’s disease found lipoprotein metabolism
and HDL particle gene sets to be significantly asso-
ciated with Alzheimer’s disease risk. Genes in these
sets encode HDL biogenesis proteins and HDL pro-
tein components, such as APOE, ABCA1, APOCI,
APOM, APOA2, PON1, CLU, LCAT, CETP, and APOAI
[63,64].

Several studies show that Alzheimer’s disease risk is
attenuated by higher levels of HDL cholesterol
(HDL-C) or apoA-l, the major protein component
of HDL [65]. Cross-sectional studies showed serum
apoA-I and HDL-C levels are significantly lower in
Alzheimer’s disease patients and inversely corre-
lated with Mini Mental State Examination (MMSE)
scores [66,67]. A role for HDL in AB clearance is
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suggested by positive correlations between plasma
apoA-I and AB40 in CAA patients [68], and an
inverse correlation between plasma HDL-C and
brain amyloid burden in cognitively normal people
on PET [69]. In people without dementia, positive
associations have been found between HDL-C levels
and working memory [70,71], MMSE scores [70],
and verbal learning scores [71]. The prospective
Honolulu-Aging study followed 929 Japanese-Amer-
ican men and found that the highest quartile of
plasma apoA-I at baseline correlated with the lowest
risk of dementia 16 years later [72]. Similarly, those
with the highest baseline HDL-C in a cohort of 1130
elderly people in New York followed for a median of
4 years had reduced Alzheimer’s disease risk [73] and
higher baseline HDL-C in the Baltimore Longitudi-
nal Study of Aging protected against cognitive
impairment and brain volume reductions 20 years
later [74""].

However, other cross-sectional studies including
the Framingham study of 1100 elderly participants
[75] and a small cohort of Spanish nonagenarians
[76] and prospective studies including the Adult
Changes in Thought study and two studies in cog-
nitively normal elderly women [77-80] found no
relationship between HDL-C and cognitive
impairment. Baseline age and follow-up length
may explain these inconsistencies [72,78]. Indeed,
the above studies with follow-up times greater than
10 years found significant associations between
HDL-C levels and Alzheimer’s disease risk [72,74"
whereas others with less than 10 years of follow-up
did not [78,80]. Furthermore, those measuring base-
line HDL-C levels at middle age all found significant
associations with Alzheimetr’s disease risk [67,71,72]
whereas those with baseline measures in subjects at
least 70 years old did not [79,80]. HDL may, there-
fore, exert its greatest influence on Alzheimer’s dis-
ease risk at mid-life.

The mechanisms by which HDL influences Alz-
heimer’s disease risk remain unknown. Many HDL-
associated proteins, such as apoA-I, apoJ, apokE,
apoC-III, apoD, and apoA-IV are present within
the brain parenchyma, cerebrospinal fluid (CSF),
and cerebrovascular intima of leptomeningeal arter-
ies [81-84]. Except for apoE, the CSF levels of these
proteins correlate moderately with their respective
levels in plasma, suggesting transport or diffusion
from the periphery to the brain. Although it has
been reported that HDL can be transported through
human brain microvascular endothelial cells via
scavenger receptor (SR)-BI [85] and CSF lipoproteins
are similar in density to plasma HDL [86], there is
currently no evidence that HDL enters the brain as
an intact particle in vivo. Therefore, HDL might
indirectly influence brain health as a circulating
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Vasoprotective functions of HDL relevant for Alzheimer’s disease. HDL has been shown to have at least four distinctive
functions that could protect against Alzheimer’s disease. HDL suppresses the pathological accumulation of AB in cerebral vessels
known as cerebral amyloid angiopathy (CAA). HDL suppresses vascular inflammation induced by AB or pro-inflammatory cytokines
and global neuroinflammation in Alzheimer's disease. HDL stimulates the production of nitric oxide from brain endothelial cells. HDL
delays the fibrillization of AB. Although large, spherical HDL is unlikely to cross the blood-brain barrier, apoA- can gain access to
the brain via the blood—CSF barrier at the choroid plexus. HDLike particles in the brain are mainly apoE-based. ApoE is found in
three isoforms in humans; apoE2, apoE3, and apoE4. APOe4 is the major genetic risk factor for late-onset Alzheimer's disease and
apoE4 has several detrimental functions including delaying AB transport out of the brain, promoting blood—brain barrier
breakdown, and increasing neuroinflammation. ApoE is also found in the CSF along with apoAdl. AB, amyloid beta; apoAd,
apolipoprotein Al; apoE, apolipoprotein E; BBB, blood-brain barrier; CSF, cerebrospinal fluid; HDL, high-density lipoprotein; LDLR,
low-density lipoprotein receptor; LRP-1, low-density lipoprotein receptor-related protein 1.

factor primarily acting from the cerebrovascular
lumen and intima (Fig. 1).

Studies in mice genetically engineered to develop
amyloid have explored how HDL levels affect Alz-
heimer’s disease-relevant outcomes. Genetic abla-
tion of apoA-I worsened memory deficits and
increased CAA in APP/PS1 mice, a common Alz-
heimer’s disease model [87], without altering paren-
chymal AB plaque load [87,88]. Conversely, APP/PS1
mice with transgenic apoA-I overexpression exhib-
ited attenuated memory deficits, CAA, and neuro-
inflammation [89]. Treatment of Alzheimer’s
disease mice with HDL-based therapeutics resulted
in similar improvements [90-93].

Although these studies have contributed toward
understanding how HDL may protect from
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cerebrovascular dysfunction in Alzheimer’s disease,
they may have only modest translational value
because of differences in the distribution of circu-
lating lipoproteins between rodents and humans. In
mice, circulating lipids are mainly carried by HDL
whereas in humans they are mainly carried by LDL
[94]. These differences are, in part, governed by the
activity of cholesterol ester transfer protein (CETD).
CETP facilitates exchange of cholesteryl esters and
triglycerides between lipoprotein subclasses and
high CETP activity associated with lowered HDL-C
levels [95]. However, mice and rats do not express
CETP, which may partly underlie their high HDL-C
levels [96]. Mice genetically engineered to express
human CETP have a moderate dose-dependent
reduction of HDL in the presence of both murine,
and human apoA-I, but no change in other lipopro-
tein pools [96,97]. In addition, the murine and
human APOE genes are substantially different [98]
and extensive efforts have been made to develop
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Table 1. HDL-based therapeutics in clinical trials for cardiovascular diseases and under investigation for dementia

HDL-targeting
Indication approach Drug type Drug name Study population Safety Efficacy References
Cardiovascular  Direct Recombinant CER-001 Acute coronary No issues No improvement to [126-128]
disease apoA syndrome atherosclerosis
ApoA- mimetic D-4F Coronary heart No issues Improved anti-inflammatory  [129,130]
disease activity of HDL
L-4F Coronary heart No issues No improvement to HDL [131]
disease function
Reconstituted CSL-112 Acute coronary No issues May improve cholesterol [132]
HDL syndrome efflux function of HDL
Autologous Acute coronary No issues Tended to reduce [133]
administration  syndrome atherosclerosis
Indirect ApoAd RVX-208 Atherosclerosis Elevated liver No improvement to [134,135]
transcription transaminase atherosclerosis
inducer levels
LCAT ACP-501 Stable atherosclerotic  No issues Improved HDL metabolism [136]
recombinant cardiovascular
protein disease
Niacin Niacin Cardiovascular Flushing Reduced CVD events, may [137-139]
disease events be independent of HDL
CETP inhibitors Dalcetrapib Acute coronary No issues No effect on cardiovascular [140]
syndrome events
Evacetrapib High-risk vascular No issues No effect on cardiovascular [141]
disease events
Torcetrapib High-risk for coronary Increased mortality Increased risk of [142]
events and morbidity cardiovascular events
Anacetrapib  Atherosclerotic No issues Reduced major coronary [143]
vascular disease events
Dementia Indirect Statins Various Dementia Possible shortterm Improvements in [150-153]
memory prospective frials, no
impairment improvements in RCT
Niacin Niacin Dementia Flushing Protective effects in [154,155]
retrospective studies
ABCA1 Bexarotene Dementia No issues Raised CSF apoE, no [168]
modulators improvements to

cogpnitive function

ABCA1, ATP-binding cassette transporter A1; apoA, apolipoprotein A-; apoE, apolipoprotein E; CETP, cholesteryl ester transfer protein; CSF, cerebrospinal fluid;

LCAT, lecithin-cholesterol acyltransferase; RCT, randomized control trial.

targeted replacement or transgenic mice expressing
each human APOE isoform [99-105], yet, these
models may still under-report cerebrovascular com-
promise because of the high levels of circulating
HDL. To our knowledge, there has not been a con-
certed effort to produce an animal model combining
expression of human apoE, apoA-I, CETP, APP, and
tau to improve the predictive power of murine
models with respect to the vascular contributions
to Alzheimer’s disease.

Developing human-based vascular models that
retain anatomical and physiological similarities to
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humans are, therefore, highly desirable to overcome
the difficulties of translating research from mice to
humans. Many BBB studies have been performed
using two dimensional (2D) cell culture of human
brain endothelial cells from primary, immortalized,
or pluripotent stem cell sources [106-114]. How-
ever, as cells behave differently in 3D compared with
2D environments [115], 3D BBB models are consid-
ered superior. Trans-well systems offer highly repro-
ducible models for permeability assays [116,117] but
lack complex cell-cell and cell-matrix interactions.
Multicellular spheroids of human primary brain
endothelial cells, pericytes, and astrocytes sponta-
neously self-organize into a BBB-like structure
[118,119] but are not perfusible. Several ‘organ-
on-a-chip’ approaches have been developed to over-
come these barriers, beginning with microfluidic
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models culturing primary murine neurons and glia
cells with human cerebral endothelial cells [120].
Completely human-based systems have also been
developed using iPSC-derived endothelial cells, pri-
mary pericytes, and astrocytes [121%]. Maoz et al.
[122%] developed an innovative microfluidic system
linking a BBB chip to a brain chip, however, this
model lacks anatomical connections between cells
of the neural vascular unit. Our group developed a
3D bioengineered human vessel model using a
scaffold-directed dynamic pulsatile flow bioreactor
system, populated with primary human endothelial
cells, smooth muscle cells, and astrocytes
[123"%,124™]. These engineered tissues display
histological features of native peripheral and cere-
bral arteries and can be used to model CAA and
vascular inflammation. This model can also be used
to interrogate four beneficial functions of HDL on
cerebral vessels, namely preventing AB-induced
endothelium activation, reducing AB vascular accu-
mulation, maintaining Af in a soluble state, and
inducing endothelial NO secretion [123"%,124",125]

(Fig. 1).

The human, animal, and in-vitro studies discussed
above provide support for HDL-based therapeutic
approaches to protect or repair the BBB. Several
HDL-based therapeutics for CVD have advanced
to clinical trials and have both safety and efficacy
data (Table 1). The recombinant apoA-I protein
CER-001 [126-128], apoA-I mimetics, such as D-4F
[129,130] and L-4F [131], the plasma-derived apoA-
I formulation CSL-112 [132], and autologous
administration of patient-derived apoA-I [133] were
all well tolerated in phase I clinical trials for acute
coronary syndrome or stable CHD. Although devel-
opment of many of these agents was halted because
of failure to meet primary outcomes of reduced
atherosclerosis [126-128] or improved HDL func-
tion [131], CSL-112 and autologous apoA-I admin-
istration have shown promise and are undergoing
phase III trials (NCT03473223, NCT03135184).
Indirect HDL-based therapeutics include the
apoA-l transcription up-regulator RVX-208, the
lecithin-cholesterol acyltransferase (LCAT) recombi-
nant protein ACP-501, niacin, and CETP inhibitors
(Table 1). RVX-208 lacked efficacy against athero-
sclerosis and caused a dose-dependent increase in
liver transaminase levels [134,135]. ACP-501 was
well tolerated in stable CHD patients [136] and is
undergoing a phase Il trial evaluating its effects on

0957-9672 Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc.

HDL from an Alzheimer’s disease perspective Button et al.

apolipoprotein B metabolism in CVD patients
(NCT03773172). Early trials suggested niacin treat-
ment could reduce cardiovascular events and ath-
erosclerosis [137], however, two large randomized
control trials (RCT) were terminated because of lack
of efficacy [138,139]. Several trials for CETP inhib-
itors were terminated early because of futility or
safety issues including increased mortality in the
case of torcetrapib [140-142]. However, the most
recent phase III trial of the potent CETP inhibitor
anacetrapib had no adverse effects and reduced
major coronary events [143]. CETP inhibitors may
be especially useful for repurposing for Alzheimer’s
disease as certain CETP polymorphisms are associ-
ated with Alzheimer’s disease risk and memory
decline, particularly in APOE4 carriers [144-146].

Evaluation of HDL-based therapeutics on
Alzheimer’s disease-relevant outcomes in
animal models

Although no HDL-based therapeutic strategies have
been tested for Alzheimer’s disease in clinical trials,
several preclinical studies have been performed in
Alzheimer’s disease mice. Intravenous administra-
tion of reconstituted HDL reduced soluble brain AR
levels in APP/PS1 mice [90] as well as in SAMPS8
mice [90], where it also reduced microgliosis and
memory deficits [91]. APP23 mice treated intrave-
nously with recombinant apoA-I Milano had
reduced microgliosis, AR deposition, and CAA [93].
Oral D-4F treatment improved memory, AB deposi-
tion, microgliosis, astrogliosis, and other markers of
inflammation in APPswe/PS1AE9 mice [92]. Outside
the context of Alzheimer’s disease, D-4F treatment
after middle cerebral artery occlusion reduced
neuroinflammation and white matter damage
[147] and D-4F improved cognition and reduced
brain arteriole inflammation in atherosclerotic
mice [148].

Additional lipid-modifying therapeutics for

the prevention and treatment of dementia

Lipid-modifying approaches not directly targeting
HDL may also be of interest for Alzheimer’s disease
(Table 1). Statins inhibit 3-hydroxy-3-methyl-glu-
taryl-coenzyme A (HMG-CoA) reductase to block
cholesterol synthesis and subtly increase the
HDL:LDL ratio [149]. Meta-analyses suggest statin
use lowers dementia risk in prospective trials [150-
152] but not in two large RCTs [150,153]. Retrospec-
tive cohort studies on niacin found higher intake
during young adulthood improved some measures
of cognitive function 25 years later [154], and older
adults with higher intake had reduced risk of
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Alzheimer’s disease and cognitive decline over
6 years of follow-up [155], however, these studies
lacked direct measurement of blood niacin levels.

Drugs targeting ATP-binding cassette Al
(ABCA1), such as liver-x-receptor (LXR) and reti-
noid-x-receptor (RXR) agonists, are another poten-
tial indirect HDL-based therapy as the rate-limiting
step of HDL biogenesis involves ABCAl-mediated
efflux [156-158]. Direct LXR and RXR agonists
increase plasma HDL-C levels [159-162], central
nervous system (CNS) apoE lipidation, and cogni-
tive function in Alzheimer’s disease animal models
(reviewed in [163]). Significant hepatotoxic and
systemic side effects have hampered clinical devel-
opment of direct LXR/RXR agonists [164-166],
although new, LXR-independent ABCA1 modula-
tors may avoid these liabilities [167]. The first
ABCA1-targetting compound to reach clinical trials
was the RXR agonist bexarotene, which in a phase I
trial raised CSF apoE levels but had poor bioavail-
ability [168] (Table 1).

The considerable evidence for the safety of several
HDL-based therapeutics in clinical trials suggest
these agents could be potentially repurposed for
Alzheimer’s disease. Specifically, HDL may be of
interest to prevent CAA and Alzheimer’s disease-
related neuroinflammation based on its effects in
mouse models [87,89,92,93,169] and 3D bioengi-
neered human arteries [123"",124",125]. HDL may
also be developed as a carrier for drugs and micro-
RNAs to overcome the issue of BBB penetrance in
drug delivery. Already, a reconstituted HDL carrying
an AB-targeting drug has been shown to enter Alz-
heimer’s disease mouse brains, reduce amyloidosis,
and improve memory [170].

Biomarker research for Alzheimer’s disease has rap-
idly progressed in recent years with the develop-
ment of imaging techniques to visualize AR and tau
deposits in living people and breakthroughs in fluid
biomarker sensitivity and specificity [171]. As HDL
can be isolated from the blood of Alzheimer’s disease
patients and assayed in-vitro, it may be possible to
develop HDL-based assays that specifically report on
cerebrovascular health, particularly if they correlate
with cerebrovascular disorders, such a CAA,

230 www.co-lipidology.com

microinfarcts, or WMH. Again, there is currently
no evidence that HDL can enter the brain paren-
chyma as an intact particle in vivo, instead HDL
circulating in the lumen of cerebral vessels is pro-
posed to impact brain health through effects on
vessel health. It is well understood that HDL com-
position and function is altered by aging and in
T2DM, and CAD patients [47-49,57-60]. Reduced
cholesterol efflux and anti-inflammatory activity
have also been observed in HDL from Alzheimer’s
disease subjects [172,173]. Such changes to HDL
function, or to other Alzheimer’s disease-relevant
functions including modifying CAA, attenuating
AB-induced endothelial activation, maintaining
AB solubility, and promoting NO secretion
[123"%,124",125], have the potential to act as pre-
dictive or prognostic biomarkers for Alzheimer’s
disease.

Predictive biomarkers are used to stratify patient
populations into subpopulations that would benefit
from certain therapeutic strategies [174]. HDL func-
tional assays reporting on cerebrovascular dysfunc-
tion could, therefore, act as predictive biomarkers
for Alzheimer’s disease patients who may benefit
from vascular-specific therapies. Whether HDL
functions can predict risk, progression, or resolution
of amyloid-related imaging abnormalities (ARIA)
resulting from vascular AB clearance in response
to anti-Ap immunotherapies may also be interesting
to evaluate [175]. HDL functional assays may also
work as prognostic biomarkers. Diagnosing Alz-
heimer’s disease before unrepairable neurodegener-
ation occurs is a major obstacle in treating the
disease. Prognostic biomarkers that can predict a
patient’s progression into Alzheimer’s disease earlier
than existing biomarkers could be a solution [171].
As vascular dysfunction occurs early in Alzheimer’s
disease [14",20%,21,176], biomarkers indicating cere-
brovascular dysfunction have considerable poten-
tial in predicting cognitive decline. It is, therefore,
important to evaluate longitudinal changes to HDL
function to determine if HDL-based measurements
could improve prognostic precision for Alzheimer’s
disease’s vascular components.

It is less clear whether levels of HDL-associated
proteins may become Alzheimer’s disease biomark-
ers. Circulating apoA-I levels are negatively associ-
ated with risk of future dementia in many
[72,73,74™] but not all [77-80] studies. Further-
more, although a panel including serum apoA-I
was shown to have high sensitivity and specificity
for MCI [177,178], there were no HDL-associated
protein hits in a nontargeted proteomic analysis
employed to develop a multiprotein Alzheimer’s
disease biomarker panel [179]. Early work investi-
gating HDL-associated protein levels and
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cerebrovascular dysfunction found that serum
apoA-I levels are significantly lower in Alzheimer’s
disease, MCI, and control subjects with severe CBF
impairments [178]. Other studies found that the
levels of HDL particles containing apoE and lacking
apo] predict greater WMH volume in normal and
MCI subjects [180], and that plasma apo] levels are
higher in subjects with CAA-related intracerebral
hemorrhages compared with Alzheimer’s disease
subjects [68].

A growing body of evidence in humans, mice, and
3D in-vitro models supports a role for HDL in cere-
brovascular resilience. As various HDL formulations
have already been developed and tested in clinical
trials for CVD, repurposing those with attractive
safety profiles may offer a novel strategy for prevent-
ing or treating the cerebrovascular disorder associ-
ated with Alzheimer’s disease. Assays of HDL
function could also act as biomarkers for cerebro-
vascular disorder in Alzheimer’s disease, which
could assist in stratifying Alzheimer’s disease
patients for more specific therapeutic interventions
and providing a wider window for treating patients
before irreversible neurodegeneration occurs.
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