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Abstract. Vitamin K‑dependent proteins (VKDPs) are a group 
of proteins that need vitamin K to conduct carboxylation. Thus 
far, scholars have identified a total of 17 VKDPs in the human 
body. In this review, we summarize three important emerging 
VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich 
protein (GRP) and periostin in terms of their functions in 
physiological and pathological conditions. As examples, 
carboxylated Gas 6 and GRP effectively protect blood vessels 
from calcification, Gas 6 protects from acute kidney injury and 
is involved in chronic kidney disease, GRP contributes to bone 
homeostasis and delays the progression of osteoarthritis, and 
periostin is involved in all phases of fracture healing and assists 
myocardial regeneration in the early stages of myocardial 
infarction. However, periostin participates in the progression 
of cardiac fibrosis, idiopathic pulmonary fibrosis and airway 
remodeling of asthma. In addition, we discuss the relationship 
between vitamin K, VKDPs and cancer, and particularly the 
carboxylation state of VKDPs in cancer.
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1. Introduction

Scholars have explored vitamin K since it was discovered by 
Henrik Dam in 1935 (1). The vitamin K family belongs to 
the group of naphthoquinone compounds, and their common 
structure is composed of a 2‑methyl‑1,4‑naphthoquinone ring 
and a hydrophobic polyisoprenoid side chain. Depending 
on the side chain length and saturation (2), vitamin K can 
be divided into vitamin K1 (phylloquinone, PK), vitamin K2 
(menaquinones, MKs), and vitamin K3 (3). Vitamin K2 is often 
represented by MK‑n, where n is represented for isoprene units 
counts, and MK comprises 15 types. The main food sources 
of PK are green vegetables, especially spinach, broccoli and 
kale. MK‑4, the dominant form of MK, is found in fish, milk, 
liver and vegetables. Other MKs are mainly synthesized by 
microorganisms and are also found in Japanese natto (MK‑7), 
cheese (MK‑8, MK‑9) and other food (4). Bacteria in the large 
intestines of humans are the main synthesizer of MKs, such 
as MK‑7, MK‑8, MK‑10 and MK‑11, with the exception of 
MK‑4. MK‑4 is formed by PK or vitamin K3 through in vivo 
tissue‑specific transformation, which is also the mechanism 
underlying the biological activities of PK and vitamin K3 (3). 
The form and content of MK in different regional food supplies 
differs due to the food species limit. Natto is irreplaceable in 
the traditional Japanese diet, and cheese is a staple of dairy 
product supply in Europe. It is thus inevitable for MK uptake 
across regions to be imbalanced.

Osteoporosis is a systemic skeletal disorder with a globally 
high incidence that is exacerbated by the problem of an aging 
population. Osteoporosis has three types, which are termed 
primary osteoporosis, secondary osteoporosis and idiopathic 
osteoporosis (5). The most common type in older women is 
postmenopausal osteoporosis, which is a form of primary 
osteoporosis. Subsequent fractures, particularly hip frac‑
tures, seriously affect the survival prospects and life quality 
of the elderly. Based on predictions of the Asian Federation 
of Osteoporosis Societies, the total number of hip fractures 
are due to reach 2.56 million by 2050 in the studied Asian 
countries (6). Calcium supplements are the most well‑known 
non‑prescription therapy for strengthening bone mineral 
density and preventing osteoporosis. However, the calcium 
paradox, a consequence of damaged calcium metabolism, is 
identified as the loss of calcium in the bones parallel with the 
formation of calcification in the arteries in the elderly (7), and 
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exists as a potential risk of calcium supplements. Evidence 
has accumulated that vitamin K can be of benefit in avoiding 
the calcium paradox. In addition, VKDPs, such as osteocalcin 
(OC), indicate a beneficial effect on bone strength loss.

Cardiovascular diseases (CVDs), such as acute myocardial 
infarction, atherosclerosis and heart failure, are the main cause 
of human deaths worldwide. These diseases, not only pose a 
great threat to patients' health, but also disturb their families 
and even society. An epidemiological study of 709 multiethnic 
adults, with follow‑up at an average of 11.0 years, showed 
VKDP activity is associated with the incidence of ischemic 
cardiovascular events (8). The relationship between vascular 
calcification and disease has become a research focus due to 
the increasing rates of morbidity and mortality of CVDs. An 
epidemiological study of 116,309 individuals, with follow‑up 
at an average of 28 years, indicated an aortic arch calcifica‑
tion exhibited a positive correlation with an increased risk of 
coronary heart disease (9). Moreover, another epidemiological 
study showed coronary artery calcium was independently 
associated with cardiac events (10). The matrix Gla protein 
(MGP), a kind of VKDP, synthesized by vascular smooth 
muscle cells (VSMCs) is widely expressed in soft tissues, such 
as cartilages and blood vessels (11), especially in calcified 
tissues. It has been suggested that MGP regulates vascular 
calcification and various important pathological processes. In 
fact, many emerging proteins related to vitamin K are involved 
in the fight against vascular calcification and are described in 
more detail below.

Kidney disease poses a great threat to health. According 
to the course duration of the disease, the disease can be 
classified as acute kidney disease or chronic kidney disease 
(CKD). Various causes have been aligned closely with CKD. 
To be specific, diabetes and hypertension are the two main 
contributing factors of CKD in developed countries. However, 
glomerular diseases still occupy an important position in 
developing countries. Sub‑clinical vitamin K deficiency exists 
in most CKD patients, with the characteristic of low circu‑
lating vitamin K level and high inactive VKDP level (12‑14). 
The factors that contribute to this situation include low 
vitamin K intake and reduction in the carboxylation process 
of VKDPs (15). In addition, cardiovascular complications are 
the main reason for the mortality of CKD patients (16). The 
protective effect of some VKDPs, such as MGP, on both the 
kidney and cardiovascular system, has been widely explored.

Numerous studies are available on OC and MGP. The aim 
of the current review is to focus on three emerging VKDPs 
that are increasingly being studied: Growth arrest‑specific 
protein 6 (Gas6), Gla‑rich protein (GRP), and periostin and 
their roles in various physiological and pathological processes.

2. Uptake, distribution and vitamin K cycle

Both vitamin K1 and vitamin K2 are absorbed by the small 
intestine and are transferred to liver in the form of chylomi‑
crons. After absorption into the blood by liver, vitamin K1 
completes the carboxylation of coagulation factors in the liver 
and be eliminated via circulation rapidly (17). By contrast, 
vitamin K2, especially long chain derivatives, are reapportioned 
throughout the body due to the long half‑life in circulation and 
play vital roles in the extra‑hepatic tissues (18,19).

Vitamin K is metabolised in the human body through 
the vitamin K cycle (20). The three forms of vitamin K in 
this cycle are quinone (K), vitamin K hydroquinone (KH2) 
and vitamin K epoxides (KO). K is initially reduced to KH2, 
which is oxidised into KO under the effect of epoxidase 
(GGCX). KO is then reduced to KH2, and vitamin K epoxide 
reductase (VKOR) participates in the process. After repeti‑
tion of the above steps, the vitamin K cycle is formed. It is 
worth mentioning that Warfarin exerts anticoagulant effects 
to inhibit VKOR activity and induce the cellular produc‑
tion of a large number of nonreactive substances into the 
coagulation system (21). The protein containing glutamate 
(Glu, ‑CH2CH2COOH) residues in the body is also catalysed 
into γ‑carboxyglutamate [Gla, ‑CH2CH(COOH)2] under 
the action of the key enzyme gamma‑glutamyl carboxylase 
(GGCX) and co‑actors KH2, carbon dioxide and oxygen (22). 
The protein containing Glu residues is known as VKDP. The 
Glu residues in VKDPs that can be transformed are usually 
located in an amino acid region known as the Gla domain. 
It is worth mentioning that the Gla domain formed after 
carboxylation of VKDP is the key to its biological func‑
tion. For instance, Gla domain at the N‑terminal provides 
a special bond for the interaction of vitamin K‑dependent 
blood coagulation proteins with cell membranes containing 
phosphatidylserine, and this binding is requisite for blood 
coagulation (23).

3. VKDPs

At present, scholars have identified 17  types of VKDPs in 
humans. Seven of them are dependent on vitamin K1 to play 
their roles in the liver (coagulation factor II, VII, IX, X and 
anticoagulant proteins C, S, Z). Six of them were modi‑
fied by vitamin K after transcription and were involved in 
various physiological and pathological processes in extra‑
hepatic tissues. They are OC, MGP, Gas6, GRP, periostin 
and periostin‑like‑factor. The remaining four proteins need 
further study (proline‑rich Gla protein 1, proline‑rich Gla 
protein 2, transmembrane Gla protein 3 and transmembrane 
Gla protein 4) (Table I).

OC was the first VKDP to be identified that is synthesized 
and secreted by bones. Originally, researchers found osteo‑
calcin has the ability to attract calcium ions. Vitamin K lowers 
serum undercarboxylated OC (ucOC) concentrations and 
increases carboxylated OC (cOC). Furthermore, cOC can bind 
with hydroxyapatite crystals, the material of the bone matrix, 
while simultaneously promoting bone mineral density (41,73). 
Moreover, it has been suggested during the past decade that 
OC shows functions of regulating systemic glucose and energy 
metabolism (42).

MGP plays a beneficial role in vascular calcification and 
various pathological processes. MGP regulates vascular 
calcification by eliminating the calcification effect of 
bone morphogenetic protein (BMP)‑2 and BMP‑4  (46,47). 
Additionally, the MGP‑fetal‑A complex inhibits ectopic 
mineralization by binding to alkaline calcium phosphate 
crystals (47). Based on these mechanisms, MGP is related to 
the prevention of cardiovascular and chronic kidney disease. 
In a previous review, we presented a new viewpoint, namely, 
that osteophyma may be caused by the accumulation of 
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uncarboxylated MGP, in which vitamin K is required by the 
carboxylation process (43).

In recent years, a number of emerging VKDPs, such as 
Gas6, GRP, and periostin, have been considered to participate 
in multifarious physiological and pathological processes.

4. Gas 6

Brief introduction to Gas 6. Gas 6, weighing 75 kDa, is a rela‑
tively large member of the VKDP family. The concentration 
of plasma Gas 6 ranges from approximately 2.5 to 18.8 µg/l in 
healthy adults (74). Gas 6 is highly homologous with Protein S 
and carries an N‑terminal Gla domain after vitamin  K 
carboxylation. Gas 6 is widely expressed in brain, heart, lung, 
kidney and other tissues, with the exception of the liver (43). 
In 1995, Gas 6 was reported as the endogenous ligand for 
the TAM family for the first time (75). TAM is the acronym 
for three receptors: Tyro3, Axl and Mer. Among these, Axl 
has the highest affinity to Gas 6 (76). It has been reported 
that the laminin‑like globular domain of Gas 6 at C‑terminus 
appears to be the binding site of TAM receptors (75). However, 
after warfarin inhibits vitamin K‑dependent carboxylation, 
inactivated Gas6, not only completely inhibits the autophos‑
phorylation of the Axl receptor, but also fails to bind to the 
Axl receptor in vitro (77,78). Therefore, vitamin K‑dependent 
carboxylation is the key to the interaction between Gas 6 
and TAM receptor. In light of numerous previous studies, 
the binding of Gas 6 and its receptors activated downstream 
signaling, such as of phosphatidylinositol 3‑kinase (PI3K), 
extracellular signal regulated kinase (ERK) and nuclear factor 
kappa‑light‑chain‑enhancer of activated B cells (NF‑κB) 
pathways, to adjust the processes of apoptosis, survival, 
proliferation, migration and adhesion (48,79‑82).

Gas 6 and the cardiovascular system. There is an inseparable 
relationship between Gas 6 and the cardiovascular system. 
The binding of Gas 6 and Axl limits the apoptosis of VSMCs 
by activating Akt and PI3K (80). It is worth mentioning that 
vitamin K2 can inhibit VSMC calcification and apoptosis 
by restoring Gas6 expression and activating downstream 
signaling by Axl, Akt and Bcl2 (49,50). Endothelial progenitor 
cells (EPCs) are involved in the saving response to ischemic 
tissue through forming new blood vessels or proliferation of 
pre‑existing vasculature. Autologous EPC transplantation 
therapy has been indicated as safe and practical in chronic 
myocardial ischemia (51). It has been identified that Gas6 
has the ability to stimulate EPC proliferation and migration 
in vitro by activating the Akt signaling pathway (48). The 
finding provides a basis for the further therapy of vascular 
re‑endothelialization. Vascular aging, a risk factor of CVDs, 
is characterized by vascular stiffness, vascular remodeling 
and endothelial dysfunction (83). Aging vessels provide a 
good environment for CVDs. Gas6/Axl can delay cell cycle 
arrest, which is a key cause in the development of VSMC 
senescence and promotes their transition from the G1 to the 
S phase. The PI3K/Akt/Forkhead box O (FoxO) signaling 
pathway is considered the major target of Gas6/Axl signaling 
in VSMC senescence, with FoxO being the key factor (84). 
Furthermore, clinical investigation has demonstrated that 
Gas  6 plasma levels at admission reflect the existence 

of potential cardiovascular risks and can prognosticate 
cardiovascular events (52).

Accumulating evidence has indicated that Gas 6 is 
significantly secreted by VSMCs in human atherosclerotic 
plaques, but there is no secretion in healthy blood vessels. 
The anti‑inflammatory cytokine transforming growth factor β 
(TGF‑β) induces the secretion of Gas 6 in VSMCs, and then, 
stimulated by Gas 6, the VSMCs suppress the expression of 
inflammatory factors, such as tumor necrosis factor (TNF) α 
and intracellular adhesion molecule (ICAM)‑1 (85). Thus, 
Gas 6 acts as a protective factor in human atherosclerosis. Of 
note, Gas6 levels inversely related to complexity and stability 
in patients with carotid atherosclerotic plaques  (85,86). In 
particular, it should be noted that Gas6‑deficient mice show 
more stable atherosclerotic lesions than normal mice, and 
inhibition of Gas 6 is considered to be beneficial to plaque 
stabilization (87). The contradictory feature between humans 
and mice is associated with obvious species physiological 
differences (88).

Of note, overexpression of Gas 6 has a detrimental effect 
on some pathological processes. The renin‑angiotensin‑aldo‑
sterone system is closely connected with cardiovascular and 
renal inflammation and fibrosis. It has been emphasized that 
Gas 6 deficiency prevents the damage of aldosterone on target 
organs (89). In addition, cardiomyocyte‑specific Gas 6 over‑
expression hastens the deterioration of pathological cardiac 
hypertrophy, mainly due to the activation of mitogen‑activated 
protein kinase (MAPK) kinase 1/2‑ERK 1/2 signaling (90).

Gas 6 and the kidney. The contribution of Gas 6 to acute 
kidney injury is closely related to its biological functions, 
such as anti‑inflammation and immunoregulation  (91,92). 
The kidney, despite being a rich blood supplying organ, is 
susceptible to hypoxic injury due to the complex balance of 
renal blood flow, glomerular filtration rate, oxygen consump‑
tion and arteriovenous oxygen shunting (93). Previous findings 
suggested that Gas 6 protected against renal ischemia‑reper‑
fusion injury in a mouse model  (94). To be specific, with 
the assistance of Gas 6 treatment, creatinine and blood urea 
nitrogen decreased by 29 and 27%, respectively. Cell apoptosis 
was significantly decreased, attributable to Gas 6 enhancing 
macrophages to uptake apoptotic cells (95). Furthermore, the 
expression of pro‑inflammatory cytokines, such as interleukin 
(IL)‑1β and TNF‑α, was markedly reduced by another Gas 6 
function, dampening the inflammatory responses (11,91,94). 
Similarly, concentration of Gas 6 rose in sepsis‑induced 
acute kidney injury mice, and improved the survival rate by 
reducing serum urea nitrogen, creatinine and renal tissue 
apoptosis (53). In addition, several reports demonstrated that 
Gas6 levels were significantly increased in CKD patients and 
chronic hemodialysis patients  (96,97). Opinions regarding 
the potential mechanisms vary. Researchers tend to associate 
the elevation with endothelial function (Gas6 is expressed by 
endothelial cells) and inflammation because pro‑inflammatory 
cytokines are abundant in the blood of these patients (96,98). 
It is reported that endothelial cells in CKD are subjected to 
specific stress overtime which leads to accelerated cardio‑
vascular disease and high mortality  (99). Disruption and 
inflammation of glomerular capillaries influence the evolution 
of CKD, and, consequently, elevated Gas 6 levels  (100). It 
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is worth noting that Gas 6 is upregulated in many forms of 
inflammatory nephropathy, for example, lupus nephritis and 
IgA nephropathy (101,102).

Diabetic nephropathy is a common complication of diabetes 
that can further develop into end‑stage renal disease. There 
are opposing conclusions on the tendency of plasma Gas 6 in 
diabetes and diabetic nephropathy. Nagai et al first reported that 
the expression of both Gas6 and Axl was distinctly increased 
in diabetic rats and proved Gas 6 can induce mesangial cell 
hypertrophy, which further leads to glomerular hypertrophy 
in the early stage of diabetic nephropathy (103). Furthermore, 
a reliable mechanism was proposed in which high glucose 
stimulates mesangial cells, followed by activating Gas6/Axl 
and the Akt/mTOR pathway, which results in mesangial and 
glomerular hypertrophy (104). By contrast, Hung et al indi‑
cated that plasma Gas6 levels in impaired glucose tolerance 
patients and type 2 diabetes were significantly decreased (105). 
A study based on individuals with different degrees of albu‑
minuria offers some insight into this controversy, and showed 
the blood level of Gas 6 decreased with the deterioration of 
proteinuria (106). Silaghi et al formulated a hypothesis that 
the interaction between molecular charge and weight may 
participate in glomerular filtration of Gas 6  (100). More 
specifically, Gas 6 and albumin (approximately 66 kDa) have 
a similar molecular weight and a net negative charge repelled 
the glomerular membrane. Complex interactions eventually 
lead Gas 6 to filter through the glomerular membrane and be 
excreted from the body (100). Therefore, the concentration of 
plasma Gas 6 changes in different stages of diabetes.

Gas 6 and cancer. The contribution of Gas6 to cancer has 
been reported for a large number of cancer types. For example, 
Gas 6 is upregulated in breast cancer, melanoma and ovarian 
cancer (107‑109). Tumor cells lack the competence to produce 
Gas 6, but can educate infiltrating macrophages to promote 
the production of Gas6 by producing IL‑10 and macro‑
phage colony‑stimulating factor (M‑CSF) (110). Previous 
findings have shown the pro‑tumor effects of Gas6/TAM 
signaling. In the case of Gas 6 overexpression, the survival 
of myeloma cells was significantly increased in vitro and, 
conversely, the deficiency of Gas 6 led to rapid cell death of 
myeloma (111). In addition, the autocrine Gas 6 assists the 
resistance of myeloma cells to bortezomib (111). Recently, 
the pro‑tumor effects of Gas 6 was also reported in lung 
cancer cells (54). In addition, blocking Gas 6/Mer signaling 
with Mer receptor inhibitors significantly limits the prolif‑
eration and growth of lung cancer cells (54). Interestingly, 
a high level expression of Axl and its ligand Gas 6 were 
recognized in non‑small cell lung cancer patients, who 
acquired resistance with epidermal growth factor receptor 
tyrosine kinase inhibitors (112). It has been reported that 
Gas 6 negatively regulates the proliferation and interferon‑γ 
production of natural killer cells to inhibit tumor immunity 
through binding with Casitas B cell lymphoma‑b/TAM 
receptors (113). In addition, Gas 6 prolongs VSMC survival 
in the tumor microenvironment, which is requisite to tumor 
angiogenesis (79). Several investigations have indicated the 
roles of Gas 6 in predicting the prognostic risk of cancer. 
Gas 6 protein as an independent predictor always indicates a 
poor prognosis (107,109) (Fig. 1).

5. GRP

Brief introduction to GRP. As its name suggests, GRP, which 
was first identified in sturgeon cartilage, has abundant Gla 
residues (15 Gla residues in human) (114,115). With unusually 
high capacity to bind calcium through Gla resdues, GRP accu‑
mulates in bone, cartilage and ectopic calcification, such as 
blood vessels and skin (112). During physiological conditions, 
GRP participates in the stabilization of cartilage matrix, chon‑
drogenesis and inhibition of osteogenesis (116‑118). Recently, 
GRP has attracted attention due to its crucial performance in 
combating ectopic calcification.

GRP and bones. The growth of long bones is inseparable from 
the process of endochondral ossification. First, chondrocytes 
participate through a combination of proliferation, extracel‑
lular matrix secretion and hypertrophy. Then, hydroxyapatite 
crystals are deposited in the extracellular matrix surrounding 
late hypertrophic chondrocytes, known as mineralization. 
Next, chondrocyte death, matrix degradation and contents 
invasion occur. Finally, the growth plates close and the 
bones mature (119). Surmann‑Schmitt et al reported GRP in 
the upper zone of the growth plate, termed unique cartilage 
matrix‑associated protein, which exhibits a negative correlation 
with osteogenic differentiation (116). Both GRP knockdown 
zebrafish and warfarin‑exposed zebrafish show irreversible 
growth retardation and altered skeletal development; therefore 
Gla residues are necessary for the function of GRP (117). It 
is worth mentioning that a similar feature is found in human 
warfarin embryopathy, which results in pregnant women from 
warfarin therapy (120,121). Surprisingly, GRP is not essential 
for mouse skeletal development (55). However, the fact that 
GRP is still expressed in adult mouse cartilage indicates 
that GRP may contribute to skeletal homeostasis and other 
calcification‑associated pathological processes after infancy.

Osteoarthritis (OA), a painful joint disease, is character‑
ized by articular cartilage degradation, bone remodeling, 
tissue inflammation and abnormal extracellular matrix miner‑
alization. In fact, GRP plays a dual role in OA. GRP prevents 
articular cartilage degradation in two practical ways. On the 
one hand, GRP blocks the aggrecanase activity of A disin‑
tegrin and metalloproteinase with thrombospondin motifs 
(ADAMTS)‑4 and ADAMTS‑5 by physical interaction (56,57). 
Aggrecanolysis is considered the main process of cartilage 
degradation, thus GRP protects cartilage by increasing its 
resistance to aggrecan cleavage in OA. By contrast, enhanced 
chondrocyte apoptosis accelerates the cartilage damage in OA. 
It is reported that chondrocyte cell death is markedly increased 
in GRP‑deficient mice; thus, GRP protects articular cartilage by 
reducing chondrocyte apoptosis (56). However, GRP has also 
been implicated in bone remodeling, which is mediated with 
the altered function and metabolism of osteoblasts and osteo‑
clasts in OA (122). Previous findings have shown osteoblasts 
contribute to phenotypic changes and osteoclasts are associ‑
ated with cartilage destruction in OA (56,123). Additionally, 
GRP, as a downstream gene of runt‑related transcription 
factor 2 and Osterix, stimulates osteoblast differentiation in 
OA (60). Similar results have been found in mice, in which 
osteoblasts and osteoclasts decreased during experimental 
OA in GRP‑deficient mice, while there was no fluctuation in 
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normal mice (56). The obvious conflict regarding the effect 
of GRP on osteoblastic differentiation may be explained by 
post‑translational modification of GRP (56,60,116). Moreover, 
certain data have indicated GRP promotes osteophyte forma‑
tion in OA and the effect occurs via bone remodeling rather 
than cartilage maturation (57,60). In addition, inflammation 
presents before the joint structure changes in OA joints (124). 
It has been demonstrated that GRP has a similar inhibitory 
effect on calcification and inflammation processes  (58). 
Furthermore, synovial fluid GRP levels in OA patients exhibit 
a positive correlation with radiographic findings and symp‑
tomatic severity of OA (125). However, it is noteworthy that 
studies have shown that vitamin K deficiency is a potential risk 
factor for knee OA (126). Due to the lack of effective treatment 
and prevention methods currently, fully carboxylated GRP by 
vitamin K supplementation is a convenient and inexpensive 
candidate for the treatment of OA.

GRP and vascular calcification. Vascular calcification is a 
pathological process characterized by the deposition of calcium 
phosphate crystals in vessel walls  (127,128). According to 
the location of calcification, it can be classified into intimal 
calcification (related to plaque burden and luminal narrowing) 
and medial calcification (associated with vessel stiffness and 
vascular compliance decline) (128). VSMCs are a contractile 
phenotype in the physiological state that can regulate vascular 
tension. However, they lose expression of contractility‑related 
genes when vascular injury exists and are further transformed 
into osteoblast‑like cells  (129). In addition, bone matrix 

regulatory proteins, such as BMP‑2, BMP‑4, osteopontin, 
MGP and OC, are expressed in calcifying vessels (130). In 
response to the high level of extracellular calcium and the lack 
of calcification inhibitors, VSMCs release extracellular vesicles 
(EVs) into circulation with good mineralization capability and 
form a nucleation site for hydroxyapatite (131,132). Fetuin‑A, 
a 48 kDa protein, is synthesized in the liver and secreted into 
circulation as a powerful calcification inhibitor. Interestingly, 
fetuin‑A is too large to enter the collagen fibril where the 
mineral grows (133). It is reported that the mineral grows only 
inside the fibril when fetuin‑A exists, whereas it grows beyond 
the fibril without fetuin‑A (134). Therefore, fetuin‑A is the key 
factor in determining the location of mineral growth. Moreover, 
inflammatory activity takes part in early calcification. Many 
studies have indicated a synergistic interaction between 
macrophage and VSMC calcification. Activated macrophages 
produce a large number of proteases to enhance the degrada‑
tion of elastin and collagen (124,135). Macrophages markedly 
increased BMP‑2 expression in VSMCs and also released 
EVs with calcification capacity (136,137). In addition, many 
other factors influence the process of vascular calcification, 
for instance, VSMC apoptosis, oxidative stress and endothelial 
dysfunction (138,139).

GRP, a VKDP, has been identified as a powerful inhibitor 
of vascular calcification. GRP, MGP and fetuin‑A form a large 
complex that is loaded in noncalcifying EVs but distinctly 
lowered in high calcium‑loaded vesicles, thus recommending 
GRP as an important mineralization inhibitor  (59,61). 
Furthermore, calciprotein particle (CPP), a fetuin‑mineral 

Figure 1. Functional mechanisms of Gas6. The ‘+’ refers to promotion and ‘‑’ refers to inhibition. Green represents Gas 6 physiological effects and red repre‑
sents its pathological effects. Gas 6 is widely expressed in heart, kidney, brain and other tissues. Abundant vitamin K ensures sufficient carboxylated Gas 6 in 
the body. Gas 6 resists vascular calcification through three mechanisms: i) Gas 6 promotes proliferation and migration of endothelial progenitor cells (EPCs); 
ii) Gas 6 inhibits apoptosis and senescence of vascular smooth muscle cells (VSMCs) by binding Tyro3, Axl and Mer (TAM) receptors; iii) Gas 6 decreases 
expression of inflammatory factors, including TNF‑α and ICAM‑1. Similarly, Gas 6 protects from acute kidney injury: i) Gas 6 significantly reduces creatinine 
and blood urea nitrogen; ii) Gas 6 enhances macrophages to uptake apoptotic cells; iii) Gas 6 reduces the expression of pro‑inflammatory cytokines, such 
as IL‑1β. However, Gas 6 assists tumor progression: i) Gas 6 is necessary for survival, proliferation and growth of tumor cells; ii) Gas 6 contributes to drug 
resistance and tumor angiogenesis; iii) Gas 6 negatively regulates tumor immunity.
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complex, principally contains mineral, fetuin‑A, MGP and 
GRP, and contributes greatly to the stabilization of minerals. 
Research has demonstrated that CKD patients possess CPPs 
with a lower content of fetuin‑A and GRP compared with 
healthy individuals (138). Fetuin‑A is predominant in healthy 
CPPs and retards the deterioration toward calcifying CPPs 
through collaboration with GRP (140,141). Moreover, GRP 
shows the ability to counteract inflammation and is found in 
macrophage‑derived EVs (142). In vitro studies found calcifi‑
cation in both GRP‑deficient and normal VSMCs in response 
to osteogenic medium after 6 days, yet GRP‑deficient VSMCs 
calcified about twice as much as normal VSMCs 9  days 
later (143). Of note, there is an apparent increase in the expres‑
sion of BMP‑2 and its downstream marker (small mother 
against decapentaplegic, SMAD) and, finally, after comparing 
GRP with two different carboxylation states, the direct 
interaction between the carboxylated GRP and BMP‑2 was 
confirmed (143). Therefore, GRP disturbs the BMP‑2‑SMAD 
signaling in calcifying VSMCs, playing a central role in VSMC 
calcification (Fig. 2).

GRP and cancer. Microcalcification, a small deposit of calcium 
with a diameter less than 1 mm in mammographic images, 
is vital for the diagnosis and prognosis of breast cancer (61). 
Ductal carcinoma in situ can be as high as 20‑25% in women 
with asymptomatic breast cancer (144). Furthermore, 70% of 
ductal carcinoma in situ can be diagnosed only by microcal‑
cification in mammography (145). Recent findings have shown 
that linear branching microcalcifications in mammography 
indicate the aggressive of tumor tissue (146). A differential 
accumulation pattern of carboxylated GRP (cGRP) and under‑
carboxylated GRP (ucGRP) by vitamin K has been recently 
emphasized in human breast cancer (147). In healthy mammary 
gland tissues, cGRP was predominant, while ucGRP was found 
to be either co‑localized or undetectable. By contrast, ucGRP 
was widely detected in tumor cytoplasm, while cGRP was only 
intermittently found in certain tumor cells. There are many 
explanations for the large quantity of ucGRP in tumors. It has 
been observed that the decreased level of vitamin K in tumor 
areas is in contrast to non‑tumorous areas (148). Patients with 
tumor complications, such as venous thromboembolism, have 
received long‑term therapy with vitamin K antagonists and the 
potential detrimental effects to GRP should be noted (149). In 
addition, prolonged subclinical vitamin K deficiency has been 
identified in cancer patients. Furthermore, vitamin K preferen‑
tially supports the coagulation factor synthetic process in the 
liver, and only after the vitamin K supply has met the liver's 
need is the excess vitamin K transported to extra‑hepatic 
tissues (177,150). Thus, ucGRP is widespread in tumor tissues. 
Furthermore, the formation mechanism of microcalcification 
in breast tumor tissue is similar to physiological bone miner‑
alization and pathological vascular mineralization (151). Both 
cGRP and ucGRP showed an advanced affinity to calcium 
mineral deposits in breast cancer tissue. Thus, with the capa‑
bility of resisting ectopic calcification, GRP is considered a 
novel effective antagonist against cancer. It is worth noting that 
triple‑negative breast cancer is a subtype with low expression of 
estrogen receptor, progesterone receptor and human epidermal 
growth factor receptor 2 receptor (62). Therefore, there is a 
lack of effective targeted therapy drugs for triple‑negative 

breast cancer. However, recent research may be useful in 
resolving this issue. GRP inhibits the growth, migration and 
invasion of triple‑negative breast cancer tissues in vitro and 
in vivo (62). Moreover, according to survival analysis in the 
open database, the relapse‑free survival rate of patients with 
triple‑negative breast cancer was significantly correlated with 
high GRP expression (62).

6. Periostin

Brief introduction to periostin. Periostin, initially known as 
osteoblast‑specific factor 2, was first cloned from a cDNA 
library of the mouse osteoblastic cell line MC3T3‑E1 in 
Japan (152). Over a decade later, the Gla‑containing protein, 
periostin, was determined to require vitamin K‑dependent 
carboxylation and became the 13th member of the VKDP 
family (153). Characterized by fasciclin domains, periostin 
is particularly expressed in connective tissues submitted to 
constant mechanical stresses (153). For example, periosteum, 
the periodontal ligament, heart valves and skin. Periostin 
has also been implicated in fibrosis, inflammation, tumor 
metastasis and the fracture healing process (67,154-156).

Periostin and bone. Fractures are one of the most common 
traumatic injuries to humans. Most fractures can be repaired 
to their pre‑injury state through a process similar to embry‑
onic skeletal development. According to the characteristics 
of fracture healing, the process is divided into four partially 
overlapping phases: The inflammation phase, the soft callus 
phase, the hard callus phase and the remodeling phase (157). 
The inflammation phase is marked by acute inflammation, 
hematoma formation and skeletal stem cell recruitment. 
During the soft callus phase, cartilaginous callus and nascent 
blood vessels form. During the hard callus phase, the most 
active phase of osteogenesis, the cartilage is reabsorbed and 
bone is deposited by osteoblasts  (158). Angiogenesis also 
continues during this phase. During the last phase, primary 
bone is eventually replaced by lamellar bone, which supports 
normal skeletal functions, and vascular remodeling is finally 
completed  (158,159). There is a vital association between 
periosteum and fracture repair. In a mouse model in which 
graft femoral bone was segmentally transplanted, the peri‑
osteum showed positive osteogenic and angiogenic activity, 
leading to superior healing and repair of live isografts (160). 
However, absence of the periosteum led to poor cartilaginous 
callus formation, and even fracture non‑union (160,161). The 
periosteum is anatomically comprised of an outer fibrous 
layer and an inner cambium layer. The fibrous layer contains 
fibroblasts, collagen, and elastin fibers, along with a nerve and 
microvascular network (162). The cambium layer is directly 
closed to the bone surface and contains high‑quality mesen‑
chymal progenitor cells, osteoblasts, fibroblasts, microvessels 
and sympathetic nerves (162,163). In human bones, periostin 
is highly expressed in the cambium layer, where it is highly 
active during bone remodeling (164). In a mouse model of 
fracture, rapid periostin gene expression occurred during the 
inchoate phase of fracture healing (155). In the first 1‑2 weeks 
after fracture, human serum periostin is decreased initially, 
prior to a progressive elevation that peaks at 8 weeks, and is 
present for about 26 weeks (165).
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Periostin participates in almost all phases of fracture 
healing. In the early inflammation phase, as a result of the 
inflammatory response or paracrine effects of the periosteum, 
periostin is present at a low level in serum (165). Transplantation 
of the periosteum of periostin‑deficient mice to the fracture site 
of wild‑type mice induced negative fracture repair, indicating 
that periostin regulates periosteum activation (66). Skeletal 
stem cells (SSCs), with local osteogenic potential, are recruited 
in the early stage of bone regeneration and periosteum and is 
considered one of its major sources (166). As an extracellular 
matrix protein, periostin promotes the migration of SSCs 
by binding integrin receptors on the cell surface (162,167). 
Notably, periosteal cells, another form of convened cells 
that shares a common embryonic origin with SSCs, have 
been revealed to have greater regenerative potential than 
SSCs (63). Moreover, periosteal cell functions are impaired in 
mice lacking periostin, suggesting that periostin contributes 
to periosteal cell activation (63). During the callus phases, 
induced by BMP‑2, periostin is upregulated in soft callus and 
osteoblasts (168). Accumulating evidence has indicated that 
abundant periostin facilitates the proliferation, differentiation 
and adhesion of osteoblasts in bone formation  (64,65). In 
addition, periostin may interfere with osteoclasts in a similar 
way (65). It is reported that periostin markedly increases arte‑
rioles in a calvarial defects model, proving periostin promotes 
angiogenesis (66). Periostin has a crucial mission in the last 
phase of fracture healing, that is, to recover the periosteum 
niche of periosteal cells. In a periosteum transplantation 
model, periosteal cells may still be re‑activated to contribute 
to cartilage within the callus after three injury cycles (63). By 

contrast, when periostin‑deficient grafts were transplanted 
into wild‑type hosts, the contribution of periosteal cells to 
repairing of the second fracture injury disappeared, leading 
to defective callus formation and fibrosis, and furthermore this 
was not due to deficient proliferation (63). Therefore, periostin 
plays a crucial role in maintaining periosteal cell niche and 
supporting bone remodeling.

Long‑term anticoagulant therapy with vitamin K antago‑
nists, such as warfarin, reduces bone density and increases the 
risk of osteoporosis (169,170). Previous findings have shown 
that warfarin significantly inhibits osteoblastic differentia‑
tion (171). Warfarin interferes in the carboxylation of periostin 
by antagonizing the function of vitamin K, and the decrease 
of carboxylated periostin is one of the main causes of bone 
density reduction  (172). By contrast, vitamin K2 promotes 
mineralization of osteoblasts (173). In recent years, periostin 
has been recommended as a potential predictive marker 
of bone events. Osteoporotic fracture is a major cause of 
disability in the elderly, while the ability of current predicting 
methods is limited. In a cohort of 607 postmenopausal women 
from France that were followed up for 7 years, a positive 
correlation between serum periostin and fracture risk was 
observed (174). Furthermore, the association was indepen‑
dent of bone mineral density and prior fractures, indicating 
that periostin is an independent predictive marker of fracture 
risk. This hypothesis was confirmed in another case control 
study of Korean postmenopausal women (175). Interestingly, 
high plasma periostin levels prefer non‑vertebral fractures to 
vertebral fractures, such as limb fractures (175). These clinical 
outcomes seem contrary to the popular view of periostin. The 

Figure 2. Functional mechanisms of GRP. The ‘+’ refers to promotion and ‘‑’ refers to inhibition. Green represents GRP physiological effects and red represents 
its pathological effects. GRP is widely expressed in bone, cartilage, blood vessels and other tissues. GRP develops its role after γ‑carboxylation, which is 
regulated by the GGCX enzyme and vitamin K. Gla residues are necessary for GRP to perform its physiological functions: Reducing osteogenic differentiation 
and maintaining skeletal homeostasis. GRP plays a dual role in OA. On the one hand, GRP prevents articular cartilage degradation by blocking aggrecanase 
activity (ADAMTS‑4 and ‑5) and inhibiting chondrocyte apoptosis and inflammation. By contrast, GRP contributes to bone remodeling in OA via promotion 
of osteoblastic differentiation and osteophyte formation. Additionally, GRP also resists vascular calcification: i) GRP, matrix Gla protein (MGP) and fetuin‑A 
complex combines the with mineral to form calciprotein particles (CPPs), which contribute greatly to the stabilization of minerals; ii) carboxylated GRP 
disturbs inflammation and BMP‑2‑SMAD signaling in calcifying VSMCs. Abundant ucGRP assembles in tumor cells, while cGRP is rare. Moreover, GRP 
inhibits the growth, migration and invasion of triple‑negative breast cancer.
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specific mechanisms for these conclusions need further study 
as they may be related to the carboxylation state of periostin 
or to the distribution of periostin in the body. Specifically, 
periostin in bone are induced to circulation. Notably, it has 
been demonstrated that lower serum periostin concentrations 
were related to prevalence of knee OA in women (176). This 
provides a new idea for the application of periostin in bone 
event prediction.

Periostin and heart. During embryogenesis, periostin 
supports normal valve leaflet morphogenesis and cardiac 
skeleton maturity  (177). Periostin is implicated in CVDs, 
such as myocardial infarction, atherosclerosis and cardiac 
fibrosis‑related diseases (67). Cardiac fibrosis is a prominent 
feature of cardiac remodeling that can further lead to heart 
failure and impaired cardiac function. Fibroblasts, the most 
abundant cell population in the heart except cardiomyocytes, 
rapidly differentiate into myofibroblasts in the cardiac fibrosis 
process (67). Abundant differentiated myofibroblasts found in 
hearts suffering failure also support the transformation (179). 
Emerging evidence suggests that the myofibroblast phenotype 
still has latent reversibility in end‑stage heart failure (67,178). 
Of note, periostin, as the most specific product, is expressed 
in essentially all myofibroblasts  (67,68). Certain data have 
indicated targeted ablated periostin‑expressing myofibroblasts 
led to a diminished fibrotic area and improved the ejection 
fraction in hearts in AngII‑induced fibrosis mice (68). In addi‑
tion, not only was cardiac fibrosis reduced, but treatment also 
did not affect scar stability in myocardial infarction mice (68). 
Moreover, periostin antibody treatment visibly restricted cell 
viability of myofibroblasts in vitro (69). Therefore, periostin is 
a novel central factor contributing to the function of myofibro‑
blasts during cardiac fibrosis. Research has demonstrated that 
ginsenoside Rb1, the bioactive component of ginseng, reduced 
the expression levels of periostin and protected rats against 
myocardial fibrosis (179).

According to whether exons 17 and 21 exist or not, periostin 
can be divided into four isoforms, i.e., Pn‑1 to Pn‑4. In detail, 
Pn‑1 is a full‑length form, Pn‑2 is short of exon 17, Pn‑3 is short 
of exon 21, and Pn‑4 is short of exons 17 and 21 (69). Using an 
antibody that specifically inhibits exon 17, the dispute regarding 
the functions of different periostin isoforms has been settled. 
It is not surprising that the expression of periostin increased 
in the border zone on day 5 after myocardial infarction (69). 
However, total infarction and fibrosis size were notably 
reduced in an adult mouse model by selectively neutralizing an 
antibody against exon 17 (69). In addition, cardiac dysfunctions 
were improved. Moreover, Pn‑2 contributes to angiogenesis in 
in vitro experiments, while Pn‑1 does not (69). Low expression 
of TGF‑β, a fibrosis‑related gene, was associated with the inhi‑
bition of fibrosis. Thus, Pn‑1 contributes to fibrosis and heart 
remodeling after myocardial infarction, and there is potential 
to improve the prognosis of myocardial infarction via selec‑
tively inhibited Pn‑1 treatment. Nevertheless, neonatal mice 
were capable of regenerating myocardium after myocardial 
infarction. On day 21 after myocardial infarction, the infarcted 
areas of neonatal mice almost disappeared (180). However, 
myocardial regeneration was inhibited in periostin‑deficient 
neonatal mice, presenting with a larger infarcted area, which 
was attributed to the inhibition of PI3K/glycogen synthase 

kinase 3β/cyclin D1 signaling pathway (180). Therefore, peri‑
ostin is pivotal for myocardial regeneration at the early stage 
of myocardial infarction, and is involved in fibrillogenesis and 
scar generation in the later chronic stage.

Previous findings have shown that periostin is abundantly 
expressed in patients with atherosclerosis (181‑183). In the 
‘Pathobiological Determinants of Atherosclerosis in Youth’ 
study, the variant encoding periostin gene was connected with 
atherosclerotic lesion traits (181). Matrix metalloproteinases, 
enzymes implicated in atherosclerosis and vascular remod‑
eling, which were induced by periostin, led to valve thickening 
in mice fed high‑fat diets (182). Additionally, periostin stimu‑
lates angiogenesis both in vitro and ex vivo (179). In response 
to injury, periostin was markedly upregulated in neointimal 
SMCs and adventitial myofibroblasts, and promoted cell 
migration (183). By contrast, the plaques of periostin‑deleted 
mice, not only had a smaller necrotic core and fibrous cap, but 
also possessed more cholesterol clefts (184). The deficiency 
of periostin also reduced the infiltration of macrophages into 
the plaque (184). Thus, periostin plays a considerable role in 
atherosclerosis, and targeted periostin treatment may delay 
progression of diseases associated with atherosclerosis (Fig. 3).

Periostin and the respiratory system. In the last decade, the 
role of periostin in airway development and diseases has been 
widely emphasized. For instance, periostin was reduced in 
tracheal aspirate fluid of bronchopulmonary dysplasia during 
the window period (185). Then, TGF‑β upregulated the expres‑
sion of periostin in the interstitial fibrosis region (185,186). 
Thus, periostin is recognized as a potential biomarker that 
predicts the risk of bronchopulmonary dysplasia and the need 
for preventative therapies in preterm infants. Periostin has 
been involved in many respiratory disorders, such as idiopathic 
pulmonary fibrosis (IPF), asthma, chronic rhinosinusitis, 
idiopathic eosinophilic pneumonia and allergic bronchopul‑
monary aspergillosis (156,187‑190). The most notable of these 
are IPF and asthma.

IPF, a common pulmonary fibrotic conditions, is a chronic 
progressive parenchymal lung disease of unclear cause that 
is limited to the lungs (191,192). Patients are predominantly 
older individuals and typically have progressive worsening 
lung function, leading to a grave prognosis  (193). It has 
been indicated that periostin was elevated in IPF patients' 
circulation (190). Furthermore, more periostin was found in 
the lungs of IPF patients and concentrated in areas of active 
fibrosis (187). Interestingly, the exon 21 of the periostin gene 
is more likely to be spliced out in IPF lung samples than in 
the control (194). Injury factors activate alveolar epithelial 
cells disrupting the homeostatic balance between epithelial 
and mesenchymal cells, thus fibrotic response is driven. As 
an extracellular matrix protein, periostin and TGF‑β regulate 
each other in fibroblasts (195); specifically, TGF‑β increases 
the expression of periostin. In return, periostin significantly 
upregulates the production of TGF‑β in fibroblasts and 
increases type  I collagen production  (70,195). However, 
periostin activates fibroblasts to produce type I collagen via 
β1 integrin, rather than the TGF‑β signal (195). Similar to 
heart fibrosis, periostin promotes differentiation of fibroblasts 
to myofibroblasts. By mediating epithelial‑mesenchymal 
transformation, periostin induces alveolar epithelial cells 
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to take on the characteristics of mesenchymal cells, which 
leads to the aggravation of fibrosis (70). Emerging evidence 
suggests that periostin silencing drives the fibroblasts into 
G1 arrest of the cell cycle and retards the proliferation in 
IPF (196). Thus, periostin plays a pivotal role in lung fibro‑
blast proliferation. Currently, early lung transplantation is a 
beneficial therapeutic option for IPF patients, and another two 
available drugs (Pirfenidone and Nintedanib) are able to limit 
IPF progress (197). Recently, a compound known as CP4715 
was found to prohibit the interaction between TGF‑β and 
periostin (197). CP4715, not only lessened bleomycin‑induced 
pulmonary fibrosis, but also disturbed TGF‑β signals in fibro‑
blasts from IPF (195). Therefore, CP4715 may become a latent 
drug therapy to provide more therapeutic possibilities for IPF. 
It is worth mentioning that vitamin K antagonists are related 
to the rising mortality of IPF (198). The carboxylation status 
of periostin in IPF patients deserves further study. Some 
scholars have proposed that the use of vitamin K instead of 
vitamin K antagonists may help reduce the progression of 
IPF, but this idea needs further verification (198).

Asthma, as a heterogeneous disease, has been defined as 
several phenotypes according to different clinical features and 
physiological indexes. Nevertheless, type‑2 airway inflamma‑
tion is one of the main causes of asthma, which is supported by 
activity of type 2 cytokines, such as IL‑4 and IL‑13. As a result 
of chronic airflow limitation, airway remodeling develops in 
chronic severe asthma. Many studies have shown periostin is 
deeply involved in the process of asthma, from airway inflam‑
mation to remodeling. The periostin gene is highly induced 
in asthmatic airway epithelial cells with a 4.4‑fold increase 
compared to healthy controls (199). In a cohort of asthmatics 
from Sweden, a negative correlation between serum periostin 
and lung function was observed (71). Type‑2 inflammation 
attracts large numbers of immune cells to release cytokines, 
such as IL‑4, IL‑13 and TGF‑β. These cytokines stimulate 
the production of periostin from fibroblasts, epithelial cells 
and endothelial cells, which are known as the main sources 
of periostin in asthma  (200), and some researchers have 
hypothesized that eosinophils also secrete periostin  (201). 
As an integrin ligand, periostin binds to integrin αMβ2 and 

Figure 3. Functional mechanisms of periostin. The ‘+; refers to promotion. Green represents periostin physiological effects and red represents pathological 
effects. Periostin is particularly expressed in connective tissues, such as the periodontal ligament, periosteum and heart valves. Vitamin K and GGCX are two 
vital enzymes in the carboxylation of periostin. According to whether exons 17 and 21 exist or not, periostin can be divided into four isoforms: Pn‑1, Pn‑2, Pn‑3 
and Pn‑4. Periostin is involved in all phases of fracture healing. Periostin promotes periosteum activation in the early stage. Subsequently, periostin facilitates 
the migration of SSCs via binding integrin receptors. Periostin contributes to the activation of periosteal cells, revealing greater regenerative potential than 
SSCs. Periostin facilitates the proliferation, differentiation and adhesion of osteoblasts and osteoclasts in bone formation. Periostin accelerates angiogenesis 
and maintains periosteal cell niche in the later period of fracture healing. At the embryonic stage of the heart, periostin supports heart valve development and 
cardiac skeleton maturity. However, periostin participates in progression of cardiac fibrosis, idiopathic pulmonary fibrosis (IPF) and asthma airway remod‑
eling. Expressed in essentially all myofibroblasts, periostin is a central factor contributing to the function of myofibroblasts. Periostin activates fibroblasts to 
produce type I collagen via β1 integrin in IPF. Moreover, periostin induces epithelial‑mesenchymal transformation, which leads to alveolar epithelial cells 
taking on the characteristics of mesenchymal cells and accelerates the aggravation of fibrosis.
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α4β1 on eosinophil, guiding recruitment of eosinophils and 
increasing eosinophil adhesion to fibronectin (156,202). In 
addition, through its fibrogenic function, periostin participates 
in the process of subepithelial fibrosis, which is feature of 
airway remodeling in asthma (185). Periostin, secreted from 
airway epithelial cells, activates TGF‑β and upregulates type I 
collagen via autocrine effects (70,203). Similarly, periostin 
activates TGF‑β‑mediated fibroblasts to increase the produc‑
tion of type I collagen (70,203). Clinical studies from Japan 
have reported that vitamin K2 therapy has an effective rate 
of up to 90.9% in patients with mild asthma (204). The effec‑
tive rate was 86.7 and 72.7% in moderate and severe patients, 
respectively (204). In addition, vitamin K2 has a powerful 
ability to inhibit the release of inflammatory cytokines (205). 
It has also been shown that vitamin D, also a fat‑soluble 
vitamin, can regulate inflammatory chemokines in asthma 
and significantly inhibit airway smooth muscle cell prolif‑
eration (205). Therefore, whether vitamin K2 can regulate the 
release of inflammatory factors in asthma and thus inhibit the 
production of large amounts of periostin remains to be further 
studied. Additionally, periostin increases gel elasticity formed 
by type 1 collagen, thus mediating the biomechanical capa‑
bilities of the airway and leading to airway remodeling (206). 
Accumulated evidence has indicated that high serum periostin 
concentrations were implicated in certain characteristics of 
asthma. It is reported that serum periostin concentrations 
were not combined with atopic status or treatment status 
of asthma, while high level serum periostin was related to 
older patients at the onset of asthma, aspirin intolerance or 
nasal disorders  (207‑209). As serum biomarkers are more 
convenient than lung function tests in some special cases of 
asthma, periostin has become one of the practical biomarkers 
of asthma. For instance, periostin rises significantly in severe 
asthma and acute asthma exacerbation of children, which is 
an important serum biomarker in assessing the severity of 
asthma (206). Of note, periostin is a helpful biomarker to 
detect long‑term bronchial obstruction in severe asthmatic 
patients, as well as the sensitivity of sputum periostin beyond 
the serum periostin (210).

7. Discussion

In recent years, numerous physiological benefits of vitamin 
K2 have been identified, such as anti‑vascular calcification, 
glycemic control and lipid‑lowering effects (49,211). In general, 
the mechanisms by which vitamin K2 has been found to 
exhibit functional pluripotency can be summarized as follows. 
First of all, vitamin K‑dependent proteins (VKDPs) regu‑
lated by vitamin K play important roles in various biological 
processes. In addition, vitamin K2 is a powerful antioxidant. 
The antioxidant activity of vitamin KH2 far exceeds that of 
known free radical scavengers such as alpha‑tocopheroland 
ubiquinone (212). Vitamin K2, not only increased the number 
of surviving oxidative stress cells, but can also limit the 
amount of reactive oxygen species in cells (213). Moreover, 
vitamin K2 is effective in protecting mitochondrial function. 
Previous findings have shown that vitamin K2 can be used to 
substitute for ubiquinone to produce enough ATP to main‑
tain mitochondrial function during electron transfer  (214). 
In addition, vitamin K2 exerts anti‑inflammatory activity to 

inflammation‑stimulated cells and can inhibit the expression 
of inflammatory cytokines (e.g., TNF‑α, IL‑6 and IL‑8) (215). 
Finally, vitamin K2 is involved in immune regulation. 
Specifically, T‑cell proliferation was inhibited with vitamin K2 
instead of vitamin K1 (216).

In this review, we highlighted three emerging VKDPs 
(Gas 6, GRP and periostin) that need vitamin K to conduct 
carboxylation and then perform various biological func‑
tions in the human body, such as bone homeostasis, heart 
development and anti‑vascular calcification. In combina‑
tion with previous studies, we believe that a high intake 
of vitamin K, especially vitamin K2, is beneficial for the 
cardiovascular system and bones. However, some ques‑
tions about the relationship between vitamin K and cancer 
remain unsolved. Many studies have shown vitamin K2 has 
anticancer effects. Ishizuka et al reported that vitamin K2 
has a moderately suppressive effect on hepatocellular 
carcinoma recurrence  (217). Zhong  et  al indicated that 
vitamin K2 reduces the hepatocellular carcinoma recurrence 
rate after 1 year  (218). Similarly, vitamin K2 exerts anti‑
cancer effects in cancer cell lines, such as cholangiocellular 
carcinoma, ovarian cancer and pancreatic cancer (219‑221). 
Accumulating evidence has indicated that vitamin K2 not 
only inhibits the proliferation and differentiation of tumor 
cells, but also induces the apoptosis and autophagy of tumor 
cells (222). In addition, however, some VKDPs represented 
by Gas6 have been indicated to facilitate the survival and 
metastasis of cancer cells. Moreover, as mentioned above, 
GRP carboxylation status in breast cancer tissues is signifi‑
cantly different from those in normal tissues, but there are 
few studies measuring this in other diseases. Thus, the 
relationship between measurement of VKDP carboxylation 
status and disease progression remains to be further inves‑
tigated. Furthermore, periostin is a newly identified VKDP 
that has been extensively studied in the heart and respiratory 
system. However, the role of periostin as a VKDP has been 
rarely studied. A large number of studies have shown that the 
Gla domain after vitamin K carboxylation is an important 
structure for VKDPs to play a role; thus, this review provides 
a new idea for the further exploration of periostin. Overall, 
the process of γ‑carboxylation modification has a significant 
effect on biological functions, although the functional results 
of γ‑carboxylation for these proteins are not yet clear. These 
three emerging proteins act in different directions, so their 
specific roles with vitamin K2 need further study.

In conclusion, Gas6, GRP and periostin are involved in 
a variety of physiological and pathological processes in the 
body. Vitamin K is essential for their function, and thus may 
be a potential preventive and therapeutic agent for many 
diseases. Additionally, VKDPs are expected to be biomarkers 
for many diseases.
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