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Abstract

Small interfering RNA (siRNA) has been used widely to induce gene silencing in cells. To predict the efficacy of an siRNA with
respect to inhibition of its target mRNA, we developed a two layer system, siPRED, which is based on various characteristic
methods in the first layer and fusion mechanisms in the second layer. Characteristic methods were constructed by support
vector regression from three categories of characteristics, namely sequence, features, and rules. Fusion mechanisms
considered combinations of characteristic methods in different categories and were implemented by support vector
regression and neural networks to yield integrated methods. In siPRED, the prediction of siRNA efficacy through integrated
methods was better than through any method that utilized only a single method. Moreover, the weighting of each
characteristic method in the context of integrated methods was established by genetic algorithms so that the effect of each
characteristic method could be revealed. Using a validation dataset, siPRED performed better than other predictive systems
that used the scoring method, neural networks, or linear regression. Finally, siPRED can be improved to achieve a correlation
coefficient of 0.777 when the threshold of the whole stacking energy is $234.6 kcal/mol. siPRED is freely available on the
web at http://predictor.nchu.edu.tw/siPRED.
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Introduction

It is now well established that the translation of a target mRNA

can be inhibited by a small interfering RNA (siRNA). This

technique, called RNA interference (RNAi), was initially described

as post-transcriptional gene silencing mediated by double-stranded

RNA in Caenorhabditis elegans [1]. RNAi can now be used to

specifically suppress the expression of essentially any gene of

interest. Because the siRNA is an important factor for triggering

RNAi, the effectiveness of RNAi can be increased by improving

the efficacy of the siRNA. In the RNAi pathway, double-stranded

RNA is cleaved to yield a short, double-stranded fragment, i.e., an

siRNA, by the ribonuclease III–like enzyme Dicer. Then the guide

strand of the siRNA is incorporated into the RNA-induced

silencing complex, which recognizes the sequence of the target

mRNA by hybridization between the guide strand of siRNA and

its complementary region in the target mRNA. The silencing

complex then mediates the cleavage of the target mRNA to yield

short fragments [2–4]. siRNAs of 19 nucleotides in length with 2-

nucleotide 39 overhangs are generally used for gene silencing [5].

Methods to predict the efficacy of an siRNA can be derived by

analyzing various characteristics in siRNA datasets. Therefore,

selecting those characteristics is crucial. We divided such

predictive methods into three characteristic categories. (i) Se-

quence characteristics, which is based on the nucleotides as the

input of the predictive system. In this case, the individual

nucleotides in the sequence are transformed into numerical

representations that are then used as the inputs for constructing

an efficacy prediction model [6–8]. Moreover, the frequency of

each nucleotide at a specific position is analyzed by statistical

methods in a dataset, and then the conditional probability model is

used to find an optimal siRNA [9]. (ii) Feature characteristics,

which uses many features to predict the efficacy of an siRNA by

analyzing various properties. Nucleotide composition and the

stability of an siRNA or mRNA are analyzed, and then the

significant features are selected to build prediction models [10–14].

(iii) Rule characteristics, from which the significant rules are

generalized from datasets. The rules can be a basis for selecting

effective siRNAs [15–17].

Many systems that predict siRNA efficacy have adopted a

dataset comprised of mature siRNAs, i.e., the Novartis dataset, for

analysis and construction. Ichihara et al. [18] developed the scoring

method, i-Score, which generates a score for each nucleotide by

linear regression, and then siRNA efficacy is predicted by

summarizing the score. Further, the tools Biopredsi [19], Thermo-

Composition21 [12], and DSIR [13] have also adopted the Novartis

dataset to evolve predictive systems. Biopredsi applies an artificial

neural network (NN) model, which yielded a high correlation

coefficient of 0.66 between the observed and predicted siRNA

efficacy. Because the parameters of Biopredsi are not demonstrated,

however, Ichihara et al. [18] developed s-Biopredsi, which is similar

to Biopredsi, and got a high correlation coefficient in predicted
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efficacy between Biopredsi and s-Biopredsi. The two other systems,

ThermoComposition21 and DSIR, use linear regression based on

nucleotide preferences at each position.

In this study, we established a new system, siPRED, based on the

Novartis dataset. siPRED utilizes two layers of support vector

regression (SVR) to predict the efficacy of an siRNA [32].

Moreover, the Pearson correlation coefficient was applied to select

the significant feature elements and the candidate characteristic

methods. In the first layer, characteristic methods were derived

from various characteristic categories, namely sequence, features,

and rules. Further, the characteristic methods that yielded better

performance were integrated into fusion mechanisms by SVR and

artificial NN in the second layer. Finally, siPRED was used to

choose the best combination of characteristic methods as the

prediction model. We found that the prediction model with two

layers of SVR was indeed better than each individual character-

istic method, and the fusion mechanism was adopted by NN. For

further analysis of the contribution of each characteristic method

to the integrated method, the weight of each characteristic method

in the second layer of siPRED was analyzed by genetic algorithms.

In addition, the Matthews correlation coefficient was applied to

assess the ability of siPRED to select highly efficacious siRNAs.

The performance of siPRED was $10% higher than that of the

other systems mentioned above. Finally, siRNAs could be selected

based on a threshold of overall DG, i.e., reflecting stability of the

siRNA duplex, so that the overall performance of siPRED for

predicting siRNA efficacy was raised from 0.588 to 0.777.

Results

Training of characteristic methods in the first layer
In the table 1, the characteristic method F162 considered all

significant feature elements in each set, whereas it did not consider

the correlation between feature elements and siRNA efficacy. The

other feature characteristic methods (F85, F65, F42) were

constructed using different thresholds for removing various low-

correlation elements.

For investigating the accuracy of predicting siRNA efficacy for

each characteristic method, the prediction models of each method

were trained by SVR with 10-fold cross-validation using dataset A.

The results of each characteristic method with SVR are shown in

Table 2.

The two sequence characteristic methods, Binary (r = 0.613) and

Hybrid (r = 0.612), afforded the best training, whereas the

Numeric method provided the worst training because the SVR

system may have been incapable of deciphering the numerical

encoding. The correlation coefficients for all feature characteristic

methods were .0.6, and F85 gave the best training (r = 0.634),

thus demonstrating that feature elements in methods could be well

trained. The data presented in Table 2 show that feature

characteristic methods play an important role in predicting siRNA

efficacy. Moreover, the good performance of F85 indeed improved

the performance of F162 because feature elements of low

correlation were eliminated. The excessive reduction in feature

elements in F65 and F47, however, resulted in reduced correlation

coefficients, underscoring the importance of selecting a suitable

number of feature elements. The rule characteristic method of

training gave the worst performance because the analysis of

published rules via the small dataset may have been insufficient.

Consequently, the integration unit adopts only the higher

correlation coefficients (r$0.6) derived from the various methods,

selecting the best combination of sequence and feature character-

istic methods.

Training and comparison of fusion mechanisms in the
second layer

To increase the performance and accuracy of siPRED, the

integration of sequence and feature characteristic methods

established models by fusing the methods via SVR and NN.

The characteristic methods having better correlation in the first

layer were selected, and the integrated methods were constructed

using dataset A. In addition, the prediction model was assessed

with dataset B (Table 3).

The results of the cross-validation with dataset A showed that

the correlation coefficients of integrated methods were all .0.67.

The results of the fusion of methods using SVR and NN showed

similar trends. However, the correlation coefficients of the

integrated methods Binary+F162 and Hybrid+F162 were both

.0.75, which constituted the best training with dataset A; the

correlation coefficients of other integrated methods decreased

gradually during training. Nevertheless, the correlation coefficients

of the integrated methods compared favorably with each

characteristic method, and the coefficients improved substantially

during training. On the other hand, although the performance of

SVR was similar to that of NN, it was apparent that the

correlation coefficients with dataset A were affected by the number

of feature elements, and the integrated methods with more feature

elements had higher correlation coefficients. Therefore, it is clear

that the feature elements play an important role in predicting

siRNA efficacy.

Although the two integrated methods Binary+F162 and

Hybrid+F162 gave the best training with dataset A (r.0.75),

these two integrated methods were poorer than other integrated

methods in the validation of dataset B. This revealed that

overfitting occurred in the training of the integrated methods,

Table 1. The thresholds of each feature characteristic
method.

Method Ssingle Sn-gram Number of features

F162 unrestricted unrestricted 162

F85 ra.0.10 ra.0.09 85

F65 ra.0.12 ra.0.10 65

F47 ra.0.13 ra.0.12 47

ra The absolute value of correlation coefficients between feature elements and
siRNA efficacy. All feature elements in Sthermodynamic are considered.
doi:10.1371/journal.pone.0027602.t001

Table 2. Pearson correlation coefficient of each characteristic
method trained with dataset A.

Method r

Numeric 0.514

Binary 0.613

Hybrid 0.612

F162 0.602

F85 0.634

F65 0.627

F47 0.615

R12 0.569

doi:10.1371/journal.pone.0027602.t002

siPRED
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perhaps owing to the possibility that the feature elements of F162

were relatively more compatible with dataset A. The integrated

method Hybrid+F65 showed the best correlation coefficient by

using SVR or NN, yielding r values of 0.588 and 0.586,

respectively, with dataset B. Therefore, Hybrid+F65 with SVR is

the major contributor to the results generated in the second layer.

However, the performance was poor for the training of the single

method F65 and each of F65+Hybrid and F65+Binary with

dataset A, but F65+Hybrid and F65+Binary performed well in the

validation with dataset B. Thus, validation with dataset B is

important for selecting suitable feature elements.

Although Hybrid+F65 had a high ability to predict siRNA

efficacy, the impact of each characteristic method in fusion

mechanism with SVR or NN cannot be evaluated. Thus, the

contribution (i.e., weight) of each characteristic method in

Hybrid+F65 was evolved by genetic algorithms. The fitness

function as the mean square error is:

1=n
Xn

i~1

Robserved,i{Rpredicted,i

� �2
;

where i is the i-th siRNA in dataset A, Robserved,i is the observed i-th

siRNA efficacy, and Rpredicted,i is the predicted i-th siRNA efficacy.

Further, Rpredicted is calculated as:

Rpredicted~WHybrid|RHybridzWF65|RF65;

where RHybrid and RF65 are predicted outputs of the characteristic

methods of Hybrid and F65, respectively, and WHybrd and WF65

are the evolved weights of Hybrid and F65, respectively. The

distribution of weights in Hybrid+F65 is evident from this fitness

function. Table 4 shows a steady trend of increasing r with the

progression of generations of the training of genetic algorithms

with dataset A. Furthermore, the best weights were obtained

through the validation of dataset B, and a correlation coefficient of

0.57 was achieved at generation 2000. Although this coefficient

was not better than that achieved with SVR or NN in training and

validation, the role of Hybrid or F65 played in the integrated

method could be realized. The results for WF65 thus demonstrated

that the feature characteristic method is significant for predicting

siRNA efficacy.

Comparison of algorithms
To validate siPRED and compare it with other systems, i.e., i-Score, s-

Biopredsi, ThermoComposition21, and DSIR, with respect to predicting

siRNA efficacy in dataset B, we obtained the results for these other

systems from Ichihara et al. [18] (Figure 1). siPRED yielded a high

correlation coefficient for siRNA efficacy in dataset B, which was better

than that obtained with the other systems. s-Biopredsi, i-Score, and DSIR

yielded similar correlation coefficients, namely 0.546, 0.557, and 0.554,

respectively. ThermoComposition21 and siPRED yielded higher (and

similar) correlation coefficients of 0.577 and 0.588, respectively.

siPRED and ThermoComposition21 based on linear regression showed

that they had better performance compared with DSIR as well as s-

Biopredsi using NN and i-Score using the scoring method.

In addition, Accuracy (Acc), sensitivity (Sn), specificity (Sp), and

the Matthews correlation coefficient (MCC) were used to evaluate

the predictive ability of each system. Four measures were defined:

Acc~
TPzTN

TPzFPzTNzFN
,

Sn~
TP

TPzFN
,

Sp~
TN

TNzFP

and

MCC~
TP|TNð Þ{ FN|FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFNð Þ TNzFPð Þ TPzFPð Þ TNzFNð Þ
p ;

where TP, FP, FN and TN are true positives, false positives, false

negatives, and true negatives, respectively. Sn and Sp represent the

Table 4. Determining the weights in the integrated method
of Hybrid+F65 by genetic algorithms.

Generation WHybrid WF65 rA rB

100 0.179 0.814 0.670 0.569

500 0.515 0.480 0.669 0.567

1000 0.365 0.631 0.671 0.570

2000 0.359 0.637 0.671 0.570

WHybrid belongs to the characteristic method of Hybrid, and WF65 belongs to the
characteristic method of F65 in the integrated method. rA is the correlation
coefficient for Hybrid+F65 trained with dataset A, and rB was validated with
dataset B. Additionally, for the genetic algorithms, the population was 100 and
the rates of one-point crossover and mutation were 0.7 and 0.001, respectively.
doi:10.1371/journal.pone.0027602.t004

Table 3. Pearson correlation coefficient of each integrated
characteristic method.

Mechanism Integrated method ra rb

SVR Binary + F162 0.756 0.534

Binary + F85 0.696 0.563

Binary + F65 0.688 0.564

Binary + F47 0.679 0.543

Hybrid + F162 0.773 0.534

Hybrid + F85 0.686 0.577

Hybrid + F65 0.678 0.588

Hybrid + F47 0.670 0.541

Neural networkc Binary + F162 0.783 0.566

Binary + F85 0.691 0.579

Binary + F65 0.686 0.585

Binary + F47 0.680 0.580

Hybrid + F162 0.784 0.562

Hybrid + F85 0.685 0.579

Hybrid + F65 0.678 0.586

Hybrid + F47 0.670 0.580

aPearson correlation coefficient of integrated methods trained with dataset A.
bPearson correlation coefficient of integrated methods validated with dataset B.
cNeural network has an input layer of two nodes, a hidden layer of six nodes,
and an output layer of one node.

doi:10.1371/journal.pone.0027602.t003

siPRED
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rate of true positives and true negatives respectively. Acc is the

overall accuracy of prediction. Additionally, MCC is a measure of

the quality of the classifications, and the value may range between

21 (an inverse prediction) and +1 (a perfect prediction), with 0

denoting a random prediction.

In dataset B, siRNAs of high efficacy ($70% inhibition of target

mRNA) were selected to analyze each system. The trend in MCC

was as follows: siPRED.DSIR.ThermoComposition21.s-Biopredsi.

i-Score (Table 5). siPRED performed well, with MCC = 0.517 and

Acc = 75.7%, and MCC improved at least 10% more than for the

other predictive systems. The Sn of i-Score was 15.5%, indicating a

low rate of false negative siRNAs, and the best Sn value of all the

other systems (74.2%) was lower than that of siPRED (83.1%).

Therefore, siPRED showed the highest rate of predicting high-

efficacy siRNAs. Additionally, i-Score had a high specificity of

97.1%, and thus it is possible that i-Score, in its current form, may

actually be helpful for rejecting low-efficacy siRNAs. Furthermore,

siPRED had relatively low specificity (67.96%), indicating that this

aspect of siPRED must be improved. On the other hand, the

correlation coefficient is a measure of the accuracy of predicting

siRNA efficacy, and siPRED had a slightly higher correlation

coefficient than the other systems (Figure 1). However, both Acc and

MCC can distinguish between high- and low-efficacy siRNAs.

We next determined the correlation (r = 20.28) between base

stacking energy for the 19-nucleotide siRNA sequence (the whole

DG) and the efficacy with which an siRNA could inhibit its target

mRNA. Ichihara et al. [18] calculated a threshold of 234.6 kcal/

mol for the whole DG [18] and used this threshold to divide

dataset B into two sets. Their predictive system, the utilization of

the two sets (i.e., DG,234.6 kcal/mol or $234.6 kcal/mol)

actually improved the correlation coefficient. Thus, siPRED, i-

Score, s-Biopredsi, ThermoComposition21, and DSIR were applied to the

two sets with the threshold of the whole DG, and the results are

shown in Table 6. The set comprising siRNAs with

Figure 1. The distribution between observed and predicted siRNA efficacy using dataset B by (A) siPRED, (B) ThermoComposition21,
(C) DSIR, (D) s-Biopredsi, and (E) i-Score. ‘r’ represents the Pearson correlation coefficient.
doi:10.1371/journal.pone.0027602.g001

siPRED
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DG$234.6 kcal/mol totaled 101 siRNAs. Using this set, siPRED

yielded the highest correlation coefficient (r = 0.777), and the r for

i-Score actually improved from 0.557 to 0.723; this was also the

case for the other systems, especially s-Biopredsi and DSIR, for

which r increased from 0.546 to 0.724 and from 0.554 to 0.733,

respectively. The set comprising siRNAs with DG,234.6 kcal/

mol totaled 318 siRNAs; when this set was used, s-Biopredsi and

DSIR had an r of ,0.5, whereas siPRED, i-Score, and Thermo-

Composition21 had an r of .0.5. Furthermore, the r of siPRED

(0.538) was slightly less than that of ThermoComposition21 (0.551).

Thus, the accuracy of siPRED could be further enhanced by

improving the analysis of the whole DG.

Discussion

A high correlation coefficient for predicting siRNA efficacy can

be achieved by combining characteristic methods with fusion

mechanisms. In the first layer of siPRED, however, it is very

important to select appropriate feature elements. The feature

characteristic method F162, in which feature elements were

significant (p-value,0.001) but did not further select elements of

high correlation, had the worst performance (Table 2). Therefore,

we assumed that the feature elements of higher correlation could

increase the training ability of each feature characteristic method.

Although this was indeed the case, especially for F85 for which the

correlation coefficient increased by 5.3%, selecting feature

elements of higher correlation for F47 increased the correlation

coefficient by only 2.1%. Because F47 and F162 gave similar

results, our assumption is imperfect. If feature elements are not

correctly selected, it is possible that there is a fault in the system

that lowers the correlation coefficient of the predictive system.

Consequently, the best strategy is to eliminate feature elements of

low correlation by conducting an analysis based on a correlation

threshold in the first layer.

Based on the values of the various correlation coefficients of all

the characteristic methods in the second layer (Table S1), high

correlations were found among each method for predicting siRNA

efficacy, with the exception of F162. The highest correlation

coefficient for F162 was achieved between the predicted and

observed efficacy (r = 0.782). This could cause the integrated

methods, including F162, to yield a high correlation coefficient

during training with dataset A, although the worst performance in

validation was with dataset B. This phenomenon is caused by

overfitting because F162 has too many feature elements.

Furthermore, F162 has a higher correlation coefficient with F85

compared with the other characteristic methods. This observation

reveals that the predicted efficacy of F85 is similar to that of F162

and that F85 is also likely to incur a certain degree of overfitting.

For this reason, integrated methods, including F85, did not

perform best with dataset B in fusion mechanisms. Thus, the best

method for use in siPRED is Hybrid+F65.

Additionally, thermodynamic parameters were notably impor-

tant in the study of Ichihara et al. [18] and Lu et al. [14]; in

particular, Lu et al. considered many kinds of thermodynamic

parameters to select effective siRNAs. Therefore, we also adopted

thermodynamic parameters even through n-grams had provided

above 50% feature elements in feature characteristic methods.

Even so, Sp in our study did not have the best performance

compared with other predictive systems, and siPRED might be

improved by considering more thermodynamic parameters.

We have created a freely available web tool for siPRED (http://

predictor.nchu.edu.tw/siPRED). The input of the siPRED server is

the sequence of the target mRNA. The nucleotides of A, U/T, C

and G are acceptable in the input sequence, and the threshold

setting of siRNA efficacy is also provided. Upon completion of the

predictive processing, the results are presented in three parts. One

part shows all candidate siRNAs above the threshold, and the

other parts are used with the whole DG to divide the candidate

siRNAs into two sets. The first set contains candidate siRNAs of

high predictive accuracy as determined by siPRED, and the second

set contains a little siRNAs of high efficacy, but the predictive

accuracy in the second set is lower than that in the first set. We

suggest selecting the first set, which contains candidate siRNAs

having a DG$234.6 kcal/mol.

Materials and Methods

Datasets
Two siRNA datasets were used to construct and validate

siPRED for predicting siRNA efficacy. Dataset A, consisting of

2431 siRNAs that Husken et al. [19] verified by experiment, was

the foundation for establishing siPRED. Dataset B, a testing

dataset, was mutually exclusive with dataset A, and it was used to

validate the predictive systems. Dataset B consisted of 419 siRNAs

that Ichihara et al. [18] gathered from five reports that each

reported a small num-ber of siRNAs [5,17,20–22]. Because

dataset B differed from dataset A, it was used to estimate the

accuracy of the prediction systems.

Three categories of characteristic methods
Sequence characteristics. The first category includes

numeric, binary, and hybrid encoding characteristic methods.

Numeric encoding is applied to the nucleotides A, U, C and G,

each of which is assigned a number 1, 2, 3 and 4, respectively.

Binary encoding is A = 0 0 0 1, U = 0 0 1 0, C = 0 1 0 0 and G = 1

Table 5. Performance of each system for predicting siRNA
efficacy (i.e., $70% inhibition of the target mRNA).

Predictive system Acc (%) Sn (%) Sp (%) MCC

siPRED 75.66 83.10 67.96 0.517

i-Score 55.61 15.49 97.09 0.216

s-Biopredsi 67.30 55.40 79.61 0.360

ThermoComposition21 70.41 72.77 67.96 0.407

DSIR 70.64 74.18 66.99 0.412

doi:10.1371/journal.pone.0027602.t005

Table 6. Effect of the whole DG for each system on
prediction accuracy.

Predictive system ra rb

siPRED 0.777 0.538

i-Score 0.723 0.514

s-Biopredsi 0.724 0.498

ThermoComposition21 0.677 0.551

DSIR 0.733 0.499

aPearson correlation coefficient of siRNAs (total of 101) having a DG threshold
$234.6 kcal/mol with dataset B.

bPearson correlation coefficient of siRNAs (total of 318) having a DG threshold
,234.6 kcal/mol with dataset B.

doi:10.1371/journal.pone.0027602.t006

siPRED
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0 0 0. To increase the specificity of encoding, hybrid encoding is

used with binary encoding and a weight, which is a correlation

coefficient between the nucleotide at each position and the

observed siRNA efficacy (Figure S1). For example, the hybrid

encoding for the adenine nucleotide An is 0 0 0 1 pn, where pn is the

correlation coefficient between adenine at the n-th position and the

siRNA efficacy.
Feature characteristics. The second category of

characteristic methods was developed by analyzing and selecting

the significant features (p-value ,0.001) as elements in three kinds

of sets, namely a single nucleotide, nucleotide composition, and

thermodynamic parameters. Each characteristic method adopts a

different number of feature elements, which could be utilized as

the input of SVR. The first set, Ssingle, comprises the feature

elements as the nucleotide at a specific position. If the nucleotides

of the input sequence are fitted with feature elements in Ssingle, the

corresponding input of SVR has a value of 1. By contrast, when

the nucleotide of the input sequence is not matched, the value is 0.

For the nucleotide composition set, the n-gram approach [23,24]

was adopted to fetch each possible subword, which is a given

nucleotide string with length n (n = 2, 3, 4 or 5) from the siRNA

sequence. Most of the previous studies have considered only the

presence or absence of a subword. However, we added the

concept of frequency to the n-gram approach. Therefore, a

correlation coefficient was obtained according to the frequency of

a certain nucleotide composition within a given sequence and

siRNA efficacy. Only the significant feature elements of nucleotide

composition were selected as the second set Sn-gram to increase the

confidence and discrimination. For example, if Sn-gram includes the

feature element AG, and if the sequence is AGGAG, the

frequency of AG is 2.

siRNA stability greatly influences the prediction of siRNA

efficacy [21,25]. Therefore, the feature elements in the third set

are acquired from thermodynamic parameters, considering the

stacking energies spanning the antisense positions 1–2, 2–3, …,

18–19 as reflecting the internal stability, the sum of stability at

positions 1–19, DH, and DS by using a nearest neighbor model

[26]. Because most feature elements in the third set are statistically

significant of correlations (r.0.1), all Sthermodynamic values would

be used to design feature characteristic methods.

The three feature sets were established after analyzing single

nucleotides, nucleotide composition, and thermodynamic param-

eters, and then the different sets were combined to develop four

characteristic methods (Table 1).
Rule characteristics. Such rules for the mapping of

nucleotide preference and siRNA efficacy were formulated based

on published reports [5,12,16,17,27–31] (Table S2) and were

validated by an analysis based on information known about

siRNAs. The mapping table includes 12 rule sets and assists with

the input of data for the characteristic method, in which the

nucleotide at each position is mapped into 12 inputs with rule sets.

The encoding is 1 if the nucleotide is mapped with high efficacy

based on the rules. By contrast, the encoding is 21 if the efficacy is

low, and encoding is 0 if no rules are followed. For example, if

there is an adenine at the third position, which satisfies the high-

efficacy rule in the rule set of Reynolds, the corresponding

encoding will be set to 1. If the low-efficacy rule in the rule set of

Amarzguioui is also satisfied, the corresponding encoding will be

set to 21. If the remainders of the rule sets are not satisfied, the

inputs of adenine will get ten 0 s.

Construction of siPRED
siPRED comprises two layers that are designed to yield a high

correlation coefficient between observed and predicted siRNA

efficacy. The predicted ability of each single characteristic method

is realized after the first layer by training in various categories.

Because the integration selected that the characteristic methods

with better correlation coefficient are more influential, the overall

performance is more possible to improve. The characteristic

methods with better correlation coefficients are selected and

integrated into the second layer for improving overall perfor-

mance. Moreover, the fusion mechanisms with SVR and NN in

the second layer are used to compare with each other by

performance improvement. However, the algorithms are a ‘‘black

box’’, and the effect from the characteristic methods is not

observed in the fusion mechanism. Thus, the integrated methods

having the best performance are selected to analyze the degree of

influence in the fusion mechanism by genetic algorithms.

Supporting Information

Figure S1 Pearson correlation coefficient between nu-
cleotide composition of position specific and observed
siRNA efficacy.

(TIF)

Table S1 Correlation coefficients among characteristic
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