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Abstract

Background: Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based
applications. Size and surface characteristics are often considered to be important factors in the cellular interactions
of these PNP, although systematic investigations on the role of surface properties on cellular interactions and
toxicity of PNP are scarce.

Results: Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and
surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in
NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP45 (45 nm) showed a
higher cytotoxicity compared to the positive bigger PNP90 (90 nm) particles including reduction in mitochondrial
membrane potential (ΔΨm), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α
release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential
(ΔΨm), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS
and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of
receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning
microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP),
caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP45 showing
stronger interactions with the receptors than bigger PNP90.

Conclusions: The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different
surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors
(clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface
properties of the different PNP. These properties of the nanoparticles also dominate their cytotoxicity, which was
analyzed for many factors. The effective reduction in the mitochondrial membrane potential (ΔΨm), uncoupling of
the electron transfer chain in mitochondria and resulting ATP depletion, induction of ROS and oxidative stress likely
all play a role in the mechanisms behind the cytotoxicity of these PNP.
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Background
With the rapid appearance of nanotechnology-based
products in the consumer market, human exposure to
nanoparticles (NP) is unavoidable [1]. However, a ser-
ious lack of knowledge regarding the health and safety
issues of these nanotechnology-based products is genu-
inely felt. A very important question in nanotoxicologi-
cal research concerns the factors that determine the
cytotoxicity of nanomaterials. Obviously, one of the fac-
tors is related to size. Due to their small size, NP have a
high surface area to mass ratio, which may play a role
in the interactions of NP with biomolecules (proteins,
cell wall constituents, etc.) and in mechanisms under-
lying their toxicity when compared to undissolved bulk
material. These mechanisms can involve chemical reac-
tions and physical adsorption processes with different bio-
molecules. Both can ultimately lead to cellular uptake [2]
and (cyto)toxic effects [3]. So far, little is also known on
the mechanism of cellular uptake and intracellular distri-
bution of different NP inside cells, and how factors like
size can influence these.
Currently, many applications are foreseen in fields like

NP-based drug delivery and bioimaging [4-6], and for
food-based applications [7]. Especially for drug delivery
applications, the use of polymer nanoparticles (PNP) is
emerging as promising [8]. Recent advancements in
polymer science allow synthesis of well-defined polymers
(including tri-block copolymers) that can be tailor-made
for specific purposes, like drug or food ingredient de-
livery and biodegradable polymers. Additionally, these
tri-block copolymers can be tagged with fluorescent
probes to render them fluorescent and thus traceable in
biological environments. Thus, PNP derived from the
tri-block copolymer can be utilized in the encapsulation
of drugs or bioactive food ingredients, and hence can be
exciting for drug or food ingredient delivery and sus-
tained release preparations. Although much research is
done on the synthesis of biologically valuable PNP,
knowledge is lacking on how chemical and physical
characteristics like size and charge influence the toxicity
and bio-interactions of these PNP.
Therefore, it is essential to investigate how size and

charge affect the cytotoxicity as well as other facets
of NP-cell interactions, like cellular uptake. In order
to interpret the results of such studies, it is essential
that the investigated NP are well-characterized and
comparable, so that only the size is different, while
other factors like composition, surface groups, charge,
etc. remain constant. Therefore, in this study particular
care was taken that both the polymers and the PNP pre-
pared thereof are well-defined and well-characterized to
ensure that differences in biological properties only
result from size differences for particles with the same
surface groups.
The mechanism of nanomaterial toxicity is not com-
pletely clear, and it is possible that more than one mechan-
ism is involved. Literature supports oxidative stress as
being an important factor in the mechanism [9-15]. How-
ever, it remains to be established if oxidative stress is the
mechanism underlying the NP induced cytotoxicity, or a
phenomenon accompanying this cytotoxicity. Recently,
it was recognized that mitochondria can interact with
charged NP, which can then influence the electron trans-
port chain (ETC) [16], although the mechanism underlying
this interaction and its exact consequences remain largely
unknown. It is possible that due to the damage on the
mitochondrial membrane as well as the disruption of the
ETC caused by the PNP, the resulting oxidative stress may
cause the production of different cytokines (like tumor
necrosis factor-α/TNF-α) [17], which in turn is known
to be a biomarker of inflammation.
Previously, it was postulated that NP can enter cells by

passive diffusion [18] or adhesion [19]. However, this
model has proven inadequate in explaining several find-
ings. For example, this model fails to explain why negative
NP, which should be repelled by the negative cell mem-
brane, can enter cells in overwhelming amounts [20,21].
Recently, receptor-mediated endocytosis was found to be
crucial for the cellular uptake of different NP [2,22,23]. It
is possible that cellular uptake of different PNP occurs
through different cell membrane-bound receptors, like
clathrin and caveolin receptors. These NP-receptor inter-
actions have been related to antigen-antibody coupling
reactions [24]. It is hypothesized that surface-functionalized
and charge-bearing NP present an “epitope”-like structure,
which is recognized and bound to the binding sites of
different cell membrane-bound receptors. This initiates
a cascade of reactions by which the NP are internalized.
Therefore, a detailed investigation on the role of NP-
receptor interactions in the cellular uptake of NP is
justified with an aim to understand how size and surface
charge influences cytotoxicity as well as cellular uptake
of different PNP. The cellular in vitro models chosen
were rat macrophage NR8383 cells and human colonic
adenocarcinoma-derived Caco-2 cells. They represent
models for two important targets for NP toxicity upon
oral exposure including the innate immune response by
phagocytosing cells and human enterocytes.
In this article, a method is described for the synthesis

of well-characterized fluorescent PNP of different sizes
(45 and 90 nm) and different surface charges from their
corresponding tri-block copolymers. The presence of a
fluorescent probe in the interior of the PNP makes inves-
tigations like bioimaging through confocal laser scanning
microscopy (CLSM) possible. The influence of size and
charge of the PNP on cytotoxicity as well as on intracellu-
lar uptake was studied with a variety of cytotoxicological
tools. The influence of cell membrane-bound receptors in
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the internalization of PNP was investigated with receptor
blocking studies and further visualization with CLSM.

Results
Synthesis of fluorescent polyethylene glycol400-
polyhexylene adipate-polyethylene glycol400 [PEG400-PHA-
PEG400] (Pol400) polymer
The reaction scheme for the synthesis of Pol400 is depicted
in Figure 1. The synthesis is similar to the previously
reported [4] synthesis of fluorescent Pol2000 polymer
[polyethylene glycol2000-polyhexylene adipate-polyethylene
glycol2000]. From proton nuclear magnetic resonance (1 H
NMR) (Additional file 1) analysis of the polymer, an esti-
mation of the molecular weight (~9 kDa) was made, which
was in agreement with the data obtained from size exclu-
sion chromatography (SEC) (Additional file 2). From the
infrared (IR) spectrum of the polymer (Additional file 3)
the carbonyl (C = O) stretch from the polyester middle
block could easily be seen at 1737 cm-1. From these com-
bined data it is inferred that the middle block has about
35-40 repeating units. From SEC, a polydispersity index
(PDI =Mw/Mn where Mw =molecular weight; Mn = relative
Figure 1 Overview of the synthesis of PEG400-PHA-PEG400 (Pol400) pol
terminal hydroxyl groups to different functional end groups.
molecular weight) of 1.47 was obtained for Pol400 (Table 1).
Based on the average chain length of the polymer molecules
as well as the initial amount of probe, it is estimated that
roughly 1 % of the polymer molecules contained a fluores-
cent probe, embedded in the hydrophobic middle block.

Conversion of terminal hydroxyls to differently charged
end groups
The terminal hydroxyl (-OH) groups of Pol400 were con-
verted into an amine by first reacting the polymer with
chloroacetyl chloride and subsequently adding concen-
trated ammonia, which yielded Pol400-NH2 . Reacting the
polymers with succinic anhydride yielded Pol400-COOH.
In contact with water at neutral pH, this means that the
terminal groups will be either positively charged (-NH3

+)
or, negatively charged (COO–) due to the pKa values of
these groups. The degree of conversion of the terminal
hydroxyl groups was assessed by reaction with trichlor-
oacetyl isocyanate (TAIC) [25]. Reaction of TAIC with
terminal hydroxyl groups gives a characteristic peak in
the 1 H NMR spectrum at δ = 4.43 ppm. Upon convert-
ing these -OH groups to amino or carboxylate moieties,
ymer with fluorescent probe and further conversion of the



Table 1 Data of Pol400 with its end group conversion rates

Polymer Molecular weight (kDa) Melting point (oC) PDI Converted to Conversion (%)

Pol400

1H NMR 9.0
43 1.47

Pol400-NH2 > 90

SEC 9.0 Pol400-COOH > 90
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this reaction with TAIC is not possible anymore, and this
peak is thus smaller or even absent, depending on the
conversion to -NH3

+ or -COO–. This analysis was used to
quantify this conversion (Table 1 and Additional file 4),
which turned out to be almost quantitative for all poly-
mers. The data on the characterization of Pol400, includ-
ing the conversions of the end hydroxyl groups to
different functional groups (-NH2 and -COOH) are given
in Table 1. The melting points of all polymers were
determined by differential scanning calorimetry (DSC)
and were found to be ~43°C for all polymers. This indi-
cates that the melting point is only determined by the
middle block, which has the same length in all synthe-
sized polymers.
Synthesis and characterization of different PNP
The different PNP90 were prepared by nanoprecipitation,
where a solution of Pol400 polymer in tetrahydrofuran
(THF) was injected into vigorously stirred water. Similarly,
different PNP45 were obtained from Pol2000 [4]. This
resulted in a stable clear aqueous dispersion of PNP90-X or,
PNP45-X (X =NH2, OH and COOH). The size of PNP90
was 90 ± 5 nm as determined by scanning electron micros-
copy (SEM) (Figure 2) and supported by dynamic light
Figure 2 SEM image of monodisperse PNP90 (90 ± 5 nm) and
PNP45 (45 ± 5 nm) (as insert). Scale bars are 100 nm.
scattering (DLS). Both DLS and SEM data showed particles
of comparable size and also reveal that their structural in-
tegrity is maintained, even upon drying. The SEM pictures
of PNP90-NH2, PNP90-OH and PNP90-COOH are pro-
vided as Additional file 5. The average ζ-potential of these
PNP90 in aqueous dispersions (0.1 μg/ml) were found to
be +22 mV for PNP90-NH2, -4 mV for PNP90-OH and
-19 mV for PNP90-COOH. The hydrodynamic sizes of
these PNP were also determined by DLS in F12-K and
DMEM medium (0.1 μg/ml) that contained fetal calf
serum (FCS). Upon addition of these PNP90 into cell cul-
ture mediums, the sizes increased mainly due to surface
adsorption of proteins although the polydispersity did not
increase considerably. The DLS data of different PNP90
are given in Table 2.

Evaluation of the cytotoxicity of nanoparticles
A. MTT assay
The cell viability of the different PNP90 was determined
in two different cell lines, i.e. NR8383 and Caco-2 cells.
The PNP90 were studied in the concentration range of
0-400 μg/ml after 24 h exposure and the results were
compared with the data obtained previously for PNP45
[4]. These data are shown in Figure 3. Positively charged
PNP90-NH2 were cytotoxic within the tested concentration
range, whereas the negatively charged ones were not. The
PNP45-NH2 were more cytotoxic than PNP90-NH2 as can
be seen from the EC50 values (Table 3). Upon exposure to
the positive control Triton-X (0.1 %) NR8383 and Caco-2
cells both showed a cell viability of 1 % compared to their
viability upon exposure to the negative control (0 μg/ml).

B. Phagocytic Index (PI) measurement
The PI for macrophage NR8383 cells was determined by
measuring the capability of the cells to phagocytose 1 μm
fluorescent latex beads (see Figure 4). Like in the MTT
assay, the positive PNP showed signs of cytotoxicity by
effecting a decrease of the PI upon increasing the con-
centration of PNP, whereas the negative PNP did not
Table 2 DLS data of PNP90
Type Size in water

(nm)
Size in F12-K
(nm) (after 1 h)

Size in DMEM
(nm) (after 1 h)

PNP90-NH2 90 ± 5 145 ± 5 140 ± 5

PNP90-OH 90 ± 5 115 ± 5 120 ± 5

PNP90-COOH 90 ± 5 120 ± 5 130 ± 5



Figure 3 Cytotoxicity of PNP90-NH2 (▲), PNP90-OH (■) and
PNP90-COOH (●) on NR8383 and Caco-2 cells as measured by
the MTT assay after 24 h exposure. The * sign signifies p< 0.05
compared to negative control (0 μg/ml).
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show any effect at all in the tested concentration range.
The PNP45-NH2 was relatively more cytotoxic than
PNP90-NH2, as can be derived from the EC50 values
(Table 3). The NR8383 cells exposed to the positive con-
trol (100 μM CuSO4) showed ~1 % PI compared to the
NR8383 cells exposed to the negative control (0 μg/ml).
Assessment of intracellular reactive oxygen species (ROS)
production by DCFH-DA assay
PNP with chemically reactive surfaces can interact with
biological molecules resulting in production of radicals
including reactive oxygen species (ROS), which in turn
can cause toxicity. Production of ROS can be tested with
the DCFH-DA assay, which measures the intracellular
production of ROS. Positive PNP90-NH2 were able to in-
duce intracellular ROS production in both NR8383 and
Table 3 EC50 values (μg/ml) obtained from different assays af
positively charged PNP45 [4] and PNP90
Assay Parameter Reference

MTT Cell viability 3

PI Phagocytosis 4

DCFH-DA Intracellular ROS production 5

Mitochondrial membrane
potential (ΔΨm)

Mitochondrial membrane potential 6

ATP Cellular ATP content 7

TNF-α TNF-α release 8
Caco-2 cells, whereas negative PNP (both PNP90-OH
and PNP90-COOH) did not (Figure 5). Furthermore, in
both NR8383 and Caco-2 cells, the induction of intracellu-
lar ROS production with PNP45-NH2 was stronger than
with PNP90-NH2 (see Table 3 for EC50 values). These
results match the results of the MTT assay and indicate a
possible relation between oxidative stress and cell viability.
Exposure of the NR8383 and Caco-2 cells to the positive
control (10 mM H2O2) caused respectively ~1000 % and
~900 % induction of ROS production compared to the
level of ROS production (100 %) in cells exposed to the
negative control (0 μg/ml)

Assessment of mitochondrial membrane potential (ΔΨm)
Figure 6 shows the results from assessment of the change
in mitochondrial membrane potential (ΔΨm) in NR8383
and Caco-2 cells exposed to increasing concentrations of
PNP45 or PNP90 with different charges. Only the cationic
PNP (-NH2 terminated) of both sizes, showed signs of de-
creasing the ΔΨm for both the NR8383 and Caco-2 cells,
whereas the anionic ones (-OH and -COOH terminated)
did not show any effect. The EC50 values are given in
Table 3. The smaller cationic PNP45 were more effective,
reflected by lower EC50 values, compared to the bigger
PNP90. This reduction in mitochondrial membrane poten-
tial (ΔΨm) may affect ATP generation in the cells, thereby
contributing to the mode of action for the cellular toxicity.
Exposure of the cells to the positive control (100 μM iono-
mycin) caused a decrease of ΔΨm to< 2 % of the ΔΨm

detected in cells exposed to the negative control (0 μg/ml).

Assessment of intracellular ATP content
As a consequence of interaction of charged NP with
mitochondria, disruption of the electron transport chain,
reflected by a reduction of the mitochondrial membrane
potential (ΔΨm), can occur. This may result in ROS pro-
duction and in depletion of the cellular ATP content; the
ter 24 h exposure of NR8383 and Caco-2 cells to

figure Cell line PNP90-NH2 (90 ± 5 nm) PNP45-NH2 (45 ± 5 nm)

NR8383 55 31

Caco-2 68 54

NR8383 80 64

NR8383 23 13

Caco-2 33 21

NR8383 5 2

Caco-2 6 3

NR8383 26 14

Caco-2 62 36

NR8383 37 25

Caco-2 63 32



Figure 4 Phagocytic Index (PI) in NR8383 cells after 24 h exposure to different PNP45 (Δ) and PNP90 (▲). The * sign signifies p< 0.05
compared to negative control (0 μg/ml).
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latter being an (additional) possible mechanism of cyto-
toxicity. Therefore, the intracellular ATP content of cells
after exposure to PNP was determined. The intracellular
ATP content after 24 h exposure to different PNP90 and
PNP45 is shown in Figure 7 and the EC50 values are given
in Table 3. Both NR8383 and Caco-2 cells showed a gradual
dose-dependent decrease in intracellular ATP content only
upon exposure to the positive PNP. This ATP depletion
was more profound for PNP45 than for PNP90. Exposure of
the cells to the positive control (75 mM 2,4-dinitrophenol/
Figure 5 Intracellular ROS induction in NR8383 and Caco-2
cells after 24 h exposure to PNP90-NH2 (▲), PNP90-OH (■) and
PNP90-COOH (●). The * sign signifies p< 0.05 compared to
negative control (0 μg/ml).
DNP) caused a decrease of intracellular ATP to< 2 % of
the levels in cells exposed to the negative control (0 μg/ml).
Assessment of TNF-α production
TNF-α is a major biomarker cytokine for pro-inflammatory
response. It can stimulate an acute phase reaction as well
as apoptosis in living tissue [26]. Hence, a surge in the pro-
duction of intracellular TNF-α indicates inflammation,
which can also be a factor for the toxicity caused by PNP.
The TNF-α production in NR8383 cells was measured for
both sizes of PNP (45 and 90 nm) after 24 h exposure (see
Figure 8). Only positive PNP of both sizes showed signifi-
cant induction of the TNF-α production. As found in the
other cytotoxicity experiments, the results again indicate
that the smaller positive PNP45 were more toxic than posi-
tive PNP90. The corresponding EC50 values are listed in
Table 3. Exposure of the cells to the positive control (lipo-
polysaccharide/LPS) caused an increase of TNF-α to>
900 pg/ml in both the NR8383 and Caco-2 cells.
Intracellular uptake of PNP90
The intracellular uptake of different PNP90 could be
monitored by CLSM (λex = 488 nm and λem = 543 nm) as
these PNP carried a fluorescent probe. All the CLSM
experiments were performed at a concentration of 1 μg/ml
of PNP that was non-toxic, as determined by the MTT
assay. In Figure 9 (Upper layer) representative CLSM
images are given that show the relative intracellular uptake
of these three different PNP. From the quantitative uptake
results in Figure 9 (Lower layer) it follows that all PNP90



Figure 6 Mitochondrial membrane potential (ΔΨm) of NR8383 and Caco-2 cells after 24 h exposure to different PNP45 (Δ) and PNP90
(▲) as % of negative control (0 μg/l). The * sign signifies p< 0.05 compared to negative control (0 μg/ml). The “†” sign signifies p< 0.05 when
compared between the PNP45 and PNP90.
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were taken up intracellularly, with PNP90-NH2 showing
the highest and PNP90-COOH the lowest cellular uptake.
Interestingly, a surface charge-dependent intracellular
distribution of these PNP is observed. Only the positive
Figure 7 Effect on cellular ATP content in NR8383 and Caco-2 after 24
negative control (0 μg/l). The * sign signifies p< 0.05 compared to negat
between the PNP45 and PNP90.
PNP90-NH2 showed stronger interactions with the cellular
periphery, whereas the PNP90-OH and PNP90-COOH
showed a more diffuse uptake in the cytoplasm. Upon ex-
posure of the cells to equal concentrations of the different
h exposure to different PNP45 (Δ) and PNP90 (▲) as % of
ive control (0 μg/ml). The “†” sign signifies p< 0.05 when compared



Figure 8 Comparison of TNF-α release induced by PNP45 (Δ) and PNP90 (▲) in NR8383 and Caco-2 cells after 24 h exposure. The * sign
signifies p< 0.05 compared to negative control (0 μg/ml). The “†” sign signifies p< 0.05 when compared between the PNP45 and PNP90.
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PNP and integration of the fluorescence over several cells,
a comparison between the uptake of the PNP90 and PNP45
particles with different surface charges could be made (see
Figure 9 lower layer). The CLSM data were normalized for
the uptake of PNP45-NH2. It is seen from this figure that
the intracellular uptake of PNP45-NH2 was about three
times (for NR8383) and two times (for Caco-2) higher
than of PNP90-NH2. Similar size-dependent effects were
found for both -OH and -COOH terminated PNP.
Effect of size and surface charge on endocytosis-based
cellular uptake of PNP
The role of endocytosis in the cellular uptake of different
PNP90 was tested by inhibiting endocytotic pathways either
by lowering the experimental temperature to 4 oC or by
exposing the cells to a mixture of 2-deoxyglucose (2-dOG)
and sodium azide (NaN3) (see Figure 10). The blocking of
endocytosis by either procedure drastically reduced the cel-
lular uptake of PNP90, irrespective of the surface charge.
However, the decrease was much stronger for PNP90-OH
and PNP90-COOH (>80 %) than for PNP90-NH2 (~50 %).
It was observed that the blockade of endocytosis had a
stronger effect on the uptake of PNP90-OH and PNP90-
COOH compared to the PNP90-NH2. To confirm that the
PNP were inside the cells and not bound to the cell mem-
brane, z-stack imaging was done. Such a z-stack imaging
figure is provided as Additional file 6, and shows that PNP
were inside the cells apart from being attached to the
surface.
Effect of size and surface charge on clathrin and caveolin
mediated endocytosis
The size and charge-dependent involvement of clathrin
and caveolin receptors in endocytosis of different PNP
was tested by selectively blocking the clathrin and caveo-
lin receptors and the results are shown in Figure 11. The
clathrin receptors were inhibited by exposing the cells to
a hypertonic 450 mM sucrose solution, as this causes
polymerization and subsequent inactivation of clathrin
receptors [27]. From the results (Figure 11A), it is clear
that the positive PNP-NH2 of both sizes showed a con-
siderably reduced uptake upon blocking the clathrin
receptors (effect: PNP45> PNP90). In contrast, the up-
take for both hydroxylated and acid terminated PNP was
only affected to a milder extent (reduction to ~65 % and
~75 % of the original values for PNP-OH and PNP-
COOH of both sizes, respectively). An opposite effect
was seen when the caveolin receptors were blocked by
exposing the cells to MβCD [16] as seen from Figure 11B.
A profound decrease in the cellular uptake of both the
negative PNP could be seen after blocking the caveolin
receptors while uptake of PNP-NH2 was only affected
slightly. Here also a stronger decrease in uptake was
found for the smaller PNP45 than for the larger PNP90.
Effect of size and surface charge on mannose receptors
The role of mannose receptors in the intracellular uptake of
different PNP was investigated by inhibiting the mannose
receptors by exposing the cells to a high concentration of



Figure 9 (Upper layer) CLSM pictures of NR8383 and Caco-2 cells after 24 h exposure to a non-toxic concentration of 1 μg/ml of different
PNP90 (λex = 488 nm and λem = 543 nm) with phase contrast figures given as inserts. (Lower layer) Relative cellular uptake of different PNP45 [4]
and PNP90 in NR8383 and Caco-2 cells after 24 h exposure with the PNP45-NH2 (1 μg/ml) values taken as 100 % (n = 5). The * sign signifies p< 0.05
when compared to the data for PNP45-NH2. The “†” sign signifies p< 0.05 when compared between the PNP45 and PNP90.

Bhattacharjee et al. Particle and Fibre Toxicology 2012, 9:11 Page 9 of 19
http://www.particleandfibretoxicology.com/content/9/1/11
α-mannan (see Figure 12). It can be seen that inhibition of
the mannose receptors decreased the intracellular uptake
for all PNP, but the largest effects were seen for the negative
PNP (PNP-OH> PNP-COOH), especially for the smaller
ones (PNP45> PNP90).

Statistical analysis
Data were analyzed with Origin Pro (version 8.0) graph-
ing software. For statistical analysis a student’s t-test was
performed, and data with p< 0.05 (compared to negative
control) were marked with an asterisk (*) sign. Each data
point represents the average from three independent
experiments (n = 3) (for CLSM studies n = 5) and is pre-
sented as the arithmetic mean ± standard error of mean.
While comparing the effect of size, the results for PNP45
and PNP90 were also mutually compared and only the
statistically significantly different (p< 0.05) data between
the two were marked by “†” symbol.

Discussion
Due to the nature of the tri-block copolymers synthesized
and used in the present study, which have a hydrophobic
middle block and hydrophilic terminal blocks, the PNP
that were formed out of these polymers in water had a
hydrophobic core and a hydrophilic corona. The size of
the PNP depends largely on the size of the polymers and
the ratio between their hydrophobic middle and hydro-
philic terminal blocks [28]. The hydrophobic middle blocks
(the polyhexylene adipate polyester) avoid contact with
water, whereas the hydrophilic (PEG) blocks try to remain
in contact with the water. This means that for the poly-
mers with the larger hydrophilic blocks the aggregate



Figure 10 Comparison of uptake of different PNP45 [4] and PNP90 in NR8383 and Caco-2 cells (1 μg/ml) as % of unperturbed uptake upon
24 h exposure after blocking the endocytotic uptake (n = 5) at 4 ºC or by a mixture of 2-deoxyglucose and sodium azide. The * sign signifies
p< 0.05 compared to unperturbed uptake.

Figure 11 Comparison of uptake of different PNP45 [4] and PNP90 in NR8383 and Caco-2 cells (1 μg/ml) upon 24 h exposure after
blocking the clathrin (A) and caveolin (B) receptors (n = 5). The * sign signifies p< 0.05 when compared to unperturbed uptake.
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Figure 12 Comparison of the uptake of different PNP45 and
PNP90 in NR8383 cells (1 μg/ml) upon 24 h exposure after
blocking the mannose receptors (n = 5). The * sign signifies p< 0.05
compared to unperturbed uptake.
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surface becomes crowded with PEG groups faster and the
particles stop growing sooner than for the polymers with
the smaller terminal groups. The polymers with the smaller
PEG groups grow into larger particles, because in that
case the surface does not get so easily crowded and
more polymer molecules will add to the forming nano-
particle. The MTT assay data suggest that the positive
PNP45 were more cytotoxic than the positive PNP90.
Both the smaller and larger negative PNP did not induce
any significant cytotoxic response at concentrations up
to 12.5 μg/ml. Although some studies have been per-
formed on the size-dependent cytotoxicity of NP, such
studies on PNP are rare. In the present study the PNP45
and PNP90 that were used have very similar properties
in surface charge density. To the best of our knowledge,
this is the first report in which the effect of size on cyto-
toxicity of PNP is systematically investigated, while keep-
ing the surface characteristics and PNP composition
unchanged.
For inorganic NP more is known on the effect of size

on cytotoxicity. Recently, it was reported that smaller
gold nanoparticles (1.4 nm) were much more cytotoxic
than bigger (15 nm) ones [29]. In a similar experiment,
silver NP of three different sizes (15, 30 and 55 nm) were
tested on a rat alveolar macrophage cell line, which is
comparable to the NR8383 cell line used in this study.
The cytotoxicity of the smallest (15 nm) particles was
highest and of the biggest ones (55 nm) the lowest [30].
The cytotoxicity of a wide size-range of silica NP (30, 48,
118 and 535 nm) was tested on a mouse keratinocyte
HEL-30 cell line. A clear size-dependent cytotoxic pat-
tern was reported. The smaller (30 and 48 nm) silica NP
showed a much higher toxicity than the bigger (118,
535 nm) ones [31]. For copper NP similar results were
reported [32]. Some other reports also indicated an in-
verse relationship between size and toxicity of different
NP including PNP [13,33]. Auffan et al. [34] hypothe-
sized that inorganic NP smaller than 30 nm are chem-
ically very unstable due to the presence of many high
energy surface states which makes them extremely react-
ive, which again results in an enhanced cytotoxicity.
However, many of the surface properties of inorganic NP
are significantly different from the surface properties of
organic PNP. Therefore, although our results match the
findings for inorganic NP, a true comparison is difficult.
It should be noted that in all the cellular experiments

reported in this article, cell culture media (DMEM and
F12-K) contained FCS rich in proteins (like albumin). It
has been observed before that the presence of FCS can
cause an increase in the sizes of these PNP by surface
adsorption of proteins, although the PNP, in this case,
still remained highly monodisperse [4]. The presence of
serum, by virtue of being high in protein content, has
been reported to influence the toxicity and cellular up-
take of NP [3]. This protein adsorption can be of influ-
ence on cellular uptake and toxicity, but it is expected
that such protein effects will also occur in the gastro-
intestinal tract upon oral exposure to PNP. Thus, testing
in the presence of serum better reflects the physiological
conditions for PNP that may be developed with food-
based applications in mind.
Two series of PNP were investigated that differ in size

and within each series PNP with different surface charges
(-NH2, -OH and -COOH) were investigated. A distinct
size-dependence was observed. For instance, although
both amine-terminated PNP were toxic, the smaller PNP45
were more cytotoxic than the larger PNP90. Hence a size-
dependent effect for PNP with comparable surface charge
and surface functionalization was observed. In equivalent
masses, the smaller PNP45 (45 nm) presented two times
more surface area compared to the bigger PNP90 (90 nm).
Upon expressing the toxicity data based on surface area, it
was found that the toxicity increased with an increase in
PNP surface area.
Production of intracellular ROS after exposure to dif-

ferent NP has been amply reported [35-39]. It is thought
that these ROS push the cellular physiology to the limits
by inducing oxidative stress. Our data, obtained from the
DCFH-DA assays, show that only positive PNP induced
intracellular ROS production with the smaller PNP showing
a higher effect. These findings also match the pattern of
cytotoxicity (MTT assay) for these PNP. In literature, sys-
tematic studies on the effect of size on the intracellular
ROS production are rare. Jiang et al. [40] investigated the
effect of size on intracellular ROS production by testing a
wide range of titanium dioxide NP (4-195 nm) and reported
the highest ROS induction for NP of 30 nm size. In a
separate study, silver NP of 4, 20 and 70 nm were tested
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on macrophage U937 cells [41]. It was found that the
20 nm silver NP were the most capable of producing oxi-
dative stress. A similar study by Choi et al. [42] showed
that within a series of different sizes of silver NP tested,
the smallest (5 nm) NP were the most capable of inhibiting
the growth of nitrifying bacteria through production of
ROS. Landsiedel et al. [43] also mentioned an inverse rela-
tionship between the size of NP and their induction of
intracellular ROS in their comprehensive review on dif-
ferent metal oxide NP (like CeO2, TiO2, SiO2, ZrO2).
The decrease of the mitochondrial membrane potential

(ΔΨm) by cationic PNP is an important finding. It shows
that cationic PNP can indeed interact with intracellular
mitochondria and compromise their integrity. The decrease
in ΔΨm after exposure to cationic PNP can have further
consequences. This compromised state of the mitochon-
drial membrane can increase its permeability which may
result in leaching of the mitochondrial calcium to the
cytoplasm causing a cellular overload of calcium, release of
cytochrome c and subsequently trigger apoptosis [44].
Similarly, a compromised mitochondrial membrane also
can hamper the normal electron transport chain. This can
result in decreased ATP production. The finding of ATP
depletion of cells upon exposure to cationic PNP matches
well with the observed effect on the mitochondrial mem-
brane potential (ΔΨm). Previously, Bhattacharjee et al. [14]
reported that positive silicon NP (1.6 ± 0.2 nm) were able
to induce ROS production in isolated mitochondrial frac-
tions from rat liver tissue. Similarly, Xia et al. [45] observed
that cationic polystyrene nano-beads can interact with and
subsequently harm intracellular mitochondria. Due to the
continuous involvement of mitochondria in the respiratory
cycle by virtue of the electron transport chain (ETC) pro-
cesses occurring on the outer membrane, it was suggested
that interaction of positive NP with mitochondrial mem-
branes can disturb the mitochondrial membrane potential.
This was shown in the present study to occur upon expos-
ure of the cells to positive PNP. As a result, positive PNP
might uncouple the cascade of reactions in the ETC and
thus not only hamper ATP production but also increase
the intracellular ROS production [14]. A recent study
reported that intracellular ATP depletion occurred upon
exposure of human endothelial EAhy926 cells to differently
sized polystyrene NP [46]. The data obtained in the present
study are in line with the literature and this could shed
some light on the poorly understood mechanism of intra-
cellular ROS production induced by NP. In our opinion,
reduction of the mitochondrial membrane potential (ΔΨm)
followed by intracellular ATP depletion, as observed after
exposure to cationic PNP, may also be a mechanism of
cytotoxicity, related to or independent of intracellular ROS
production and warrants further investigation.
It has been reported that several NP can induce produc-

tion of inflammatory cytokines like TNF-α in different cell
lines, including a primary rat brain microvessel cell line
and human alveolar epithelial A549 cells [26,47,48]. How-
ever, a comparative study on the effect of NP size on TNF-
α induction is rare, especially for PNP. Recently, size-
dependent TNF-α induction was reported when titanium
dioxide NP (5 and 200 nm) were intra-tracheally instilled
in rats [49]. It was observed that 5 nm particles were much
more effective in inducing TNF-α than 200 nm ones. A
similar type of inverse relationship between size of NP and
TNF-α production was reported by Hanley et al. [50] for
silver oxide NP. Our data on TNF-α production match
these reported literature data and point towards an inverse
relationship between size of PNP and TNF-α production.
Our data on the cellular uptake show that smaller PNP45

(45 nm) were taken up in appreciably larger amounts (as
determined by CLSM) than the bigger PNP90 (90 nm),
irrespective of surface charge. Win et al. [51] reported a
similar type of inverse relationship between size of PNP
and cellular uptake in Caco-2 cells. Recently, fluorescent
and carboxyl-terminated polystyrene NP of 20 and 200 nm
sizes were tested on both rat and human primary hepato-
cyte cells [52] and it was found that the smaller 20 nm
polystyrene NP showed a higher intracellular uptake than
the bigger ones. Many other groups reported a higher
intracellular uptake for smaller NP [51,53-55]. Zhang et al.
[56] performed a molecular modeling and thermody-
namics study to understand this size dependence. From
calculations and thermodynamics they predicted that NP
of ~22 nm radius (i.e. ~44 nm in size) are more easily
internalized by cells. Similarly, other computational models
[57-59] also predicted an energetically favorable receptor-
mediated intracellular uptake for NP of 30-50 nm sizes.
These authors were also able to predict an upper threshold
radius of ~60 nm (i.e. ~120 nm size), where receptor-based
endocytosis will not be favorable anymore. These findings
fit quite well with our data.
The inhibition of endocytosis (by performing the experi-

ments at 4°C or exposure to a mixture of 2-deoxyglucose
and sodium azide) had a stronger effect on the uptake of
PNP45 than on the uptake of PNP90. An explanation may
be that smaller PNP enjoy a higher degree of binding with
cell membrane receptors. Hence, inhibition of receptor-
based endocytosis affects the cellular uptake of smaller
particles more. An optimal size of 50 nm was proposed
for uptake as well as saturation kinetics of NP uptake by
Chithrani et al. [60], who investigated the uptake of gold
NP of three different sizes (14, 50 and 74 nm) in HeLa
cells [2]. Recently, Jiang et al. [61] also reported that
receptor-based endocytosis was highest for 40-50 nm
gold and silver NP tested on herceptic receptor ErbB2
expressed on macrophage cells. This preference for 40-
50 nm NP also matches our data.
Like in the general receptor inhibition studies, our data

show that selective blocking of the clathrin, caveolin or,
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mannose receptors had in all cases a stronger effect on
the uptake of smaller PNP45 particles than that of the
larger PNP90 particles. These results are independent of
surface charge of the PNP, although the preference of
clathrin receptors for positive PNP and caveolin recep-
tors negative PNP is evident from the results. However,
it should also be noted that blockers lack absolute speci-
ficity and also that other endocytotic pathways for cellu-
lar PNP uptake remain available after blocking one
receptor type. Furthermore, because different in vitro
cellular systems have different physiologies and have dif-
ferent levels of expression of clathrin or caveolin recep-
tors, results from different studies cannot always be easily
compared [62]. Whether combined inhibition of the cla-
thrin, caveolin and mannose receptors would completely
abolish the cellular uptake of the PNP, or that residual up-
take would remain because also other uptake mechanisms
are of importance, remains to be investigated. There is
only a limited amount of systematically performed size-
dependent analyses on interactions of PNP with endo-
cytosis receptors. Rejman et al. [63] performed a very
extensive study on cellular uptake mechanisms of latex
particles in murine melanoma B16-F10 cells and found a
preference for clathrin receptors by smaller and caveolin
receptors by bigger PNP. More recently, it was reported
that carboxyl-terminated polystyrene NP of 43 nm size
got internalized by the cells through a clathrin-dependent
pathway [54]. Oh et al. [64] also found that uptake of smal-
ler metal hydroxide nanoparticles (50, 109, 200 nm), when
tested on a human osteosarcoma (MNNG/HOS) cell line,
showed a stronger clathrin receptor dependence of cellular
uptake than the bigger ones (375 nm). So, although the
effects are clearly different for the differently charged
PNP and the different receptors, our results seem to be
in line with the findings of the majority of these reports
that smaller (or medium-sized) NP have stronger inter-
actions with endocytosis receptors than larger NP.
Mannose receptors are a unique group of receptors

that are often expressed on macrophage cell surfaces and
recognize and endocytose a wide variety of carbohydrates.
Though it is not clear yet how these receptors recognize
such a huge variety of molecules, the orientation of the
carbohydrate molecule is important. It is also known that
hexoses with equatorially placed hydroxyl groups have a
strong binding affinity towards these receptors [65].
Although our PNP do not contain carbohydrate

groups, especially those that contain –OH groups on
the surface have some chemical resemblance with
carbohydrates with -OH groups. The results of the
inhibition studies match with this, since the max-
imum inhibition of intracellular uptake was observed
for both hydroxyl- or acid-terminated PNP. This once
again points towards a complex range of interactions
between PNP and cell membranes and their receptors
leading to particle internalization. Although we are
the first to actually show that inhibition of mannose
receptors inhibits cellular uptake of PNP, there have
been a few reports already where these receptors
have been targeted for facilitated drug delivery. Park
et al. [66] used mannosylated polyethyleneimine
coupled to silica NP to increase the transfection effi-
ciency in macrophage cells by targeting the mannose
receptors. Similar strategies have been employed by
other groups to increase the delivery efficacy in bio-
logical systems [67-69]. Our results on mannose
receptors are in line with data available in literature
that point towards strong NP-receptor interactions.
These results can be further developed for more
sophisticated applications like drug delivery or food-
based delivery of functional ingredients.

Conclusions
Well-characterized, monodisperse and fluorescent PNP
of different sizes (45 and 90 nm) and surface properties
were synthesized. The PNP exhibited an inverse relation-
ship between size and cytotoxicity as well as between
size and cellular uptake. A size-dependent induction of
intracellular ROS production identifies oxidative stress
as a possible mechanism of cytotoxicity with subsequent
release of inflammatory cytokines representing another
mechanism for NP induced adverse effects. Reduction in
the mitochondrial membrane potential, uncoupling of
the electron transfer chain in mitochondria and resulting
ATP depletion, induction of ROS and oxidative stress
likely all play a role in the mode of action for the cyto-
toxicity of these PNP.
Although at the concentrations tested, only positive

PNP show cytotoxic effects, all PNP were taken up by the
cells. An involvement of clathrin, caveolin and mannose
receptors could be seen in cell internalization of PNP with
their relative importance depending on the surface proper-
ties of the PNP. Overall the results presented provide
insight in size and surface charge-specific cellular uptake
and cytotoxicity of PNP and possible modes of action
underlying these effects. Typically, larger PNP and nega-
tively charged PNP are less toxic in our tests than smaller
and positively charged PNP. Translation of these results to
recommendations for their preferential use in develop-
ment of safer NP requires validation of their lower toxicity
in vivo studies.

Methods
Synthesis of the fluorescent tri-block copolymers
The fluorescent probe, 4-(diethanolamino)-7-nitro-benzo-
[1,2,5]oxadiazole, was synthesized and characterized as
reported in literature [70]. For the synthesis of Pol400, a
dry 100 ml three-necked round-bottom flask containing
properly grinded and dried 1,6-hexanediol (2.0 g; 17 mmol)
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and 0.1 mg of fluorescent probe (~4 × 10–4 mmol) was
fitted with a reflux condenser and flushed with dry
nitrogen for 30 min. Subsequently, the flask was heated
on an oil bath at 120°C with gentle stirring until the hexa-
nediol melted. Then 50 μl of dry triethylamine was added
to the mixture followed by drop-wise addition of 3.28 g
(17.8 mmol) of dry adipoyl chloride. The mixture was gen-
tly stirred at 120°C for 48 h until no more HCl was pro-
duced. Then, excess (40 g; 100 mmol) of PEG400 (carefully
dried under reduced pressure) was added at 120°C and the
reaction mixture was heated while stirring for another
48 h. The resulting viscous mixture was poured into 50 ml
of dry ether and the precipitate was filtered and washed re-
peatedly with dry ether. The precipitate was then stirred
with 100 ml of distilled water and centrifuged at 900 rpm
for 4 min. This process was repeated thrice. The resulting
polymer was finally dried by overnight freeze drying and
characterized by 1 H NMR (Bruker Avance III 400 MHz
NMR spectrometer; CDCl3), IR (infrared) spectroscopy,
DSC, SEC and UV–vis spectroscopy. Pol2000 with the same
fluorescent probe was synthesized and characterized as
described previously [4].
Synthesis of fluorescent Pol400 and Pol2000 polymers with
different end groups
A. Conversion to amines
In a dry three-necked 100 ml round-bottom flask fitted
with a reflux condenser, 0.03 mmol of Pol400 (330 mg)
was heated at 120°C until it melted. Then 11.2 mg
(0.1 mmol) of chloroacetyl chloride was added slowly
under stirring. The mixture was then stirred for 6 h. For
conversion to the amine-terminated polymers, the mix-
ture was cooled and 6.8 mg of 25 % (w/w) aqueous am-
monia (0.1 mmol of ammonia) was added. The mixture
was allowed to stir for another 12 h before workup. The
polymer was purified and dried as mentioned before for
Pol400. Similarly, Pol2000 with amine terminal groups was
obtained [4].
B. Conversion to acid
In a similar experimental set up as mentioned for the
conversion to the amines, 10 mg (0.1 mmol) of succinic
anhydride was added in portions to 0.03 mmol of molten
Pol400 polymer and allowed to react for 12 h at 120°C.
The purification was performed as described above.
C. Estimation of terminal hydroxyl group conversion with
trichloroacetyl isocyanate (TAIC)
In an NMR tube with Pol400 polymer sample dissolved
in CDCl3, 10 μl of TAIC was added and the tube was
vortexed for 5 min [4]. Then after another 10 min 1 H
NMR spectra were recorded and the peak appearing at
δ = 4.43 ppm was integrated and compared with the
value obtained from unmodified polymer to obtain the
conversions of the terminal -OH groups [25].

Synthesis and characterization of nanoparticles
Nanoparticles were prepared by the nanoprecipitation
method using a slight modification of the method described
by Khoee et al. [71]. First, 10 mg of tri-block copolymer
(Pol400 or Pol2000 to obtain PNP90 and PNP45, respectively)
were dissolved in 2 ml THF with mild heating (~35°C) and
the solution was then injected into 10 ml of vigorously
stirred ultrapure water in an open beaker [4]. The disper-
sion was stirred for another 30 min. Then THF was
removed under reduced pressure and the aqueous disper-
sion was filtered through 0.2 μm cellulose filters. Essen-
tially no material remained on the filter. These stock
solutions were diluted in measuring flasks to obtain solu-
tions with well-defined concentrations. The hydrodynamic
radius of the PNP, both in aqueous dispersions and in F12-
K and DMEM cell culture media were determined by DLS
at 90o (0.1 μg/ml), and their zeta (ζ) potential (0.1 μg/ml)
was obtained with a Malvern Zetasizer. The cell culture
mediums (F12-K and DMEM) were also checked by DLS
and ζ-potential measurements. While the DLS failed to
measure any particulate material> 5 nm in size, the ζ-
potential measurements varied between -5 to -10 mV,
which can be attributed to the anionic protein mole-
cules originating from the FCS. The serial dilutions of
PNP in F12-K or DMEM media were also checked by
DLS to exclude any agglomeration of PNP occurring
within the tested concentration range. The probability
of monomers of the tri-block copolymer leaking out of
the PNP resulting in the disintegration of the PNP was
excluded by both the SEC and DLS performed at differ-
ent intervals.

Scanning Electron Microscopy (SEM)
A clean circular cover glass, 8 mm diameter, (Menzel,
Braunschweig, Germany) was fitted on a sample holder
by carbon adhesive tabs (EMS, Washington, USA) and
50 μl of an aqueous suspension of PNP was put on the
glass and the water was allowed to evaporate until the
PNP that remained behind were completely dried [4].
The dry sample was sputter-coated with 2 nm tungsten
(MED 020, Leica, Vienna, Austria). Samples were analyzed
at 2 kV at room temperature in a field emission scanning
electron microscope (Magellan 90, FEI, Eindhoven, the
Netherlands).

Cell lines
Rat alveolar macrophage (NR8383) and human colonic
adenocarcinoma (Caco-2) cells were obtained from ATCC
(Manassas,VA) [14,15]. The NR8383 and Caco-2 cells were
cultured in 150 cm2 cell culture flasks with 25 ml F12-K
culture medium (Gibco 21127) and DMEM medium,
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respectively, both supplemented with 10 % (v/v) heat-
inactivated fetal calf serum (FCS) and 0.1 % (v/v) genta-
micin, in a humidified atmosphere containing 5 % CO2

at 37°C.

Cytotoxicity measurement by MTT assay
A. NR8383 cells
An NR8383 cell suspension was centrifuged at 140 g for
5 min before re-suspending the cell pellet in F12-K
medium followed by counting and adjusting the cellular
concentration to 2 × 105 cells/ml. The cells were then
seeded in a 96-well plate (50 μl/well) and the plate was
kept in a 5 % CO2 incubator at 37°C for 24 h. Subse-
quently, 50 μl of serial dilutions of freshly prepared and
well-vortexed different PNP90 in F12-K medium were
added to the cells to obtain the required final concentra-
tions [14,15]. The concentration range of 0-400 μg/ml
was chosen because these concentrations appeared to
detect the differences in toxic responses of the cells to
the different PNP. This was followed by incubation for
another 24 h after which 5 μl of MTT solution in PBS
(5 mg/ml) was added to each well and the plate was
incubated for another 4 h. Then 100 μl of pure dimethyl-
sulfoxide (DMSO) was added to each well to dissolve the
formazan crystals. As the NR8383 cells are a suspension
cell line, the medium in the wells of the 96-well plates
could not be evacuated before addition of DMSO to the
wells as also described before [72]. The absorption of
each well was measured at 562 nm in a 96-well plate
reader and the background absorption at 612 nm was
subtracted. Mitochondrial metabolic activity for each
concentration of PNP was expressed as % of the corre-
sponding negative control reading. Medium without PNP
and medium with Triton-X (0.1 %) were used as negative
and positive controls respectively. Additional control experi-
ments were performed in order to exclude a possible inter-
ference with the absorption by the PNP themselves by
measuring the absorbance values in a similar set-up after
mixing MTT reagent as well as only F12-K medium with
different dilutions of PNP90.

B. Caco-2 cells
The Caco-2 cells were plated at a concentration of
105 cells/ml in a 96-well plate (100 μl/well) and were
incubated at 37°C for 24 h [14,15]. Then different freshly
prepared and well-vortexed PNP90 in DMEM medium
were added to the cells (100 μl/well) to achieve the final
concentrations followed by further incubation of 24 h at
37°C. 5 μl of MTT solution (in PBS) was then added to
each well followed by an incubation of 4 h. Each well
was then carefully emptied (because unlike NR8383 the
Caco-2 cells attach to the bottom of the wells) without
dislodging the precipitated crystals and the crystals were
dissolved in pure DMSO (100 μl/well). Finally, each well
was measured as mentioned above. Control experiments,
as mentioned before, were also done.

C. Phagocytic index measurement in NR8383 cells
An NR8383 cell suspension (2 × 105 cells/ml) was seeded
in a 96-well plate (50 μl/well) in F12-K medium, followed
by addition of 50 μl/well of serial dilutions of freshly
prepared and well-vortexed PNP90 in F12-K medium to
obtain the required final test concentrations of PNP
[14,15]. Plain F12-K medium without PNP90 and medium
containing 100 μM CuSO4 were used as negative and posi-
tive control, respectively. After 24 h the cells were exposed
to yellow-green fluorescent latex beads (1 μm size) at a
ratio of beads to cells in each well of 50:1. After 4 h of
incubation counting samples were taken from the wells
and viewed first under a fluorescent microscope to
visualize the fluorescent beads, followed by bright-field
view to visualize the cells. Samples were also taken out
of each well to assess the cell viability by trypan blue
exclusion test. The phagocytic index was determined by
calculating the average number of fluorescent beads
phagocytosed per viable cell and expressed as % of the
negative control. Control experiments were run with
only PNP in absence of fluorescent latex beads (1 μm)
and no phagocytic vacuole inside the NR8383 cells could
be seen.

Measurement of intracellular ROS by DCFH-DA assay
A. NR8383 cells
The cell suspension was adjusted to 2 × 105 cells/ml and
seeded in a 96-well plate (50 μl/well) in F12-K medium.
50 μl/well of serial dilutions of freshly prepared and
well-vortexed PNP90 in F12-K medium were added to
obtain the required final test concentrations of PNP. A
concentration of 10 mM H2O2 was used as positive con-
trol, and F12-K medium without PNP as negative con-
trol. After 6 h of exposure to the PNP, 5 μl of a 20 mM
solution of DCFH-DA was added to each well and the
plates were incubated for another 18 h in a 5 % CO2 at-
mosphere at 37°C. The fluorescence was then measured
on a fluorometer (λex = 485 nm and λem = 538 nm). The
fluorescence induction factor for each concentration of
PNP90 was calculated by dividing the reading of each
well by the average reading of the negative control and
expressed as %. Control experiments were performed by
incubating the PNP90 at their test concentrations with
DCFH-DA in the absence of cells to check the possibility
of a positive fluorescence reading caused by reaction of
DCFH-DA with PNP90 alone [14,15].

B. Caco-2 cells
The cells were suspended in DMEM medium to a con-
centration of 105 cells/ml after trypsinization and were
seeded in a 96-well plate (100 μl/well). After 24 h the
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cells were exposed to 100 μl/well of final concentrations
of freshly prepared and well-vortexed different PNP90 in
DMEM medium. Following another 6 h of PNP90 expos-
ure, 5 μl of a 20 mM solution of DCFH-DA was added
to each well. The plate was further incubated for 18 h
before measurement of the fluorescence was carried out
as described above.

Measurement of mitochondrial membrane potential (ΔΨm)
The NR8383 and Caco-2 cells were plated and exposed
to serial dilutions of freshly prepared and well-vortexed
PNP of both sizes (45 and 90 nm) as mentioned before.
The mitochondrial membrane potential (ΔΨm) was mea-
sured by a commercially available kit from Invitrogen
(MitoProbeTM; Transition Pore Assay Kit; catalogue no.
M34153) and expressed as % of negative control (0 μg/ml).
A 100 μM solution of ionomycin in DMSO (supplied with
the kit) and F12-K or DMEM medium without PNP were
used as positive and negative controls, respectively.

Measurement of intracellular ATP content
The NR8383 and Caco-2 cells were seeded in a 96-well
plate and exposed to different freshly prepared and well-
vortexed PNP90 and PNP45 as mentioned before. After
24 h the intracellular ATP content of each well was mea-
sured by a commercial ATP measuring kit (Sigma Aldrich,
Product No. FLASC) and results were expressed as % of
negative control. Cells exposed to medium without PNP
and to medium with 75 mM 2,4-DNP (2,4-dinitrophenol)
were used as negative and positive controls, respectively.

Measurement of TNF-α release in NR8383 cells
The NR8383 cells were seeded in a 96-well plate and
exposed to different concentrations of freshly prepared and
well-vortexed PNP90 of each type, as mentioned above.
After 24 h the supernatants were collected, centrifuged at
1000 g for 10 min, and then spectrophotometrically ana-
lyzed for the TNF-α content with a commercial rat TNF-α
kit (Invitrogen), using the procedure from the manufac-
turer’s manual. Medium without PNP and medium with
0.1 μg/ml lipopolysaccharide (LPS) [73] were used as nega-
tive and positive controls, respectively.

Confocal laser scanning microscopy (CLSM)
For performing CLSM a drop of the NR8383 or, Caco-2
cell suspension was placed on a glass slide and viewed
through an oil immersion lens (100×) of a confocal micro-
scope (Zeiss Exciter). For assessment of the average fluor-
escence intensity, readings from 20 individual cells from
five different optical fields (for each PNP90) in focus
selected from five separate experiments (n = 5) were used.
All the measurements were done at the same excitation
wavelength (λex = 488 nm and λem = 543 nm), laser power,
pinhole opening and detector gain. To exclude any
background fluorescence, control samples of NR8383 or,
Caco-2 cells not exposed to the different PNP90, were
also investigated by CLSM. These NR8383 or, Caco-2
cells did not show any background fluorescence. Non-
fluorescent PNP90 were also tested to exclude any add-
itional fluorescence from the PNP.

Effect of inhibition of endocytosis
A. Inhibition of endocytosis by performing the experiment at
4°C
The NR8383 and Caco-2 cells (after trypsinization) were
seeded and exposed to non-toxic 1 μg/ml concentrations
of different PNP90 in a 96-well plate as mentioned above
and were both pre-incubated and incubated at 4°C. Results
of the CLSM images (λex = 488 nm; λem = 543 nm) were
compared to results from similar incubations performed at
37°C [4]. A figure of colony of NR8383 cells that have
taken up fluorescent PNP90-NH2 is provided as Additional
file 7. Control experiments with cells exposed to PNP with-
out a fluorescent probe (non-fluorescent PNP) of similar
sizes and surface groups were done. Non-fluorescent PNP
in absence of cellular system were also tested by CLSM
and did not show any fluorescence signal. The results for
PNP90 were then compared with PNP45 [4].

B. Inhibition of endocytosis by exposure to a mixture of
2-deoxyglucose and sodium azide
An NR8383 or Caco-2 cell suspension was exposed to a
mixture of 50 mM 2-deoxyglucose and 10 mM sodium
azide [74] for 30 min at 37 ºC before being centrifuged and
generously washed with PBS at least three times to remove
the exposure medium. Finally, the cells were plated and
exposed to different PNP90 at 37°C as described before.
The results for PNP90 were then compared with PNP45 [4].

Inhibition of clathrin and caveolin receptor-mediated
endocytosis
The NR8383 and Caco-2 cells were exposed to 450 mM
sucrose (to inhibit clathrin receptors) [75] or to 1 μM
methyl-beta-cyclodextrin (MβCD) (to inhibit caveolin
receptors) [44] for 30 min before being washed, plated
and exposed to different PNP90 at 37°C. Control experi-
ments were done by incubating the cells with 10 μg/ml
of Alexa Fluor 488 nm-conjugated transferrin (selective
inhibitor for clathrin/λex = 495 nm and λem = 519 nm)
[76] or 5 μg/ml of Alexa Fluor 488 nm-conjugated chol-
era toxin subunit-B (selective inhibitor for caveolin/λex =
495 nm and λem = 519 nm) [76] for 30 min on ice fol-
lowed by thorough washing with PBS thrice and then
performing CLSM on the cells in order to confirm the
blockade of the clathrin and caveolin receptors. It was
seen that the inhibitors used (sucrose and MβCD) could
block> 90 % of the normal uptake of transferrin or chol-
era toxin for both the cell lines (Additional file 8) without
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any additional cytotoxicity. The results for PNP90 were
then compared with PNP45 [4].

Inhibition of mannose receptor mediated endocytosis
The NR8383 cells were exposed to a 2 mg/ml concentra-
tion of α-mannan for 2 h in order to inhibit the mannose
receptors [77] before being washed, plated and exposed
to different PNP90 and PNP45 at 37°C.

Additional files

Additional file 1: 1 H NMR spectrum of PEG400-PHA-PEG400 polymer
in CDCl3 showing no peak(s) at δ = 4.43 ppm.

Additional file 2: SEC trace of PEG400-PHA-PEG400 polymer in THF.

Additional file 3: IR spectrum of Pol400 [PEG400-PHA-PEG400] in
carbon tetrachloride (CCl4).

Additional file 4: 1 H NMR spectrum of unmodified PEG400-PHA-PEG400

polymer to which TAIC is added. The presence of a trifurcated peak
at δ = 4.43 ppm results from the reaction of the free terminal hydroxyl
groups with TAIC.

Additional file 5: SEM pictures of PNP90-NH2, PNP90-OH and
PNP90-COOH. Scale bars show 100 nm.

Additional file 6: z-stack imaging in NR8383 cells after 24 h
exposure to the PNP90-OH at 4 oC showing that the PNP were
actually inside the cells and not bound to the cell membrane
(λex = 488 nm; λem = 543 nm). Slide 1 showed the bottom and slide
12 showed the top sections of the cell with thickness of each slice
~400 nm.

Additional file 7: CLSM picture of some NR8383 cells that have
taken up fluorescent PNP90-NH2.

Additional file 8 Uptake of green fluorescent transferrin and
cholera toxin subunit-B by NR8383 and Caco-2 cells. Control: no
blocking of the receptors. Test: Upon selectively blocking the clathrin
receptors by hypertonic sucrose or caveolin receptors by MβCD.
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