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Summary
Background Accurate staging of liver fibrosis (LF) is essential for clinical management in chronic liver disease. While
non-contrast MRI (NC-MRI) yields valuable information for liver assessment, its effectiveness in predicting LF
remains underexplored. This study aimed to develop and validate artificial intelligence (AI)-powered models
utilizing NC-MRI for staging LF.

Methods A total of 1726 patients from Shengjing Hospital of China Medical University, registered between October
2003 and October 2022, were retrospectively collected, and divided into development (n = 1208) and internal test
(n = 518) cohorts. An external test cohort consisting of 337 individuals from six centers, registered between June 2015
and November 2022, were also included. All participants underwent NC-MRI (T1-weighted imaging, T1WI; and T2-
fat-suppressed imaging, T2FS) and liver biopsies. Two classification models (CMs), named T1 and T2FS, were trained
on respective image types using 3D contextual transformer networks and evaluated on both test cohorts. Additionally,
three CMs—Clinic, Image, and Fusion—were developed using clinical features, T1 and T2FS scores, and their
integration via logistic regression. Classification effectiveness of CMs was assessed using the area under the
receiver operating characteristic curve (AUC). A comparison was conducted between the optimal models (OMs)
with highest AUC and other methods (transient elastography, five serum biomarkers, and six radiologists).

Findings Fusion models (i.e., OM) yielded the highest AUC among the CMs, achieving AUCs of 0.810 for significant
fibrosis, 0.881 for advanced fibrosis, and 0.918 for cirrhosis in the internal test cohort, and 0.808, 0.868, and 0.925,
respectively, in the external test cohort. The OMs demonstrated superior performance in AUC, significantly
surpassing transient elastography (only for staging ≥ F2 and ≥ F3 grades), serum biomarkers, and three junior
radiologists for staging LF. Radiologists, with the aid of the OMs, can achieve a higher AUC in LF assessment.

Interpretation AI-powered models utilizing NC-MRI, including T1WI and T2FS, accurately stage LF.
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Research in context

Evidence before this study
We conducted a search on PubMed for publications without
language restrictions, published before June 22, 2024. The
search terms included “liver fibrosis” or “hepatic fibrosis” and
“MRI” combined with “deep learning” or “radiomics” or
“artificial intelligence” with these terms appearing in the
abstract, title, or MESH headings. Although there have been
studies on MRI for liver fibrosis assessment, no fully
automated model for staging liver fibrosis based on non-
contrast MRI (NC-MRI: T1-weighted imaging, T1WI; and T2-
fat-suppressed imaging, T2FS) utilizing large-scale multicenter
data has been established.

Added value of this study
This study presented an innovative method for staging liver
fibrosis using NC-MRI integrated with advanced artificial
intelligence (AI). Our AI-powered models, developed with a
substantial dataset of 1208 patients and validated using an

internal dataset of 518 patients and an external dataset of
337 patients, demonstrated superior diagnostic performance
compared to radiologists and traditional methods such as
transient elastography and serum biomarkers. Notably, our
models, which incorporated clinical features (liver volume,
spleen volume, age, and sex) and NC-MRI scores, obtained
using 3D contextual transformer networks, demonstrated
potential for superior diagnostic performance compared to
radiologists and traditional methods such as transient
elastography and serum biomarkers.

Implications of all the available evidence
The integration of our AI-powered models into NC-MRI can
assist radiologists in the rapid and accurate staging of liver
fibrosis in clinical practice. This advancement has the potential
to significantly enhance diagnostic and therapeutic decision-
making for patients with chronic liver diseases.
Introduction
Liver fibrosis, characterized by excessive collagen depo-
sition and scar tissue formation due to chronic inflam-
mation, markedly impairs hepatic circulation and alters
liver architecture.1 Leveraging the liver’s regenerative
capacity, early-stage fibrosis can often be reversed with
proper treatment.1 However, without intervention,
ongoing inflammation and fibrosis may progress to
cirrhosis, presenting greater treatment challenges.1,2

This stage enhances the likelihood of hepatocellular
carcinoma and hepatic decompensation, alongside
additional complications such as ascites, hepatic en-
cephalopathy, and variceal bleeding.3–5 Notably, cirrhosis
has ascended as a significant contributor to global
mortality, accounting for 2.4% of all deaths worldwide
in 2019.6 Liver biopsy, the current reference method for
fibrosis assessment in clinical practice, is unsuitable for
routine fibrosis screening due to its invasiveness, sus-
ceptibility to sampling error, associated morbidity,
complication risks, and interpretative variability.7,8

Considering the silent and non-specific symptom-
atology of early-stage liver fibrosis, its detection presents
significant challenges. Thus, it is critical to develop a
highly accurate and efficient non-invasive diagnostic
approach for the standard management protocols of
chronic liver diseases.

A variety of evaluation methodologies have been
proposed, showing enhanced diagnostic performance in
the assessment of liver fibrosis. Among these, magnetic
resonance elastography (MRE) has been established as
the reference standard for non-invasive assessment.9–12

Nevertheless, MRE’s application is constrained by the
need for specialized technical expertise and equipment,
along with associated higher costs.13 Considering these
limitations, ultrasound elastography and serological as-
sessments are acknowledged for their practical applica-
tion and economic viability.13–15 However, these
alternative methods have their own shortcomings. Ul-
trasound elastography, for instance, may yield a higher
failure rate in specific groups, particularly obese pa-
tients, while serological tests, despite less dependency
on patient physique, are affected by individual biological
variability and are unable to offer direct visualization of
the liver.

Magnetic resonance imaging (MRI) is renowned for
its high-resolution and exceptional soft tissue contrast,
vital for precise liver tissue delineation.16 Gadoxetic acid-
enhanced MRI (GA-MRI) further amplifies this with
dynamic contrast enhancement.17–19 The implementa-
tion of advanced artificial intelligence (AI) technologies,
including deep learning and radiomics, has proven
highly effective at uncovering nuanced details in medi-
cal images and notably improving disease diagnosis
accuracy,20–22 especially in liver fibrosis assessment when
combined with GA-MRI.23–25 However, the limitations
posed by potential contrast agent allergies and high
costs necessitate exploration into AI-powered methods
using non-contrast MRI (NC-MRI) for fibrosis assess-
ment. Studies using radiomic approaches with T1-
weighted imaging (T1WI) in predicting liver fibrosis
grades or integrating T2-weighted fat-suppressed imag-
ing (T2FS) radiomic features with clinical data have
demonstrated promising results in assessing liver stiff-
ness with reasonable accuracy,26,27 despite facing
www.thelancet.com Vol 77 November, 2024

http://www.thelancet.com


Articles
challenges such as limited sample sizes and the need for
robust validation. Impressively, the fusion of multi-
parametric MRI with radiomics has unveiled signifi-
cant promise in providing preoperative survival
estimates for intrahepatic cholangiocarcinoma surgeries
and identifying microvascular invasion in intrahepatic
cholangiocarcinoma.28,29 In this context, we propose a
plausible hypothesis that integrating AI with NC-MRI
(T1WI and T2FS) and clinical indicators from large-
scale datasets could simplify and refine fibrosis evalua-
tions, achieving both efficiency and accuracy.

Therefore, our study aimed to develop and validate
AI-powered models for staging liver fibrosis, utilizing
NC-MRI (T1WI and T2FS) and clinical data from large-
scale multicenter datasets.
Methods
Ethics statement
Approval for this retrospective study was obtained from
the Institutional Ethics Review Board at the participating
hospitals (Shengjing Hospital of China Medical Uni-
versity: 2024PS863K; Shandong Provincial Hospital
Affiliated to Shandong First Medical University: SWYX:
NO.2024-483; The Second Affiliated Hospital of Baotou
Medical College: 2024-ZX-051; Yantai Yuhuangding
Hospital, Qingdao University: 2024-624; Hubei Cancer
Hospital, Tongji Medical College: LLHBCH2024YN-
074; Liaoning Cancer Hospital & Institute: 20210247X;
The Sixth People’s Hospital of Shenyang: 2024-09-002-
01), with the need for informed consent waived due to
its retrospective nature.

Study population
This study preliminarily encompassed 3141 consecutive
patients from Shengjing Hospital of China Medical
University between October 2003 and October 2022.
These patients met the inclusion criteria, having un-
dergone preliminary MRI scans and liver biopsy before
receiving systemic medical treatment. A total of 1415
patients were excluded according to the following
exclusion criteria: (1) Age below 18 (n = 38); (2) Poor
image quality (n = 18); (3) Biopsy missing fibrosis
grades (n = 982); (4) Presence of multiple (five or more)
or large (≥10 cm) hepatic masses (n = 126); (5) Liver
biopsy and MRI scans conducted with intervals
exceeding 3 months (n = 251). Finally, 1726 patients
were selected for further analysis.

In accordance with the timing of their MRI exami-
nations, 1208 patients were included in the development
cohort from October 2003 to February 2019, whereas
518 patients were designated to the internal test cohort
between March 2019 and October 2022. Additionally,
337 patients from six independent hospitals (Liaoning
Cancer Hospital & Institute; Shandong Provincial
Hospital Affiliated to Shandong First Medical Univer-
sity; The Second Affiliated Hospital of Baotou Medical
www.thelancet.com Vol 77 November, 2024
College; Yantai Yuhuangding Hospital, Qingdao Uni-
versity; Hubei Cancer Hospital, Tongji Medical College;
and The Sixth People’s Hospital of Shenyang), following
the same inclusion and exclusion criteria as Shengjing
Hospital of China Medical University, were chosen as
the external test cohort to assess the developed models.
The recruitment flowchart for all patients in this study is
depicted in Fig. S1.

Liver biopsy
Liver fibrosis grades were assessed by expert patholo-
gists using liver biopsies in accordance with the MET-
AVIR scoring system.30 Grades of ≥ F2, ≥ F3, and F4
correspond to significant fibrosis, advanced fibrosis, and
cirrhosis, respectively.

To assess inter-rater agreement, specimens of 113
patients were selected and independently reviewed by
two experienced pathologists, who have 14 and 18 years
of experience, respectively. Each specimen’s fibrosis
grade was evaluated using the METAVIR scoring
system.

Image acquisition and ROI annotation
The MRI images of all patients in this study were ac-
quired using 1.5- or 3.0-T units equipped with dedicated
body coils. All MRI scans comprised two standard non-
contrast sequences: axial T1WI and T2FS. Detailed in-
formation regarding the scans is summarized in the
Table S1.

From the development cohort, 120 patients with axial
T1WI and T2FS images were randomly selected, with
equal representation from each fibrosis stage (F0–1:
n = 30, F2: n = 30, F3: n = 30, and F4: n = 30), for the
development of the liver-spleen segmentation model.
Annotation of 3D liver and spleen regions of interest
(ROIs) in axial T1WI and T2FS images was conducted
manually by experienced radiologists with over 5 years
of expertise, in a blinded manner, utilizing ITK-SNAP.

To explore the variability in the annotated liver and
spleen ROIs, another radiologist with over 3 years of
experience also performed independent annotations on
the images of these patients.

Establishment of segmentation models
The 3D full resolution framework of nnUNet (https://
github.com/MIC-DKFZ/nnUNet), an adaptive medical
image segmentation approach, was employed for
establishing the segmentation model.31 To achieve uni-
versal segmentation of liver-spleen in both T1WI and
T2FS images, the two types of images were combined
and input into the segmentation model for training.
During the model training process, the networks un-
derwent 300 epochs of training using the stochastic
gradient descent (SGD) optimizer. A combination of
dice and cross-entropy loss functions was employed
during training. The initial learning rate was set to
1 × 10−2, and after each epoch, the learning rate decayed
3
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by 3 × 10−5. Additionally, the momentum parameter was
set to 0.99, and nesterov momentum update was utilized
to expedite convergence. The model was trained on an
RTX 3090 with 24 GB of memory and implemented
using PyTorch (version 2.3.0) with Python version
3.9.17.

Development of classification models
In this study, T1 and T2FS models were developed
utilizing 3D contextual transformer networks (CoTNet),
an adaptation of the previously published 2D CoTNet
architecture (https://github.com/JDAI-CV/CoTNet).32 A
detailed description of the data preprocessing, data
augmentation, and 3D CoTNet structure is provided in
the Supplementary Methods. The training protocol
harnessed the adam optimizer, setting the learning rate
to 1 × 10−4 and the weight decay to 1 × 10−5. To rigor-
ously assess model performance, ordinal regression loss
was implemented, ensuring a detailed quantification of
the models’ ability to predict and rank fibrosis grades.
Then, ReduceLROnPlateau scheduler was employed to
dynamically adjust the learning rate based on the vali-
dation loss, with a reduction factor of 0.5 and a patience
of 10 epochs. The training spanned 300 epochs in total.
All models were trained in the same development
environment as the segmentation network.

To improve fibrosis prediction, three models were
developed: a Clinic model, an Image model, and a
Fusion model. The Clinic models for predicting ≥ F2, ≥
F3, and F4 grades utilized logistic regression, incorpo-
rating four clinical features (age, sex, liver volume, and
spleen volume). Image models were established using
logistic regression by combining two scores derived
from both the T1 and T2FS models. The Fusion models
were developed utilizing logistic regression, integrating
two scores from both the T1 and T2FS models with four
clinical features for the staging of fibrosis grades. Five-
fold cross-validation was utilized for the development
cohort to enhance the model’s generalization ability.
The results for both test cohorts were computed using
the mean scores from the five models obtained through
five-fold cross-validation. The optimal models (OMs) for
identifying ≥ F2, ≥ F3, and F4 grades were selected
based on their classification performance on both test
cohorts.

Interpretability of classification models
Two representative cases were selected from the MRE-
based subgroup, with MRE used as the reference
standard. Gradient-weighted class activation mapping
(Grad-CAM) was utilized to highlight important ROIs
for classification targets in the T1 and T2FS models.33

Additionally, the key ROIs highlighted in the heat-
maps of the T1 and T2FS models were compared with
the stiffness ROIs measured by MRE to evaluate their
consistency.The Shapley Additive Explanations method
was employed to enhance the interpretability and
transparency of the OMs.34 This method provides a
more precise understanding of the individual contribu-
tions of each variable to the model’s predictions. Shap-
ley values were calculated to evaluate the contribution of
each parameter to the overall performance of the OMs
for ≥ F2, ≥ F3, and F4 assessment.

Reader study
In the internal test cohort, 259 cases were randomly
selected for two reader studies to stage fibrosis grades
using NC-MRI, including T1WI and T2FS. Firstly, the
performance of the OMs was compared with that of
three junior radiologists (1–3 years of experience) and
three senior radiologists (5–10 years of experience) in
diagnosing liver fibrosis. Details related to radiologists
for fibrosis assessment35–39 are provided in the
Supplementary Methods. To simulate real clinical
diagnostic scenarios, apart from being informed about
the age and sex, all other relevant information was
masked during the evaluation process. Subsequently, an
investigation was conducted to determine whether the
OMs could assist radiologists. Each radiologist was
required to have a washout period of at least 1 month
between the two rounds of assessment. All assessment
was performed using a digital imaging and communi-
cations in medicine viewer.

Serum fibrosis tests, transient elastography, and
MRE
Five serum biomarkers, including the aspartate amino-
transferase and platelet ratio index (APRI),40 liver
fibrosis factor 4 index (FIB-4),41 red blood cell volume
distribution width platelet ratio (RPR),42 γ-glutamyl
transpeptidase to platelet ratio (GPR),43 and king score
(K-S)44 were calculated based on previous studies. The
corresponding formulas for these biomarkers are pro-
vided in the Supplementary Methods. Examination re-
sults containing the relevant serum indicators were
collected from the internal test cohort. A comparison
was made between the OMs developed in this study and
each individual serum biomarker in the cohorts where
all serum biomarkers were available. In the serum-
based subgroup, Complex Clinic models aimed at
assessing ≥ F2, ≥ F3, and F4 grades were developed
using logistic regression. These models incorporated
features such as age, sex, liver volume, spleen volume,
aspartate aminotransferase (AST), alanine transaminase
(ALT), and platelet counts (PLT). Additionally, Complex
Fusion models were created based on logistic regres-
sion, leveraging the same seven features along with two
scores derived from the T1 and T2FS models.

Liver stiffness measurement data obtained via tran-
sient elastography (TE) and MRE was collected from the
internal test cohort. In cohorts where liver stiffness
measurement data was available, we compared the
performance of the OMs developed in this study with
that of TE and MRE.
www.thelancet.com Vol 77 November, 2024
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Statistics
To describe the distribution of samples in different co-
horts, the variables are respectively documented using
the appropriate mean ± standard deviation (SD) for
continuous variables, and numbers and percentages for
categorical variables.

Linearly weighted κ statistics for categorical variables
were used to evaluate the agreement between the two
pathologists for fibrosis grades. The level of agreement
was defined as follows: κ = 0–0.20, poor agreement;
κ = 0.21–0.40, fair agreement; κ = 0.41–0.60, moderate
agreement; κ = 0.61–0.80, good agreement; and
κ = 0.81–1.00, very good agreement.45

The Dice Similarity Coefficient (DSC) was utilized to
evaluate the performance of the segmentation models
by measuring the overlap between the predicted masks
and the ground truth masks.46,47 The DSC value ranges
from 0 to 1, where values closer to 1 indicate better
consistency between the two segmentations, and values
closer to 0 indicate poorer segmentation performance.47

The area under the receiver operating characteristic
(ROC) curve (AUC) was employed to assess the diag-
nostic performance of the classification models.
DeLong’s test was used to compare the AUCs between
OMs and other methods.48 A P value of less than 0.05
was recognized as statistically significant. Calibration
curve49 and decision curve analysis (DCA)50 were sepa-
rately employed to evaluate the calibration and clinical
usefulness of the OMs for staging fibrosis grades.

The DSC and AUC were calculated, and ROC curves
were drawn using Python software (version 3.9.17).
Calibration curves and decision curve analysis were
conducted using R software (version 4.2.2).

Role of funding source
The funders of this study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report. All authors had full access to the
data in the study and had final responsibility for the
decision to submit for publication.
Results
Study design and patient characteristics
The comprehensive study design is depicted in Fig. 1.
We formulated five predictive models for staging
fibrosis grades (Clinic, T1, T2FS, Image, and Fusion),
employing five-fold cross-validation on a development
cohort. Subsequently, these models underwent valida-
tion on both test cohorts. A total of 1208 participants
(mean age: 44.76 ± 12.05 years; 763 [63.16%] males and
445 [36.84%] females) constituted the development
cohort. In the internal test cohort, the mean age of
participants was 46.93 ± 13.06 years, with 254 (49.03%)
males and 264 (50.97%) females. As for the external test
cohort, participants had a mean age of 46.94 ± 12.87
years, comprising 175 (51.93%) males and 162 (48.07%)
www.thelancet.com Vol 77 November, 2024
females. Demographic characteristics of the three co-
horts are detailed in Table 1.

Agreement evaluation
A good agreement (κ = 0.76) between the two inde-
pendent pathologists was observed in the assessment of
the fibrosis grades. The mean DSC scores of the anno-
tated liver and spleen ROIs between the two radiologists
were 0.990 ± 0.012 and 0.991 ± 0.006, respectively.

Performance of segmentation models
In liver segmentation, nnUNet consistently achieved
mean DSC scores of 0.990 ± 0.002 across all five folds.
Similarly, for spleen segmentation, the mean DSC
scores were 0.991 ± 0.002, indicating a high degree of
precision and reliability. Furthermore, our investigation
revealed consistent performance in liver and spleen
segmentation across different MRI images (liver at T1:
0.990 ± 0.002, at T2FS: 0.991 ± 0.002; spleen at T1:
0.987 ± 0.003, at T2FS: 0.994 ± 0.001), with minimal
performance differences. We additionally investigated
the segmentation performance of nnUNet in different
units and indicated similar performance between 1.5-
and 3.0-T units (liver at 1.5-T unit: 0.990 ± 0.002, at 3.0-T
unit: 0.990 ± 0.002; spleen at 1.5-T unit: 0.991 ± 0.002, at
3.0-T unit: 0.991 ± 0.002). The bar charts displaying the
mean DSC scores for liver and spleen are presented in
Fig. 2 A-D. Original images and segmentation masks
from nnUNet for two representative cases (F1 and F4
grades) are shown in Fig. 2E and F.

Performance of classification models
The cutoff values for predicting ≥ F2 grades were 0.522,
0.511, 0.629, 0.461 and 0.544 for the Fusion, Image,
T2FS, T1, and Clinic models, respectively. The Fusion
model, identified as the OM, excelled, showing a higher
AUC compared to the other four models in both test
cohorts, with an AUC of 0.810 internally and 0.808
externally. The AUCs for the other four models in the
internal test cohort were as follows: 0.808 for Image,
0.803 for T2FS, 0.761 for T1, and 0.748 for Clinic.
Similarly, in the external test cohort, the AUCs were
0.805 for Image, 0.793 for T2FS, 0.761 for T1, and 0.781
for Clinic. Moreover, the OM for predicting ≥ F2 grades,
demonstrated the highest accuracy in both test cohorts
(internal: 0.734, external: 0.718). Fig. 3A and C display
the ROC curves of the five models in both test cohorts.
Confusion matrices for the results of the ≥ F2 and F0–1
grades are presented in Fig. 3B and D. The corre-
sponding sensitivity and specificity were 0.749 and
0.714 for the internal test cohort, and 0.775 and 0.632
for the external test cohort. A detailed description of the
model performance for predicting ≥ F2 grades is out-
lined in Table 2.

The cutoff values for assessing ≥ F3 grades were
0.689, 0.583, 0.501, 0.469 and 0.451 for the Fusion,
Image, T2FS, T1, and Clinic models, respectively. The
5
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Fig. 1: Overview of the study design. (A) Data collection and research objective; (B) Development of segmentation models for the liver and
spleen on NC-MRI, and five classification models for staging fibrosis grades; (C) Two reader studies on 259 cases (without and with the
assistance of OMs) to assess fibrosis grades using NC-MRI; (D) A comparison between the OMs and other methods (serum fibrosis tests of 478
patients, TE of 343 patients, and MRE of 68 patients). Abbreviations: OM, optimal models; NC-MRI, non-contrast MRI; LR, logistic regression;
TE, transient elastography; MRE, magnetic resonance elastography; LSM, liver stiffness measurement; Center A: Shengjing Hospital of China
Medical University; Center B: Liaoning Cancer Hospital & Institute; Center C: Shandong Provincial Hospital Affiliated to Shandong First Medical
University; Center D: The Second Affiliated Hospital of Baotou Medical College; Center E: Yantai Yuhuangding Hospital, Qingdao University;
Center F: Hubei Cancer Hospital, Tongji Medical College; Center G: The Sixth People’s Hospital of Shenyang.
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Fusion model, recognized as the OM for ≥ F3 grades,
demonstrated the highest AUC among all models, with
an AUC of 0.881 for the internal test cohort and 0.868
for the external test cohort. In both test cohorts, the
AUC values for the other four models were as follows:
0.879 and 0.863 for the Image, 0.870 and 0.848 for
T2FS, 0.845 and 0.818 for T1, and 0.815 and 0.846 for
the Clinic. Additionally, the Fusion model achieved the
highest accuracy and specificity in both cohorts, with
0.824 and 0.903 internally, and 0.813 and 0.874 exter-
nally. The ROC curves of the five models in both test
cohorts are provided in Fig. 3E and G. Fig. 3F and H
present the confusion matrices for the results of the
≥ F3 and F0–2 grades. The performance of the models
for ≥ F3 grades are detailed in Table 3.
The cutoff values for identifying F4 grade were 0.568,
0.593, 0.426, 0.572 and 0.373 for the Fusion, Image,
T2FS, T1, and Clinic models, respectively. In the inter-
nal test cohort, the Fusion model, used as OM, achieved
the highest AUC of 0.918, which is higher than the
other models (0.912 for Image, 0.906 for T2FS, 0.874 for
T1, and 0.883 for Clinic). The OM showed slight im-
provements in the external test cohort, with an AUC
increase of 0.007, while still maintaining diagnostic
superiority over the other models. The AUCs of the
other four models were 0.920 for Image, 0.900 for T2FS,
0.883 for T1, and 0.869 for Clinic. Furthermore, for
predicting F4 grade, the OM exhibited comparable
performance in terms of accuracy, achieving 0.867 in
the internal test cohort and 0.866 in the external test
www.thelancet.com Vol 77 November, 2024
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Characteristic Development
cohort (n = 1208)

Internal test
cohort (n = 518)

External test
cohort (n = 337)

Age (years) 44.76 ± 12.05 46.93 ± 13.06 46.94 ± 12.87

Sex

Male 763 (63.16%) 254 (49.03%) 175 (51.93%)

Female 445 (36.84%) 264 (50.97%) 162 (48.07%)

Liver volume (cm3) 1148.34 ± 329.96 1083.37 ± 345.12 1138.91 ± 385.57

Spleen volume (cm3) 335.59 ± 254.78 257.27 ± 173.62 294.26 ± 199.66

Underlying liver disease

CHB 541 (44.78%) 278 (53.67%) 165 (48.96%)

CHC 123 (10.18%) 69 (13.32%) 40 (11.87%)

AH 122 (10.10%) 74 (14.29%) 43 (12.76%)

ALD 58 (4.80%) 27 (5.21%) 29 (8.60%)

DILI 36 (2.98%) 27 (5.21%) 25 (7.42%)

MASLD 92 (7.62%) 43 (8.30%) 35 (10.39%)

None 236 (19.54%) 0 (0.00%) 0 (0.00%)

Fibrosis grades

F0–1 461 (38.16%) 227 (43.82%) 133 (39.47%)

F2 155 (12.83%) 103 (19.88%) 66 (19.58%)

F3 121 (10.02%) 54 (10.42%) 30 (8.90%)

F4 471 (38.99%) 134 (25.87%) 108 (32.05%)

Abbreviation: CHB, chronic hepatitis B; CHC, chronic hepatitis C; AH, autoimmune hepatitis; DILI, drug-induced
liver injury; MASLD, metabolic dysfunction-associated steatotic liver disease.

Table 1: Demographic characteristics of three cohorts for staging fibrosis grades.
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cohort. Fig. 3I and K depict the ROC curves of the five
models in both test cohorts. Fig. 3J and L display the
confusion matrices presenting results for the F4 and
F0–3 grades. The performance details of the five models
for F4 grade are summarized in Table 4.

Notable differences (P < 0.01) between the OMs and
the Clinic models for predicting ≥ F2, ≥ F3, and F4
grades were observed in the internal test cohort,
whereas in the external test cohort, these differences
were significant (P < 0.001) only for the F4 grade. The
OMs for ≥ F2, ≥ F3, and F4 prediction exhibited sub-
stantial disparities (P < 0.01) when compared to the T1
model across both test cohorts. In the internal test
cohort, no notable differences (P > 0.05) were observed
between the OMs for assessing ≥ F2, ≥ F3, and F4
grades and the T2FS model; however, in the external
test cohort, these differences were significant for
identifying ≥ F3 and F4 grades (P < 0.05). There were
no significant differences (P > 0.05) between OMs and
Image models for predicting ≥ F2, ≥ F3, and F4 grades
in both test cohorts. The detailed descriptions are pro-
vided in Tables 2–4

In a detailed stratification by etiology, the perfor-
mance of the OM varied across different types of liver
diseases in predicting ≥ F2 grades. The OM exhibited
relatively good performance for chronic hepatitis C
(CHC) and drug-induced liver disease (DILI), moderate
performance for autoimmune hepatitis (AH) and
metabolic dysfunction-associated steatotic liver disease
(MASLD), and relatively poorer performance for chronic
Fig. 2: Model performance for liver and spleen segmentation. (A) Box plo
illustrating mean DSC of spleen in each fold; (C) Box plot illustrating m
illustrating mean DSC of liver and spleen in different units; A–D, Error bars
masks of F1 grade; (F) Origin images and segmentation masks of F4 grade.
suppressed imaging.

www.thelancet.com Vol 77 November, 2024
hepatitis B (CHB). The performance for alcoholic liver
disease (ALD) was inconsistent: poorer internally but
better externally. For predicting ≥ F3 grades, the OM
t illustrating the mean DSC of the liver across each fold.; (B) Box plot
ean DSC of liver and spleen in each MRI parameter; (D) Box plot
indicate 95% confidence interval; (E) Origin images and segmentation
Abbreviation: DSC, dice Similarity Coefficient; T2FS, T2-weighted fat-
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Fig. 3: Performance of classification models for staging fibrosis grades. The ROC curves of five models in the internal (≥F2 at A; ≥ F3 at E; F4 at
I) and the external test cohorts (≥F2 at C; ≥F3 at G; F4 at K). The confusion matrices of the OMs in the internal (≥F2 at B; ≥ F3 at F; F4 at J)
and the external test cohorts (≥F2 at D; ≥ F3 at H; F4 at L). Abbreviation: OM, optimal model; ROC, receiver operating characteristic; AUC, area
under the receiver operating characteristic curve.

Models AUC (95%

Internal test cohort

Fusion 0.810 (0.7

Image 0.808 (0.7

T2FS 0.803 (0.7

T1 0.761 (0.7

Clinic 0.748 (0.7

External test cohort

Fusion 0.808 (0.7

Image 0.805 (0.7

T2FS 0.793 (0.7

T1 0.761 (0.7

Clinic 0.781 (0.7

Abbreviations: AUC, area un
calculated using the DeLong

Table 2: The performance

Articles
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demonstrated strong performance for ALD, followed by
DILI and CHC, with intermediate performance for
MASLD and CHB. The performance for AH fluctuated,
showing poorer results internally but better results
externally. For identifying the F4 grade, the OM showed
CI) Accuracy Sensitivity Specificity P valuea

73, 0.847) 0.734 0.749 0.714 Reference

71, 0.845) 0.730 0.763 0.687 0.618

66, 0.840) 0.710 0.584 0.872 0.499

20, 0.802) 0.703 0.656 0.762 <0.001

06, 0.790) 0.685 0.691 0.678 0.001

64, 0.853) 0.718 0.775 0.632 Reference

60, 0.850) 0.700 0.779 0.579 0.499

46, 0.840) 0.709 0.667 0.774 0.221

10, 0.811) 0.697 0.706 0.684 0.002

32, 0.830) 0.709 0.740 0.662 0.176

der the receiver operating characteristic curve; CI, confidence interval. aP value was
test. Bold text indicates that the P value is less than 0.05.

of classification models for predicting ≥F2 grades.
relatively good performance for DILI, CHB, and AH,
while the performance for ALD was acceptable. The
performance for MASLD and CHC varied, performing
worse in internal tests but better in external tests.
Detailed performance for the staging of liver fibrosis in
a detailed stratification of causes are summarized in
Table S3. The distribution of fibrosis grades within
different etiological subgroups are provided in Fig. S3.

In a sex-based subgroup analysis, the OMs for
identifying ≥ F2 and ≥ F3 grades demonstrated higher
AUC values in males than in females. However, for
assessing F4 grade, the AUC difference between the two
sex subgroups was minimal, and the OM performance
was relatively good. The consistent performance
observed in the external cohort mirrored the trend in the
internal cohort, indicating that the OMs had strong
generalization ability. Additionally, both subgroups
showed a gradual increase in AUC values with higher
fibrosis grades. The detailed descriptions regarding the
subgroup analysis based on sex are encapsulated in
Table S4.

We observed that the OMs for predicting ≥ F2, ≥ F3,
and F4 grades in the 3.0-T MRI subgroup exhibited
higher AUC values compared to the 1.5-T MRI sub-
group. Additionally, the performance of the OMs in
www.thelancet.com Vol 77 November, 2024
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Models AUC (95%CI) Accuracy Sensitivity Specificity P valuea

Internal test cohort

Fusion 0.881 (0.851, 0.912) 0.824 0.686 0.903 Reference

Image 0.879 (0.849, 0.910) 0.822 0.734 0.873 0.400

T2FS 0.870 (0.837, 0.902) 0.815 0.739 0.858 0.087

T1 0.845 (0.811, 0.880) 0.786 0.633 0.873 <0.001

Clinic 0.815 (0.775, 0.855) 0.763 0.750 0.770 <0.001

External test cohort

Fusion 0.868 (0.827, 0.908) 0.813 0.725 0.874 Reference

Image 0.863 (0.821, 0.905) 0.792 0.783 0.799 0.166

T2FS 0.848 (0.805, 0.891) 0.783 0.804 0.769 0.040

T1 0.818 (0.771, 0.866) 0.763 0.674 0.824 <0.001

Clinic 0.846 (0.803, 0.889) 0.769 0.812 0.739 0.223

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval. aP value was
calculated using the DeLong test. Bold text indicates that the P value is less than 0.05.

Table 3: The performance of classification models for assessing ≥ F3 grades.

Models AUC (95% CI) Accuracy Sensitivity Specificity P valuea

Internal test cohort

Fusion 0.918 (0.892, 0.944) 0.867 0.746 0.909 Reference

Image 0.912 (0.884, 0.939) 0.859 0.716 0.909 0.082

T2FS 0.906 (0.877, 0.935) 0.847 0.858 0.844 0.161

T1 0.874 (0.841, 0.908) 0.819 0.500 0.930 <0.001

Clinic 0.883 (0.851, 0.916) 0.807 0.851 0.792 0.006

External test cohort

Fusion 0.925 (0.897, 0.953) 0.866 0.769 0.913 Reference

Image 0.920 (0.890, 0.949) 0.855 0.731 0.913 0.130

T2FS 0.900 (0.867, 0.934) 0.816 0.880 0.786 0.015

T1 0.883 (0.846, 0.920) 0.825 0.583 0.939 <0.001

Clinic 0.869 (0.829, 0.909) 0.789 0.861 0.755 <0.001

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval. aP value was
calculated using the DeLong test. Bold text indicates that the P value is less than 0.05.

Table 4: The performance of classification models for identifying F4 grade.
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staging fibrosis grades was relatively consistent across
the subgroups from the three different manufacturers.
Among the various subgroups of two magnetic field
strengths and the three main manufacturers, a gradual
increase in AUC values correlating with higher grades
of fibrosis was also observed. The similar findings were
observed in the Image models. OMs and Image models
for assessing ≥ F3, and F4 grades yielded the slightly
higher performance in Siemens Healthineers compared
with GE Healthcare and Philips Healthcare. The distri-
bution of participants and ROC curves of OMs and
Image models in various subgroups are provided in
Fig. S4.

The calibration curves and the DCA for assessing
different fibrosis grades in both test cohorts are pre-
sented in Fig. 4. The calibration curves for the OMs of ≥
F2, ≥ F3, and F4 prediction showed strong concordance
between predicted probabilities and observed outcomes
in both test cohorts. The DCA revealed that when the
threshold probability exceeded 30% for both patients
and doctors, employing the OMs for staging fibrosis
grades offered greater benefits compared to either
treating all patients or treating none.

Interpretability of classification models
To determine whether the T1 and T2FS models target
the correct areas, Grad-CAM was used to visualize the
internal features of the neural network. Our analysis
indicated that, in two representative cases, the liver
ROIs focused on by both models partially overlapped
with the ROIs of higher stiffness as revealed by MRE
stiffness maps (Fig. 5). These findings demonstrated
that the T1 and T2FS models had acquired the ability to
capture certain valuable information relevant to liver
fibrosis assessment. Moreover, consistent findings
were observed in the subgroup of 68 participants with
MRE.

In the OMs for ≥ F2, ≥ F3, and F4 assessments, the
scores derived from the T2FS model contributed
significantly more to fibrosis prediction compared to
those from the T1 model. Furthermore, both T2FS and
T1 model scores provided greater predictive contribu-
tions than individual clinical characteristics, including
age, sex, liver volume, and spleen volume (Fig. S5). Age
and spleen volume were particularly noteworthy, as they
contributed more effectively to F4 prediction compared
to other clinical features. Among these clinical charac-
teristics, liver and spleen volume demonstrated a sig-
nificant contribution in the prediction of ≥ F2 and ≥ F3
grades.

The influence of these features on the performance
of OMs, as illustrated in Fig. S5, was observed. For
predictions of ≥ F2, ≥ F3, and F4 grades, T2FS score, T1
score, and spleen volume had a positive impact, whereas
liver volume had a negative impact. Additionally, age
and sex showed a positive influence in the prediction of
≥ F2 and F4 grades.
www.thelancet.com Vol 77 November, 2024
Performance of reader assessment
Fig. 6 illustrates the performance of two reader studies
conducted using 259 samples selected from the internal
test cohort. The first reader study was conducted
without the assistance of the OMs. For ≥ F2, ≥ F3 and
F4 prediction, OMs (AUC range: 0.817–0.903) signifi-
cantly outperformed the three junior (AUC range:
0.641–0.757; P < 0.01) and yielded higher AUCs
compared with three senior (AUC range: 0.631–0.840)
radiologists in first reader study.

In second reader study, after a washout period of at
least one month, radiologists were provided with the
primary prediction probabilities from the OMs, along
with measurements of liver and spleen volumes, leading
to a significant improvement in AUCs for staging liver
fibrosis (AUC range for ≥ F2 grades: 0.715–0.733; ≥ F3
grades: 0.771–0.815; and F4 grade: 0.784–0.851). A
similar performance for ≥ F2 grades (First: 0.649–0.676,
9
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Fig. 4: Calibration and DCA curves for staging fibrosis grades. The OM for the evaluation of ≥ F2 grades in the internal (Calibration at A; DCA at
B) and the external test cohorts (Calibration at C; DCA at D); the OM for the assessment of ≥ F3 grades in the internal (Calibration at E; DCA at
F) and the external test cohorts (Calibration at G; DCA at H); the OM for the assessment of F4 grade in the internal (Calibration at I; DCA at J)
and the external test cohorts (Calibration at K; DCA at L). Abbreviation: OM, optimal model; DCA, decision curve analysis.
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and second: 0.726–0.737), ≥ F3 grades (First:
0.741–0.768, and second: 0.799–0.834), and F4 grade
(First: 0.784–0.849, and second: 0.846–0.873) assess-
ment was observed in terms of accuracy (Table S5).

Comparison between OMs and other methods
In the MRE-based subgroup, which comprised 68 pa-
tients from the internal test cohort, the OM for assess-
ing the F4 (0.946 vs. 0.969) grade showed a slightly
lower AUC compared to MRE. However, the AUCs of
the OMs for identifying ≥ F2 (0.888 vs. 0.955) and ≥ F3
(0.842 vs. 0.930) grades were obviously lower compared
to those achieved by MRE. Detailed descriptions about
two methods are summarized in Table S6. The ROC
curves of OMs and MRE are presented in Fig. 7A–C.

A total of 343 patients selected from an internal test
cohort were used to compare the diagnostic perfor-
mance of OMs with that of TE for staging liver fibrosis.
The distribution of fibrosis grades and etiology within
TE subgroups was provided in Fig. S6A and B. The OMs
for predicting ≥ F2, ≥ F3, and F4 grades achieved
higher AUCs of 0.827, 0.906, and 0.922, respectively,
surpassing those of TE, which were 0.741, 0.812, and
0.878, as shown in Fig. 7D–F. Moreover, OMs for
assessing ≥ F2, ≥ F3, and F4 grades exhibited compa-
rable performance in terms of accuracy, outperforming
TE by 0.131, 0.085, and 0.047, respectively. Detailed
descriptions of the two methods are provided in
Table S7. The performance disparity between the two
methods for predicting ≥ F2 and ≥ F3 grades was sig-
nificant (P = 0.011 and P = 0.009, respectively), whereas
no notable difference was observed in predicting F4
grade (P = 0.236) (Table S9).

The diagnostic performance of OMs was compared
with that of five serum biomarkers in a sample of 478
patients from the internal test cohort (Fig. 7G–I). The
distribution of fibrosis grades and etiology within serum
subgroups was presented in Fig. S6C and D. The OMs
for predicting ≥ F2, ≥ F3, and F4 grades demonstrated
superior diagnostic performance, achieving the highest
AUCs of 0.814, 0.902, and 0.926, respectively. These
results surpassed those obtained by APRI (0.764, 0.771,
and 0.767), FIB-4 (0.770, 0.795, and 0.815), GPR (0.724,
0.761, and 0.762), RPR (0.764, 0.815, and 0.842), and K-
S (0.787, 0.811, and 0.822). The Complex Clinic models
for identifying ≥ F2 (0.786), ≥ F3 (0.855), and F4 (0.911)
grades achieved higher AUC values compared to the
Clinic models, APRI, FIB-4, GPR, and RPR. Further-
more, the Complex Clinic models for assessing ≥ F3
and F4 grades also yielded higher AUC values than K-S.
We observed that the Complex Fusion model for pre-
dicting F4 grade achieved a higher AUC compared to
www.thelancet.com Vol 77 November, 2024
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Fig. 5: Comparison between MRE stiffness maps and the visualization heat maps of T1 and T2FS models using Grad-CAM in different fibrosis
grades. (A) Original T1 and T2FS images, segmented masks, live ROIs, heat maps, and MRE stiffness map of a case with F1 grade; (B) Original T1
and T2FS images, segmented masks, live ROIs, heat maps, and MRE stiffness map of a case with F4 grade. The fibrosis grades of the cases were
confirmed using MRE. In the heat maps of the liver ROIs, red signifies higher activation, while blue represents lower activation. Abbreviation:
ROIs, regions of interest; T2FS, T2-weighted fat-suppressed imaging; Grad-CAM, gradient-weighted class activation mapping; MRE, magnetic
resonance elastography.
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the Fusion model. However, for assessing ≥ F2 and ≥
F3 grades, the Complex Fusion models demonstrated a
lower AUC. Table S8 delineates comprehensive details
concerning the performance of these methodologies.
For the prediction of ≥ F2, ≥ F3, and F4 grades, sig-
nificant differences (P < 0.05) were observed between
OMs and four methods: APRI, FIB-4, GPR, and RPR.
No significant difference (P = 0.215) was found between
OM and KS for ≥ F2 prediction; however, notable dis-
parities (P < 0.01) were observed for ≥ F3 and F4 grades.
The detailed descriptions are summarized in Table S9.
Discussion
This study sought to develop and validate AI-powered
models for the automated staging of liver fibrosis us-
ing clinical features and NC-MRI from multicenter data.
Consistent with our hypothesis, AI’s capability to
effectively capture valuable diagnostic information from
NC-MRI and integrate it with clinical features can
enhance the performance for staging liver fibrosis,
achieving AUC values in the range of 0.808–0.925.

Previous studies have rarely conducted detailed
stratified investigations based on etiology.23–27 In this
study, we performed a comprehensive stratified analysis
www.thelancet.com Vol 77 November, 2024
of different etiologies, and found that OMs demon-
strated robust and consistent performance in staging
liver fibrosis for CHB and DILI subgroups of both test
cohorts, particularly excelling in predicting the F4 grade.
This finding is partially consistent with previous
studies.51,52 However, variability in performance was
observed among other etiologies, such as CHC, AH,
ALD, and MASLD, likely due to limited sample sizes
and differences in sample distribution within these
subgroups. Additionally, variations in fibrosis and
inflammation across different etiologies may collectively
influence the model’s prediction outcomes. Although
fibrosis is staged similarly, the characteristics of fibrosis
at the same grade can vary among different etiologies.
For instance, fibrosis in ALD and MASLD typically
presents as micronodular, whereas fibrosis due to CHB
and CHC often presents as macronodular. Further-
more, the inflammatory pathological features vary
significantly among different etiologies of liver disease,
such as portal inflammation and interface hepatitis in
CHC,30 interface hepatitis and periportal necrosis
in AH,53 hepatocyte ballooning and Mallory-Denk bodies
in ALD,54 and steatosis, hepatocellular ballooning and
lobular inflammation in MASLD.55 From an overall
cohort perspective, OMs displayed consistent and
11
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Fig. 6: Performance of two reader studies using 259 samples selected from the internal test cohort, both without and with the assistance of
OMs. (A–C) The readers without the assistance of OMs for ≥ F2, ≥ F3 and F4 prediction; (D–F) The AUCs of readers with the assistance of OMs
for ≥ F2, ≥ F3 and F4 prediction; (G–I) The accuracy of readers with the assistance of OMs for ≥ F2, ≥ F3 and F4 prediction. Abbreviation: OM,
optimal model; R1-6, radiologists with varying levels of experience; AUC, area under the receiver operating characteristic curve.
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reliable generalization capabilities across both test co-
horts. However, further extensive validation is necessary
to comprehensively evaluate its performance across
different etiological subgroups.

Existing non-invasive methods, such as TE and
serum biomarkers, are widely recommended for liver
fibrosis screening in clinical practice.13–15,56 However, the
AI-powered models developed in this study yielded
higher AUCs compared to these traditional methods in
subgroup analysis. Notably, we observed that in our
subgroup, the performance of LSM obtained through
TE was not as robust as previously reported by Boursier
et al.57 in the MASLD population,58 especially in
predicting ≥ F2 grades (AUC: 0.741 in our study vs.
0.842 in the study by Boursier et al.57). Furthermore, a
previous study by Degos et al.59 involving patients with
chronic viral hepatitis found that the performance of
LSM measured by FibroScan for predicting ≥ F2 grades
had an AUC of only 0.76. When comparing the results
of these two studies, we discovered that the performance
of TE for predicting ≥ F2 grades generally decreased in
populations with chronic viral hepatitis. In the subgroup
analyzed in our study, more than half of the participants
had chronic viral hepatitis, which could partly explain
the lower performance of TE observed. Furthermore,
both previous studies indicated that TE was more ac-
curate in diagnosing more advanced fibrosis. In our
study, the higher proportion of individuals with F0–1
and F2 grades may also contribute to the comparatively
lower performance of TE. The AI-powered models
developed in this study demonstrated comparable per-
formance to FibroScan from two previous studies in
predicting ≥ F2 grades (AUC: 0.810 in our study vs.
0.842 in Boursier et al.57 and 0.76 in Degos et al.59) in the
internal test cohort, while also exceeding the perfor-
mance of FibroScan in predicting ≥ F3 (AUC: 0.881 in
our study vs. 0.831 in Boursier et al.57) and F4 grades
(AUC: 0.918 in our study vs. 0.864 in Boursier et al.57
www.thelancet.com Vol 77 November, 2024
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Fig. 7: ROC curves of OMs and other methods (MRE: n = 68; TE: n = 343; and five serum methods: n = 478) using samples selected from the
internal test cohort. (A–C) ROC curves of OMs and MRE for ≥ F2, ≥ F3 and F4 prediction; (D–F) ROC curves of OMs and TE for ≥ F2, ≥ F3 and F4
prediction; (G–I) ROC curves of OMs and five serum methods for ≥ F2, ≥ F3 and F4 prediction. Abbreviation: OM, optimal model; MRE,
magnetic resonance elastography; TE, transient elastography; APRI, aspartate aminotransferase and platelet ratio index; FIB-4, liver fibrosis
factor 4 index; RPR, red blood cell volume distribution width platelet ratio; GPR, γ-glutamyl transpeptidase to platelet ratio; K-S, king score;
AUC, area under the receiver operating characteristic curve.
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and 0.90 Degos et al.59). Additionally, our AI-powered
models maintained robust and similar performance in
an external test cohort.

Several studies have demonstrated that MRE has a
high diagnostic performance in assessing liver fibrosis
and can be used as a noninvasive reference standard.9–12

To further explore the clinical utility of our developed
models, we compared OMs and MRE for staging liver
fibrosis in a subgroup of 68 patients. We found that the
OM for assessing the F4 grade showed a slightly lower
AUC compared to MRE, while the AUCs of the OMs for
identifying ≥ F2 and ≥ F3 grades were significantly
lower compared to those achieved by MRE. This indi-
cated that a certain gap existed between our developed
models and MRE in the evaluation of ≥ F2 and ≥ F3
www.thelancet.com Vol 77 November, 2024
grades. However, a limited number of 3D-MRE were
included and analyzed for the staging of fibrosis grades.
In future studies, we will include more MRE data for
comparative analysis with our models. Furthermore, in
the serum subgroups, Complex Fusion models for
assessing ≥ F2, ≥ F3, and F4 grades were established,
which additionally incorporated three serum features—
PLT, AST, and ALT—compared to the OMs. We
observed that the AUC value of the Complex Fusion
model was higher than that of the OM only in predicting
the F4 grade. This could be due to the lower perfor-
mance of these features in evaluating early fibrosis,
resulting in no enhancement in the performance of the
Complex Fusion models for predicting ≥ F2 and ≥ F3
grades. Furthermore, in serum-based subgroup, the
13
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higher proportion of individuals with F0–1 and F2
grades may also be another reason. DeLong test indi-
cated that no significant differences between OMs and
Image models for staging fibrosis grades were observed
in both test cohorts. The incorporation of five additional
clinical features into the OMs failed to yield significant
performance improvements compared to the Image
models. This indicated that the Image models effectively
encapsulated essential information regarding the stag-
ing of fibrosis, already including the majority of insights
derived from clinical features. Moreover, the Image
models achieved similar performance to OMs and were
therefore sufficient for staging fibrosis grades. However,
our study involved a limited number of clinical features,
which may be a reason why the inclusion of clinical
features produced no significant performance en-
hancements. Recent studies have indicated that clinical
features, including body mass index, albumin, and
prothrombin time, among others, were valuable for
assessing ≥ F2 grades.60,61 However, these features were
not incorporated into our models. To enhance the
model’s performance and robustness, future studies will
incorporate more valuable clinical features and validate
the model within a larger, multicenter cohort to confirm
whether incorporating clinical features can further
significantly improve the performance of the models.
We additionally observed that our developed OMs and
Image models demonstrated higher AUC values for
predicting ≥ F2, ≥ F3, and F4 grades in the 3.0-T MRI
subgroup compared to the 1.5-T MRI subgroup, and
their performance in staging fibrosis grades was rela-
tively consistent across subgroups from different man-
ufacturers. Moreover, OMs and Image models for the
prediction of ≥ F3 and F4 grades exhibited slightly
higher performance with Siemens Healthineers
compared to GE Healthcare and Philips Healthcare.
This may be due to the fact that the subgroup cohort
with Siemens Healthineers did not include a 1.5T de-
vice. Future research will include more samples to
further validate the performance of our developed
models across different manufacturers.

The AI-powered models developed in this study
significantly outperformed six radiologists of varying
seniority in staging liver fibrosis. In clinical practice, the
NC-MRI features of early liver fibrosis are often subtle
and difficult for radiologists to detect with the naked
eye.38 Consequently, radiologists typically do not
perform routine staging of liver fibrosis when inter-
preting NC-MRI, contributing to their lower perfor-
mance. AI-powered models excelled at detecting subtle
variations by analyzing extensive NC-MRI (T1WI and
T2FS) datasets, utilizing this valuable latent information
to enhance the performance of fibrosis classification.
However, due to the more pronounced changes in liver
texture and morphological structure as liver fibrosis
progresses,35,62,63 our models demonstrated lower per-
formance in detecting early-stage fibrosis (≥F2 and
≥ F3) compared to that of F4 grade. To elucidate the
opaque nature of AI decision processes, we employed
Grad-CAM to visualize our model’s feature maps and
compared them to the non-invasive reference standard
of MRE stiffness maps. The results indicated that the T1
and T2FS models effectively captured partial yet valu-
able diagnostic information related to tissue stiffness,
thereby enhancing their interpretability. Furthermore,
similar results were noted within the subgroup of 68
participants who underwent MRE. We also found that in
OMs for staging liver fibrosis, T2FS model scores
contributed more to fibrosis prediction than T1 model
scores. This result is partially consistent with previous
evidence, which indicated that high signals observed in
T2FS images reflect the reticular structure of fibrous
bands surrounding regenerative nodules, further vali-
dating the effectiveness of the T2FS model in evaluating
liver fibrosis.39 Moreover, both model scores offered
greater predictive value than individual clinical charac-
teristics and positively impacted the accuracy of pre-
dictions. This also supports our hypothesis that deep
learning can capture more valuable information from
T1WI and T2FS images. Among the clinical features, we
found that spleen volume had a positive impact,
whereas liver volume had a negative impact, consistent
with the previous findings by Pickhardt et al.64

Furthermore, we additionally found that radiologists
assisted by the AI powered models exhibited improved
diagnostic performance, further demonstrating the
practical value of our model in clinical applications.

Previous studies have explored the viability of
leveraging advanced AI technology based on MRI for
staging liver fibrosis.23–27 Yasaka et al.23 and Hectors
et al.24 demonstrated that deep learning models utilizing
GA-MRI achieved superior performance in
predicting ≥F2 grades (AUC: 0.85 and 0.91), with
slightly reduced accuracy for ≥F3 grades (AUC: 0.84 and
0.90) and F4 (AUC: 0.84 and 0.85). Additionally, Park
et al.25 conducted a study using radiomics analysis of
GA-MRI, yielding similar results for ≥F2 and ≥F3
assessment (AUC: 0.90 and 0.89, respectively), while
demonstrating slightly better diagnostic performance
for F4 prediction (AUC: 0.91) compared to the Yasaka
et al.23 and Hectors et al.24 studies. Our developed model
exhibited lower performance (AUC: 0.81) for
predicting ≥F2 grades in comparison to these previous
studies. This may be attributed to the use of GA-MRI in
these previous studies, which highlight subtle changes
in liver tissue by using the contrast agent, thereby
improving the performance of early fibrosis assess-
ment.18,19 Moreover, due to the incorporation of a sub-
stantial number of NC-MRI in this study for model
training, our developed model achieved superior per-
formance (AUC: 0.918) in predicting cirrhosis. Our
model consistently maintained robust performance
(AUC: 0.925) in an external validation cohort
comprising six centers, highlighting its stability and
www.thelancet.com Vol 77 November, 2024
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reliability. In two recent studies, Ni et al.26 demonstrated
that a radiomics strategy utilizing non-contrast T1WI
within a rodent model proficiently staged liver fibrosis,
while He et al.27 found that integrating clinical data with
radiomic features of T2FS resulted in fair-to-good
diagnostic precision for categorically assessing liver
stiffness measured by MRE. However, these two studies
were conducted with a smaller sample size from a single
center, akin to previous GA-MRI studies, lacking further
multi-center validation. When applying AI methods,
particularly deep learning models, a larger sample size
is generally advantageous for capturing a wide range of
variability in the data and improving the model’s
generalizability. Compared to previous studies, the
sample size included in our study is significantly larger,
providing a robust foundation for training and vali-
dating our models.

There are limitations that require acknowledgment
in this study. Primarily, it was a retrospective analysis
utilizing datasets from six centers, introducing risks of
selection bias and inherent biases. Future prospective
studies with larger-scale datasets will be necessary to
further validate our models. Secondly, the dataset used
for model development was unbalanced with respect to
pathologic fibrosis grades and included data from pa-
tients with liver tumors. This imbalance could poten-
tially affect the performance of our models.65 Ideally,
employing a development dataset that features a large
volume of MRI data balanced across different fibrosis
grades could further enhance model performance.
Therefore, we will consider utilizing more advanced
algorithms or acquiring more ideal data in future
studies to address this issue. Thirdly, a recent study
demonstrated that Couinaud’s liver segmentation is
feasible using non-contrast T1-VIBE Dixon imaging.66

Nonetheless, our current study did not include these
features, which have proven valuable for fibrosis
assessment.64,67 To improve the performance of our
model, we will incorporate liver segment features into
subsequent research. Finally, the performance of AI
models can further benefit from even larger and more
diverse datasets. Future studies could expand on our
work by incorporating additional patient data from var-
ied geographic and clinical settings to further
strengthen the model’s generalizability.

In conclusion, our proposed models, integrating
clinical features with NC-MRI, including T1WI and
T2FS, have demonstrated promising diagnostic perfor-
mance for staging liver fibrosis. While extensive clinical
validation is still needed, our study offers valuable in-
sights for the screening and regular management of
fibrosis in chronic liver disease.
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