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Abstract: Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA), and Spinal
Muscular Atrophy (SMA) are motor neuron diseases (MNDs) characterised by progressive motor
neuron degeneration, weakness and muscular atrophy. Lipid dysregulation is well recognised in each
of these conditions and occurs prior to neurodegeneration. Several lipid markers have been shown to
predict prognosis in ALS. Sphingolipids are complex lipids enriched in the central nervous system
and are integral to key cellular functions including membrane stability and signalling pathways, as
well as being mediators of neuroinflammation and neurodegeneration. This review highlights the
metabolism of sphingomyelin (SM), the most abundant sphingolipid, and of its metabolite ceramide,
and its role in the pathophysiology of neurodegeneration, focusing on MNDs. We also review
published lipidomic studies in MNDs. In the 13 studies of patients with ALS, 12 demonstrated
upregulation of multiple SM species and 6 demonstrated upregulation of ceramides. SM species
also correlated with markers of clinical progression in five of six studies. These data highlight the
potential use of SM and ceramide as biomarkers in ALS. Finally, we review potential therapeutic
strategies for targeting sphingolipid metabolism in neurodegeneration.

Keywords: sphingomyelin; ceramide; Amyotrophic Lateral Sclerosis; sphingolipid; motor
neuron disease

1. Introduction

Amyotrophic Lateral Sclerosis (ALS), Spinal Bulbar Muscular Atrophy (SBMA) and
Spinal Muscular Atrophy (SMA) are progressive neurodegenerative conditions charac-
terised by the progressive degeneration of motor neurons [1]. In ALS, both upper and
lower motor neurons are affected, whereas SBMA and SMA are lower motor neuron (LMN)
diseases [2]. Despite having different genetic and/or environmental causes, ages of onset
and prognosis, these motor neuron diseases (MNDs) all exhibit progressive motor neuron
dysfunction and cell death [1].

ALS, the most common adult-onset MND, has an incidence of approximately
1.6–3.8 per 100,000 [3]. Patients usually present aged 50–70 years, and the average survival
from disease onset is 2–4 years [4]. Approximately 10% of cases are familial. Mutations
in over 30 genes have been identified as causative or highly associated with ALS, most
commonly in C9orf72, SOD1, FUS and TDP43 [4,5]. The genetic aetiology of ALS can now
be identified for up to 67% of familial and 11% of sporadic cases [5].

SMA is caused by homozygous deletions or mutations in the Survival Motor Neuron 1
(SMN1) gene in 95% of cases. It affects an estimated 1 in 10,000 live births [6]. The SMN1
gene encodes the SMN protein, which is necessary for motor neuron survival. The SMN2
gene also encodes the SMN protein; however, a single nucleotide substitution results in the
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exclusion of exon 7 in almost 90% of SMN2 transcripts resulting in a fully functional SMN
protein in only 10% of transcripts [7]. The clinical severity of SMA is largely determined by
the copy number of SMN2 genes in patients, with those with a greater copy number having
a milder clinical phenotype [8]. The majority (60%) of cases of SMA are SMA Type 1, the
most severe type with disease onset at <6 months and a typical survival of 2 years [6,8].
However, the milder form of SMA, SMA Type 4 (<5% of cases), presents in adulthood and
is associated with a normal life expectancy [8].

SBMA, also known as Kennedy’s Disease, is an X-linked recessive disease caused by
a CAG trinucleotide repeat expansion in the Androgen Receptor (AR) gene [9]. Typically
only males are affected, but female carriers may show mild manifestations such as cramps.
It has a reported prevalence of 2.58 per 100,000 in males but is thought to be underdiag-
nosed [10]. It may be difficult to distinguish SBMA and ALS clinically, especially in cases
of ALS with predominantly LMN features. Previous studies have shown that 2% of males
who were clinically diagnosed with ALS actually had SBMA [11]. Patients usually present
at age 30–60 and have a much slower progressive weakness than ALS [12]. In addition to
the progressive motor deficit, patients with SBMA often have minor sensory neuropathies,
which may be asymptomatic, and signs of androgen dysfunction such as gynaecomastia
and infertility [10].

Lipid dysregulation has been described in each of these conditions [13]. While all lipid
classes are reported to be dysregulated in ALS, sphingolipid (SL) metabolism has been
described as the most dysregulated pathway, with the sphingomyelin-ceramide pathway
a key regulator in neurodegeneration [14–17]. This review will briefly summarise how lipid
metabolism is affected in MNDs. After a brief description of the metabolism and function
of SLs, this review highlights their dysregulation in MNDs, focusing on ceramide and
sphingomyelin. Finally, the potential use of ceramide and sphingomyelin as biomarkers for
MNDs and the possibility of targeting SM pathways as a therapeutic strategy for MNDs
is explored.

2. Lipid Dysregulation in MNDs
2.1. Dyslipidaemia in ALS

Hypermetabolism, defined as an excessive increase in energy expenditure, is well
documented in ALS and is associated with shorter survival [18,19]. The cause is multi-
factorial, with a combination of multiple factors including increased energy expenditure,
mitochondrial dysfunction and altered glucose/insulin and lipid metabolism, as well as
hypothalamic dysfunction [20]. Dyslipidaemia with high LDL/HDL ratios, as well as
high BMI and subcutaneous fat, is associated with a slower rate of functional decline
(measured by the revised ALS Functional Rating Scale (ALSFRS-R)) and longer survival
in ALS [21–23]. Higher HDL and apolipoprotein A1 levels reduce the risk of developing
ALS [24]. Although beyond the scope of this review, there is also considerable literature,
some of it conflicting, on the role of statins, known modulators of lipid metabolism, both
in increasing the risk of ALS and in potential effects on increasing the progression of the
disease. Some studies have shown an increased rate of functional decline and muscle
cramps in patients taking statins [25]. Others have suggested an increased risk of ALS
in patients taking statins [26]. However, other studies, including systematic reviews and
meta-analyses, have not supported these findings [27–29].

2.2. Hyperlipidaemia in SBMA

Patients with SBMA also display lipid dysregulation with high rates of hyperlipi-
daemia, the metabolic syndrome, and of non-alcoholic fatty liver disease (NAFLD) [30,31].
ARs are known to modulate lipid metabolism by mediating the cellular effects of testos-
terone [32]. Longer CAG repeats inversely correlate with the transcriptional activity
of testosterone target genes and positively correlate with BMI, body fat and fat-free
mass [33,34]. Lipid dysregulation and altered expression of lipid-regulating genes have
been identified prior to the onset of denervation in mice with SBMA [35].
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2.3. Dysregulated Fatty Acid Metabolism in SMA

Patients with SMA have been shown to have dysregulated fatty acid metabolism,
increased rates of NAFLD and increased free fatty acid levels [36–38]. SMA mouse models
have been shown to have 25-fold increases in hepatic triglyceride levels compared to
controls, along with a global dysregulation of fatty acid metabolism [38]. It has been
suggested that denervated muscle in SMA exacerbates the increased circulating fatty acid
levels due to its non-functional state and changes in the metabolism of atrophic muscle
with reduced capacity for fatty acid oxidation [36].

3. Sphingolipid Synthesis

Sphingolipids (SLs) are a diverse class of lipids with eighteen carbon amino-alcohol
backbones, which are synthesized in the ER from non-sphingolipid precursors [39]. They
play significant roles in membrane structure and have many bioactive metabolites, which
regulate cellular function [39,40]. The basic structure of SLs is ceramide. Ceramide consists
of a sphingoid long-chain base and a fatty acid acyl chain connected to an amine bond [41].
The most common mammalian long-chain base is sphingosine (d18:1), an 18 Carbon chain
with a trans double bond at positions 4–5 [42]. The structure of sphingosine, ceramide and
SM are shown in Figure 1.
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Figure 1. Chemical structure of common Sphingolipids. Sphingosine is the most common
long-chain base. A fatty acid acyl chain is connected to the C2 amide group to form Ceramide
and then Sphingomyelin is formed by the subsequent addition of a phosphocholine head group.
Lipid structures created using LIPID MAPS® tools [43].

3.1. Ceramide Metabolism

Ceramide metabolism and the metabolism of complex SLs are summarized in Figure 2.
Ceramide is synthesized de novo in the endoplasmic reticulum in a series of steps. Firstly,
Serine and Palmitoyl CoA (a 16-chain fatty acid) are converted into 3-Ketosphinganine
by serine palmitoyl transferase (SPT), and then 3-ketosphinganine is reduced to sphinga-
nine by 3-Ketosphinganine reductase (KSR) [39,44]. At this stage, sphinganine is either
acylated by ceramide synthase (CerS) to form dihydroceramide or phosphorylated by
sphingosine kinase to form sphingosine 1-phosphate (S1P). There have been six different
CerS identified, each with a preference for binding fatty acids with different acyl chain
lengths to sphinganine, explaining the diversity of acyl chain length in SLs [41]. Dihydroce-
ramide is then desaturated by dihydroceramide desaturase to form ceramide. Ceramide is
then transported to the Golgi apparatus for further modifications into complex SLs [39].
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Ceramide has low solubility in aqueous environments and is a membrane-bound molecule.
Cells must therefore actively transport it between membranes, and this is performed either
by vesicular transport or the ceramide transfer protein (CERT). CERT has a preference for
ceramide species with acyl chains less than C22 and is less efficient at transferring longer
chain ceramides. Ceramides transferred to the trans-Golgi apparatus by CERT are preferen-
tially used for sphingomyelin (SM) synthesis, whereas ceramides transferred by vesicles
are transferred to the cis-Golgi region and predominantly used for glycosphingolipid
synthesis [39,45].
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Figure 2. Sphingolipid (SL) metabolism showing de novo ceramide synthesis at the endoplasmic
reticulum. It is then transferred to the Golgi apparatus where it can be modified to complex SLs and
subsequently transported to the plasma membrane. There is recycling of SLs through the endosome,
then multivesicular body (MVB) formation and finally lysosomal degradation. Ceramide can be fur-
ther broken down into sphingosine and spingosine-1-phosphate. SPT—serine palmitoyl transferase,
KSR—3-Ketosphinganine reductase, CerS—ceramide synthase, DES—dihydroceramide de-
saturase, CERT—ceramide transfer protein, CDase—ceramidase, SphK—spingosine ki-
nase, Sph1PP—Sphingosine-1-Phosphate Phosphatase, SMS—sphingomyelin synthase,
SMase—sphingomyelinase, GCT—ceramide galactosyltransferase, GCS—glucosylceramide
synthase, GALC—galactosylceramidase, GlcCerase—glucosylceramidases, SM—sphingomyelin,
GSL—glycosphingolipids. Figure created with BioRender.com.

Ceramide can also be deacylated to sphingosine by ceramidases and then phospho-
rylated to sphingosine-1-phosphate (S1P) by sphingosine kinase. These are reversible
reactions, and S1P can then be converted back to sphingosine by sphingosine-1-phosphate
phosphatase and ceramide subsequently created by CerS as described above [46].

3.2. Metabolism of Complex Sphingolipids

The most abundant complex SL is SM. Sphingomyelin Synthase (SMS) converts ce-
ramide to SM through the addition of a phosphocholine head donated by phosphatidyl-
choline resulting in the formation of SM and diacylglycerol. There are two sphingomyelin
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synthases (SMS1 and SMS2) in the Golgi apparatus, and SMS2 is also located in the plasma
membrane [44]. SM is broken back down to ceramide by sphingomyelinase (SMase). There
are three major categories of SMase classified according to their optimum pH (acid, alkaline
and neutral SMases), with different cellular distributions [47]. Alkaline SMase is expressed
exclusively in the intestines and liver for dietary digestion of SM [48]. Acid SMase is
predominantly a lysosomal SMase but is also secreted into the extracellular space. Neutral
SMases are found in the nucleus, ER, Golgi apparatus and plasma membrane [49]. In
addition to their function in degrading SM to ceramide, neutral SMases are involved in the
secretion of extracellular vesicles [50].

The other complex SL is glycosphingolipids (GSL). More than 400 different glycans
have been identified linked to a ceramide backbone by a b-glycosidic bond, leading to
a huge variety of structurally different GSLs [51]. Ceramide is converted to either galac-
tosylceramide by ceramide galactosyltransferase (GCT) or to glucosylceramide by gluco-
sylceramide synthase (GCS) [39]. These are the common precursors of all GSLs. Further
modification leads to more complex GSLs, e.g., sulfatides, gangliosides, lactosylceramides
and hexosylceramides [52]. Galactosylceramide and glucosylceramide can be converted
back to ceramide by galactosylceramidase (GALC) and glucosylceramidases (GlcCerase),
respectively [53]. More complex GSLs are degraded by lysosomal enzymes to recycle
ceramide and are discussed in reviews of lysosomal storage disorders [54].

4. Biological Function of Ceramide and Sphingomyelin

SLs play important structural roles in cell membranes. SM is the most abundant SL in
the plasma membrane. SMs vary in acyl chain length and saturation, and this affects the
permeability, fluidity and structure of the plasma membrane [55]. SM interacts strongly
with cholesterol. The main feature of the close sphingomyelin-cholesterol interaction
is thought to be a hydrogen bond between the amide group of SM and the 3-hydroxyl
group of cholesterol [56]. SM concentration in the plasma membrane affects cholesterol
homeostasis [44]. Degradation of SM from the plasma membrane leads to cholesterol
moving from the membrane to the ER where is it esterified, and also downregulates HMG-
CoA reductase, a key rate-limiting enzyme in cholesterol synthesis [57]. SM interacts with
cholesterol to form lipid rafts, which are lipid- and protein-rich domains in the extracellular
leaflet of the membrane that exists in a liquid-ordered phase and serve to compartmentalize
important cellular functions (Figure 3). These rafts exist in two forms: Calveolae, which are
small invaginations (50–100 nm) in the membrane, and planar non-calveolar forms [55].
Lipid rafts in neurons form an organizing centre for neurotrophic signalling for processes
that include neuronal adhesion, synapse formation and maintenance. They also contain the
receptors for neurotrophins, a group of polypeptides, which activate signalling pathways
for the development, function and survival of neurons [58]. Again, alterations in the SM
chain length and saturation affect its ability to interact with cholesterol [59]. Shorter C16
SMs have higher solubility limits and form a greater number of liquid-ordered domains,
which are larger and have greater thermostability than longer-chain C24 SMs, with a similar
effect observed with unsaturated vs. saturated SMs [60]. Thus, the variation in the SM acyl
chain is important for cellular processes. It is important to note the difficulties of analysing
the structure and function of lipid rafts given their nanoscopic and dynamic nature [61].
Observations have been based on characteristics of plasma membrane models of different
lipid mixtures and giant plasma membrane vesicles (GPMVs), which bud from plasma
membranes [60,62]. GPMVs retain membrane lipid and protein diversity, and are capable
of phase separation but only form optically resolvable lipid rafts at low temperatures of up
to 20 ◦C [62]. More advanced techniques such as fluorescence resonance energy transfer
have now allowed for the analysis of smaller rafts at physiological temperatures [63,64].
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In addition to these roles, SM is also broken down to ceramide on the plasma mem-
brane by neutral SMase (Figure 3). Ceramide also exists in the plasma membrane and in
the lipid rafts discussed above. However, it also plays a more direct role in cell signalling.
Ceramide and its metabolite S1P form a ‘sphingolipid rheostat’, which determines the cell
fate [65]. Most ceramide species are thought to be pro-apoptotic and associated with cell
death, whereas S1P promotes cell proliferation and survival. TNF alpha induces ceramide
formation, a key step in TNF alpha-mediated apoptosis [66]. Ceramide induces apoptosis
through the activation of the stress-activated protein kinase (SAPK) or inhibition of the
mitogen-activated protein kinase (MAPK) pathways [67]. S1P inhibits ceramide-mediated
apoptosis through the activation of the extracellular signal-regulated kinase (ERK) pathway,
as well as counteracting the SAPK pathway [68]. Increased ceramide production has been
seen in NB2a neuroblastoma cells in retinoic-acid-induced apoptosis [69]. Amyloid beta
peptides have been shown to increase ceramide production through the induction of SMase
and result in apoptosis in oligodendrocytes [70]. The same study found that preventing
ceramide degradation through the inhibition of ceramidase also increased cell apoptosis.
The production of ceramide by SMase has been shown to result in nerve growth factor
(NGF)-mediated apoptosis in motor neurons overexpressing SOD1G93A [17]. Blocking
ceramide production from SM by inhibiting SMase was shown to prevent nerve-growth-
factor-mediated cell death in hippocampal neurons [71]. Controlling the sphingolipid
rheostat is therefore crucial in cell homeostasis. S1P also directs lymphocyte egress from
lymph nodes, playing an important role in inflammation [72] (Figure 3).

SM and ceramide affect intercellular communication through the formation of extra-
cellular vesicles (EVs) [73] (Figure 3). EVs are small vesicles enclosed in a lipid bilayer
secreted from almost all cells and are detectible in a variety of biofluids [74,75]. They are in-
volved in intercellular communication with both neighbouring and distant cells through the
transfer of lipids, proteins and genetic material [76,77]. EVs are formed through two main
pathways, the Endosomal Sorting Complex Required for Transport (ESCRT)-dependent
and ESCRT-independent systems [73,78]. The ERSCT-independent pathway is a lipid-
dependent process [79]. Plasma membranes have an asymmetric lipid distribution with
SM and Phosphatidylcholine (PC) enriched on the luminal side [40]. The hydrolysis of
SM to ceramide by SMases results in increased membrane fluidity and the cone-shaped
structure of ceramide results in negative curvature of the membrane and subsequent In-
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traluminal Vesicles (ILV) formation [40,80]. S1P then activates receptors on Multivesicular
Bodies (MVBs) to segregate ILVs for secretion as EVs [81]. Experimental support for this
method of EV formation is that the stimulation and inhibition of neutral SMase2 increased
and reduced EV secretion, respectively [82]. EV formation and biological functions are
discussed in detail in other reviews [73].

5. Role of Sphingolipids in MNDs

Given the roles of SLs in many vital biological processes and their high abundance in
the central nervous system as major components of oligodendrocytes and myelin sheaths,
SL metabolism is thought to be a key pathway in neurodegeneration and neuroinflamma-
tion [83]. Alteration in SL metabolism has been linked to multiple neurodegenerative dis-
eases such as Alzheimer’s Disease and Parkinson’s Disease, as well as neuroinflammatory
conditions such as Multiple Sclerosis. These are discussed in detail in other reviews [84–86].

Increased levels of SM and ceramide have been found in spinal cord tissue of patients
with ALS and SOD1 mice [16]. A study in the wobbler mouse, which is a model of motor
neuron degeneration, identified the mis-sorting of lysosomal SL degradation enzymes with
a resultant increase in SL intermediates [87]. Lipid dysregulation in ALS can occur decades
before classical symptoms, and lipid biomarkers can be used to identify individuals at risk
of developing ALS [24,88]. In keeping with this, increased levels of SLs were identified in
spinal cords of ALS mice prior to the onset of clinical signs, and SM was demonstrated to
mediate motor neuron death via oxidative stress [16]. A transcriptomic meta-analysis study
on spinal cord tissue from SOD1 mice found that cholesterol, ceramides and eicosanoid
pathways were altered early in the disease course [89]. This has also been shown in human
studies, with SL alteration identified in plasma samples of patients who subsequently
developed ALS [90]. Importantly, these studies suggest that alterations in SL occur before
motor neuron degeneration and are therefore an upstream process in ALS pathophysiology.

Over 20 risk genes in ALS are involved in lipid raft homeostasis and ceramide
metabolic pathways [58]. Mutations or abnormal DNA methylation have been found
in genes encoding for enzymes necessary for SL synthesis in patients with ALS and SMA,
as well as bovine SMA. These are shown in Table 1. In addition, mutations in ASAH1,
which result in dysfunctional acid ceramidase, cause a non-5q form of SMA associated with
progressive myoclonic epilepsy [91]. Mutations in the SPTLC1 gene are associated with
juvenile ALS and Hereditary Sensory and Autonomic Neuropathy type 1 (HSAN1) [92,93].
This gene encodes for a subunit of SPT, the enzyme required for the first step of SL synthesis.
C-terminal SPTLC1 variants cause the formation of atypical deoxysphingolipids and result
in HSAN1 [94]. The ALS-causing variants map to a transmembrane domain, which inter-
acts with negative regulators of SPT activity and results in unregulated SPT and excess SL
synthesis [95]. Epigenomic studies have also shown abnormal DNA methylation in SGMS2,
which encodes for SMS2, the enzyme for converting ceramide to SM [96]. The CAV1 gene,
which encodes for calveolin 1, has also recently been identified as a risk modifying gene in
ALS. Calveolin 1 is found in lipid rafts and ALS variants in CAV1 were shown to disrupt
lipid raft formation in patient-derived lymphoblastoid cells [97].

Another mechanism of how SLs can affect MNDs is through intercellular commu-
nication. Neutral SMase2 affects EV secretion. This has been demonstrated by studies
showing that stimulation of SMase2 with TNF alpha increases EV secretion and inhibiting
it with 1 PDDC reduces EV secretion [82,98]. EVs are being increasingly investigated in
ALS as mediators of intercellular transfer of neurotoxic proteins such as TDP 43, FUS and
SOD1 [99,100]. EVs secreted by muscle cells from ALS patients have been shown to be toxic
to motor neurons [101].

Further insight into the importance of SL metabolism in neurodegenerative diseases
is evident from lysosomal storage disorders. These are a group of over 40 conditions
with a combined prevalence of 1 in 7000–8000 live births [102]. These diseases all are
the result of impaired lysosomal degradation of various metabolites and the consequent
effects on cellular function [103]. Several involve the degradation of SLs and are termed
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sphingolipidoses. These are a group of autosomal recessive or X-linked conditions with
defects in enzymes required for the catabolism of SLs [104]. The cellular impact of the
conditions depends on the concentration of the relevant SL and the degree of enzymatic
deficiency. The sphingolipidoses and their enzymatic defects and effects on SLs are shown
in Table 1. They each have a broad and unique clinical phenotype. However, given that SLs
are enriched in the nervous system, these conditions often have the predominant feature of
severe progressive neurodegeneration [104,105].

Table 1. Abnormalities of Sphingolipid metabolism in Motor Neuron Diseases and sphingolipidoses.

Condition Gene Affected Enzyme/Protein Effect on Sphingolipids

Sphingolipid synthesis

Juvenile ALS [92]
HSAN1 [93] SPTLC1 SPT Atypical deoxysphingolipids, cannot be

converted into complex SLs or degraded

Bovine SMA [106] FVT1 KSR Reduced ceramide synthesis from de
novo pathway

ALS type 8 [107]
Late onset SMA [108] VAPB VAPB with effect on CERT

and FAPP2

Impaired transfer of ceramide and
glucosylceramide from ER to golgi
apparatus

ALS [96] SGMS2 SMS2 Affects sphingomyelin synthesis

Sphingolipid degradation

SMA-PME [91]
Farber’s disease [109] ASAH1 Acid ceramidase Ceramide accumulation

GM1 gangliodosis [110] GLB1 β-Galactosidase GM1 ganglioside accumulation
GM2 gangliodoses [110]

1. Tay Sachs Disease
2. Sandhoff’s Disease

HEXA
HEXB

1. Hexaminidase A
2. Hexaminidase A & B

GM2 ganglioside accumulation
GM2 ganglioside, glycolipid GA2 and
globoside accumulation

Fabry’s Disease [111] GLA α-Galactosidase A Globotriaosylceramide accumulation
Metachromatic
Leukodystrophy [112] ARSA Arylsulphatase A Sulfatides accumulation

Niemann-Pick Disease [113]

1. Type A & B
2. Type C

SMPD1
NPC1/NPC2

Sphingomyelinase Sphingomyelin accumulation

Gaucher’s Disease [114] GBA Glucocerebrosidase Glucosylceramide accumulation
Krabbe’s Disease [115] GALC Galactosylceramidase Galactosylceramide accumulation

HSAN1—hereditary sensory and autonomic neuropathy type 1, SPT—Serine palmitoyltransferase, VAPB—Vesicle
associated membrane protein B, CERT—ceramide transfer protein, FAPP2—four phosphate adapter protein 2,
SMS2—sphingomyelin synthase 2, SMA-PME—spinal muscular atrophy and progressive myoclonic epilepsy.

6. Lipidomic Studies in MNDs

The lipid profiles in MNDs have been mainly assessed via metabolomic analysis.
Table 2 lists all of the published metabolomic studies that have included lipidomic anal-
ysis to date, detailing a range of different SM and ceramides identified. This may in
part be explained by the different samples studied and the differing mass spectrometry
methodologies for quantifying metabolites. Two studies were performed using spinal cord
tissue, nine using plasma, two using serum, and two using CSF samples. Of the 12 studies
comparing ALS to controls, all identified changes in SM concentrations, with SM species
being increased in 11 studies and decreased in the other. Six studies identified increases
in ceramide species, with decreases in some ceramides reported in one of these. A study
of only of ALS patients found that multiple SMs were able to predict markers of disease
progression such as the ALSFRS-R, manual muscle testing and respiratory function [116].
Another metabolomic study in 28 patients with ALS and 30 controls reported that out
of 317 metabolites, 50 were increased and 70 decreased in ALS, although the individual
metabolites were not listed [117].
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One study identified four lipids, including SM C18:2, which were elevated several
years before symptom onset [90]. This is of particular relevance with the progress in devel-
oping genotype-specific treatments, such as antisense oligonucleotides (ASOs) for patients
with SOD1 and C9orf72 mutations and the need for biomarkers to guide the optimal timing
for commencing treatment [118–120]. The ATLAS trial is currently evaluating Tofersen,
an ASO for SOD1, in presymptomatic patients who develop raised neurofilament light
chain levels, a marker of neuronal damage that becomes elevated 6–12 months prior to
symptoms [121]. Given that lipids including SM and ceramide are altered early in the
disease course [16,88], they could be of use in identifying presymptomatic patients for
potential treatments. In addition, Blasco et al. have shown how SL biomarkers could be
incorporated into pharmaco-metabolomic studies [116]. Baseline and follow-up SL profiles
could be used to (1) further validate their use as prognostic markers compared to common
clinical measurements of disease progression (such as lung function and ALSFRS-R) and
(2) determine if treatments lead to alterations in metabolite levels.

There are little data on the lipidomic profile of other MNDs. There have been no
lipidomic studies in SBMA. SBMA and SMA patients were included as neurological mimics
in one study but were combined as part of a group containing other conditions such as cervi-
cal myelopathy and multiple sclerosis [122]. In a metabolomic study of patients with SMA,
H-nuclear magnetic resonance-based metabolic profiling demonstrated diagnostic and
prognostic utility, but individual metabolites were not listed [123]. Another metabolomic
study in 108 patients with SMA showed 200 metabolites correlating with the modified
Hammersmith functional motor scale, including 12 lipids. Only 1 lipid (SM (C24:1)) was
among the top 20 metabolites identified [124].

Table 2. Metabolomic studies in patients with ALS showing the changes in lipid metabolites.

Study Patients Sample
Type

Quantification
Platform Metabolites Evaluated Lipid Changes in MND Prognostic Use

Blasco
et al. 2017

[125]

40 ALS
45 Controls CSF HRMS 122 lipids

↑: PC (36:4p), PC (36:4e),
SM (d43:2), SM (d34:0) Higher SM (d43:2) and lower TG

(16:0/16:0/18:1) and TG (18:0/16:0/18:1)
had slower progression↓: TG (16:1/18:1/18:2)

Lawton
et al. 2012

[126]
161 ALS

117 Controls Plasma
GC/MS and

UPLC-
MS/MS

335 lipids, proteins and
carbohydrates

↑: LPC (16:1) and SM
(18:0) Not evaluated

Cutler
et al. 2002

[16]
9 ALS

3 Control
Spinal
cord ES/MS/MS

Sphingolipids,
Phospholipids,

Cholesterol Esters, and
Lipid Peroxides

↑: Cer (C16:0), Cer (C24:0),
SM (C16:0), CE (C16:0)

and CE (C18:0)
Not evaluated

Goutman
et al. 2020

[127]

125 ALS
71 Controls Plasma UPLC-

MS/MS 899 metabolites
↑: 8 Cers, 28 DAGs, 5

HEXC, 24 SMs, Not evaluated
↓: 5 DAGs, 5 SMs

Goutman
et al. 2022

[128]

Above
cohort of
125 ALS
and 71

controls
with 2nd

cohort 225
ALS, 104
controls

Plasma UPLC-
MS/MS 640 metabolites

SM most significant
sub-pathway

LCFA, acyl intermediates
and Cers also raised

SM (d18:1/24:0), SM (d18:1/20:0,
d16:1/22:0), SM (d18:1/14:0,

d16:1/16:0) and lignoceroylcarnitine
(C24) correlated with ALSFRS-R

Bjornevik
et al. 2019

[90]

275 ALS
549

Controls
Plasma LC/MS 404 metabolites

↑: SM (C18:2), PC (C40:7),
PC (C38:4), CE (C22:4)

Not evaluated
↓: 12 TAGs,

DAG (C36:1), DAG
(C36:2), PC (C36:2),

21-deoxycortisol,
butyrobetaine

Lawton
et al. 2014

[122]

172 ALS
73

neurological
mimics

50 Controls

plasma
GC/MS and

UPLC-
MS/MS

367 metabolites

↑: SM(d18:1/16:0),
5 FAs, 3-dehydrocarnitine,

1,2-propanediol, Chol,
1-stearoyl-GPI

1,2-propanediol correlated with
ALSFRS-R
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Table 2. Cont.

Study Patients Sample
Type

Quantification
Platform Metabolites Evaluated Lipid Changes in MND Prognostic Use

Chang et al.
2021 [129]

36 ALS
36 Controls

plasma LC–MS/MS 185 metabolites

↑: SM (C24:1), SM (C20:2),
PC (C44:5), PC (C34:2)

14 PCs and (OH) SM (C22:1) correlated
with ALSFRS-R↓: (OH) SM (C22:1)

(OH) SM (C24:1)
29 other PCs

Fernandez-
Eulate et al.
2020 [130]

20 ALS
20 Controls Serum UPLC-MS 416 lipids

↑: SM (39:1), SM (33:1), PE
(P-20:1/0:0), PE

(O-16:0/0:0), 5 PCs,
androsterone,

etiocholanolone and 2 FAs

Not evaluated

Blasco et al.
2018 [116] 74 ALS Plasma HPLC-

MS/MS 188 metabolites Not evaluated—no control
participants

SM (C22:3) and SM (C34:1) correlated
with disease progression, SM (24:1), SM
(C16:1) and (OH) SM (C22:2) correlated

with SVC

Dodge et al.
2015 [131]

6 ALS
6 Control

Spinal
cord LC-MS/MS Cer, SM and GSLs

↑: Cer (C18:0), Cer (C24:1),
(OH) Cer (C24:0),

Cerebroside (C18:0 and
C24:1), GlcCer (C18:0 and
C24:1), LacCer (18:0), GL3

(C22:1), GM3 (C23:0),
GM1 (C18:0) AND SM

(C18:0)

Not evaluated

Sol et al.
2021 [132]

23 ALS
10 Controls

CSF
Plasma LC-MS/MS 1018 lipids in plasma

and 843 in CSF

↑: 3 Fas, 2 DAGs, 13 TGs,
17 GPLs, 3 Cer, 1 SM Fast vs. slow progressors had

increased- 1 FA, 4 GLs, 4 GPLs, 2 Cer, 1
GM3, and decreased- 46 GLs, 36 GPLs,

2 Cer, 8 SM, 5 CE
↓: 2 DAGs, 4 GPLs, 3 Cer,

3 GLs

Area-
Gomez et al.
2021 [133]

40 ALS
28 PLS

28 Control

Serum/
Plasma LC/MS 532 lipids

↑: Cer, LacCer, CE SM declined and Cer increased at
follow up↓: SM, PC, PS

HRMS—high-resolution mass spectrometry, GC/MS—gas chromatography/mass spectrometry, LC/MS—
liquid chromatography/mass spectrometry, LC–MS/MS—liquid chromatography/tandem mass spec-
trometry, UPLC-MS/MS—ultra-high-performance liquid chromatography/tandem mass spectrometry,
ES/MS/MS—electrospray ionization tandem mass spectrometry, CSF—cerebrospinal fluid, ALSFRS-R—
Revised ALS Functional Rating Scale, SVC—slow vital capacity, SM—sphingomyelin, TG—triglyceride, LPC—
palmitoleoyl-glycerophosphocholine, Cer—ceramide, CE—cholesterol ester, DAG-Diacylglycerol, HEXC—
hexosylceramide, LCFA—long chain fatty acid, TAG—Triacylglycerol, PC—phosphatidylcholine, FA—fatty
acids, GPI—glycophosphatidylinositol, (OH)SM—hydroxysphingomyelin, PE—phosphatidylethanolamines,
PS—phosphatidylserines, GPL—glycerophospholipids, GL—glycerolipid.

7. Potential Therapeutics Targeting Sphingolipid Metabolism

The increasing knowledge of the importance of SLs in neurodegeneration has led
to multiple animal and patient studies targeting SL metabolism, and this may lead to
future treatments for MNDs [134]. Fingolimod phosphate, an S1P receptor modulator, is
an established treatment for Multiple Sclerosis [135]. It is considered to primarily exert its
therapeutic function by preventing the egress of lymphocytes from lymph nodes, thereby
reducing the recirculation of autoreactive T-lymphocytes into the CNS [136]. However, it
also crosses the blood–brain barrier and has been shown to have wider signalling effects
in the CNS, including protecting neurons from excitotoxic death in vitro [137]. It has been
demonstrated to improve the neurological phenotype and survival in SOD1 mice and has
now proceeded to a phase 2a trial in ALS where it has shown safety and tolerability [138].
This is the only SL modulator that has been used in a clinical trial in ALS to date.

Other future potential therapeutic options are drugs that modulate enzymes involved
in SL metabolism. Inhibition of neutral SMase2 to reduce EV release has been attempted
in murine models of Parkinson’s Disease, in which alpha synuclein spread was reduced
and motor scores were improved, as well as in murine models of Alzheimer’s Disease,
resulting in improved cognition [98,139]. Ambroxol hydrochloride, a glucocerebrosidase
2 inhibitor, has demonstrated delayed disease onset and improved survival in SOD1
mice [140]. Inhibiting SL synthesis with myriocin, an inhibitor of SPT, improved the
neurological phenotype of wobbler mice, a model of motor neuron degeneration [87].
Myriocin has also been shown to restore muscle function and reduce inflammation in
murine models of Duchenne Muscular Dystrophy [141].
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Finally, gene editing therapies may be a potential future therapeutic option. A study
on patient-derived fibroblasts expressing ALS-linked SPTLC1 variants has shown that
small interfering RNAs can target excess SL production in vitro [95].

8. Conclusions

SLs, particularly SM and ceramide, play vital roles in the nervous system and are
dysregulated in neurodegenerative diseases. Lipid dysregulation is a well-known feature of
MNDs, and this review highlights abnormalities in SM and ceramide, particularly in ALS.
Multiple metabolomic studies have found that SM and ceramide species show utility as
diagnostic biomarkers in ALS, and several also correlate with clinical measures of disease
progression. Advancing knowledge of the role of SLs in neurodegeneration is leading
to the investigation in animal models of drugs targeting SL metabolism, some of which
are now progressing to clinical trials with the hope of translation into future therapies for
patients. Future clinical trials could incorporate the evaluation of SLs to further validate
their use as predictors of disease progression and to determine any effects of therapeutics
on SL metabolism.
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