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Quantitative assessment of 
myelination patterns in preterm 
neonates using T2-weighted MRI
Siying Wang1, Christian Ledig   2, Joseph V. Hajnal3, Serena J. Counsell3, Julia A. Schnabel3 & 
Maria Deprez   3

Myelination is considered to be an important developmental process during human brain maturation 
and closely correlated with gestational age. Quantitative assessment of the myelination status requires 
dedicated imaging, but the conventional T2-weighted scans routinely acquired during clinical imaging of 
neonates carry signatures that are thought to be associated with myelination. In this work, we develop 
a quatitative marker of progressing myelination for assessment preterm neonatal brain maturation 
based on novel automatic segmentation method for myelin-like signals on T2-weighted magnetic 
resonance images. Firstly we define a segmentation protocol for myelin-like signals. We then develop 
an expectation-maximization framework to obtain the automatic segmentations of myelin-like signals 
with explicit class for partial volume voxels whose locations are configured in relation to the composing 
pure tissues via second-order Markov random fields. The proposed segmentation achieves high Dice 
overlaps of 0.83 with manual annotations. The automatic segmentations are then used to track volumes 
of myelinated tissues in the regions of the central brain structures and brainstem. Finally, we construct 
a spatio-temporal growth models for myelin-like signals, which allows us to predict gestational age at 
scan in preterm infants with root mean squared error 1.41 weeks.

Human brain maturation involves a complex series of morphological, structural and functional changes. Among 
these changes is the process of myelin growth and axon ensheathment known as myelination, which facilitates 
electrical conduction in the neural system1. Process of myelination is initiated during intra-uterine development, 
progressing from brainstem and deep structures, which are partly myelinated prior to birth, towards peripheral 
brain regions (e.g. cerebral white matter tracts) that mostly myelinate during the first year, and continue through-
out life1–4. Patterns of myelination were initially observed through histological studies2,5 and more recently, T1- 
and T2-weighted Magnetic Resonance Imaging (MRI) has been established as the primary method for qualitative 
assessment of myelination during prenatal and early postnatal period1,4.

Preterm birth and other perinatal insults often lead to injury to immature WM and subsequent hypomy-
elination6,7. Impaired myelination in posterior limb of internal capsule (PLIC) is considered a sign of devel-
opmental delay in the newborn8 and is one of the cerebral abnormalities observed on MRI of preterm infants 
at term-equivalent age linked to very preterm birth9. Previous work has also suggested that absolute volume 
of myelinated white matter (WM) at term equivalent age is decreased in preterm infants10. Diffusion MRI has 
shown decrease in fractional anisotropy (FA) in PLIC in preterm infants at term equivalent age11 which may 
reflect either reduction in myelination or decreased coherence of WM fibers12. A recent study of a small cohort 
of preterm infants suggest that decrease in FA is accompanied by increase in T2 relaxation times in very preterm 
infants compared to late preterm infants at term equivalent age13. White matter abnormalities observed on MRI 
of preterm infants have been linked to neurodevelopmental impairment, such as motor and cognitive delay14–16.

Progressing myelination results in shortening of T1 and T2 relaxation times1,3,17. However, their time courses 
are different. T1 shortening starts already in “pre-myelination” stage and is thought to be linked to the bounding 
of free water molecules to the accumulating building blocks of myelin (choloesterol and glicolipids). On the other 
hand, shortening of T2 relaxation times seems to correspond to tightening of the myelin sheath around the axons 
and consequent redistribution of free water, reflecting true maturation of the myelin3,17. T1 and T2-weighted 
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weighted MRI remain the most common modalities for imaging neonatal brain18,19 and qualitative descriptions 
of myelination using these modalities20,21 are consistent with histological observations2. Though specialised 
sequences for imaging of myelin have been proposed (e.g. myelin water imaging22, magnetization transfer imag-
ing23), they are not routinely available and their application in preterm and neonatal population would currently 
be limited to small prospective studies. On the other hand, availability of quantitative markers of myelin using 
standard T2-weighted imaging would facilitate quantitative evaluation of mature myelin in large-scale studies of 
neurodeveoplment in preterm and neonatal populations.

In this study, we refer to the tissue that is likely to contain myelin in T2-weighted neonatal brain MRI as 
myelin-like signals (MLS). One way of developing a quantitative markers of myelination is to develop an auto-
matic method for segmentation of MLS, that can be further utilised in volumetric studies and spatio-termporal 
modelling of progressing myelination. Automatic segmentation of MLS is challenging and there is currently a lack 
of dedicated methods for segmenting MLS during preterm and neonatal period. Recently developed methods for 
neonatal brain segmentation in the NeoBrainS12 challenge24–28 all showed great promise in segmenting a number 
of brain structures in neonatal brain MRI. However, none of them performed well in segmenting myelination29. 
Most neonatal brain segmentation methods adapt the approaches developed for adults30–34, and use a probabilistic 
atlas or manual annotations to obtain prior information on the expected tissue locations. However, myelin is not 
included in any of the existing neonatal brain atlases35–37 or manual annotation database38, and neither it is con-
sidered in segmentation protocol in Developing Human Connectomme Project39. Another issue that complicates 
accurate segmentation of MLS in perinatal period is its small volume compared to resolution of the MRI. Partial 
volume (PV) effect (two or more tissues mixing in a single voxel) therefore needs to be taken into account. Many 
methods for PV modeling were previously proposed40–45, however they all require prior information about loca-
tion of mixing tissues, which is currently not available for MLS.

In this paper we propose an automatic method of MLS on T2-weighted neonatal brain images that does 
not require any probabilistic atlas or manual annotation of myelin. Similarly to Ledig et al.41 we model PV 
between MLS and backgournd (BKG) voxels using second-order Markov random fields (MRFs) within an 
expectation-maximization (EM) framework. We introduce an explicit PV class whose locations are configured 
in relation to MLS and BKG using a 3D connectivity tensor. We distinguish between MLS and other tissue with 
similar intensity ranges by defining an anatomical region of interest (ROI) for MLS based on anatomical knowl-
edge. Our method achieves automatic MLS segmentations of high Dice coefficients (DCs)46 with respect to the 
manual annotations for 16 preterm infants at one-week intervals between 29 and 44 weeks gestational age (GA). 
The proposed segmentation method is applied to T2-weighted scans of 114 preterm infants to develop quantita-
tive markers of myelination. Firstly, we perform volumetric analysis of the progressing myelination and show that 
myelination increases in deep brain region while it is stable in brainstem. Secondly, we build a spatio-temporal 
model of progressing myelination, which we compare to the qualitative studies of myelination4,21. Finally we show 
that the spatio-termporal atlas of progressing myelination enables us to predict gestational age at scan with high 
accuracy and is thus a potential quantitative marker of developmental delay.

Results
Volumetric analysis of progressing myelination.  Automatic segmentation of the MLS was applied to 
114 T2-weighted neonatal scans. The details of the subjects, acquisition protocol and the segmentation method 
can be found in the Methods section. The volumes calculated from the resulting segmentations in the deep brain 
region and brainstem were plotted against GA in Fig. 1. We fitted exponential trend lines with equation =y aebx 
and calculated R2 scores.

We found that the MLS volume appeared to grow exponentially with GA in the deep brain region ( = .R 0 942 ), 
and this trend persisted in the MLS volume fraction after we corrected for the different deep brain region sizes in 
individual subjects ( = .R 0 872 ). In contrast, the MLS volume appeared to grow nearly linearly with GA in the 
brainstem ( = .R 0 532  for exponential model, = .R 0 522  for linear model), which resulted in an almost constant 
MLS volume fraction after correcting for the different brainstem sizes in individual subjects ( = .R 0 252  for expo-
nential model, = .R 0 242  for linear; very small = − .b 0 015 suggest nearly constant or slightly negative trend). 
This is consistent with the previous findings that most of the brainstem is myelinated before 29 weeks GA, 
whereas new regions become myelinated in the deep brain between 29 and 44 weeks GA21,47,48. This suggest that 
the MLS volume increased in the brainstem mainly due to the overall brain growth, and the increase in the deep 
brain region was attributed to both brain growth and new myelination.

Spatio-temporal model of progressing myelination.  Segmented images were registered into common 
reference space, and we fitted a modified logistic function to each voxel location to create spatio-temporal model 
of progressing myelination. The resulting model for MLS in deep brain region is presented in Fig. 2. The details 
of the spatio-temporal modelling can be found in Methods section and our previous work49. Note that because 
we corrected for the different sizes of each ROI in individual subjects through non-rigid registration50, the MLS 
progression depicted by the spatio-temporal model was entirely due to the appearance of new myelinated brain 
structures without contribution from the overall brain growth.

We found that there was an evident difference in the onset and rate of myelination in deep brain region and 
brainstem. The model of MLS in deep brain region (Fig. 2) showed that the ventro-lateral nuclei (VLN) and 
sub-thalamic nucleus (STN) were myelinated before 29 weeks GA. Moreover, the model captured the arrival of 
MLS in both of the posterior limbs of internal capsule (PLIC) at 40 weeks GA, which confirmed the clinically 
observed time point4,21. Myelination of the PLIC tracts is an important landmark for evaluating neonatal brain 
development51. The brainstem, however, appeared to be well developed by the time of 29 weeks GA, and there was 
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no new myelination in the age range of our investigation. We summarise these milestones in Table 1, and compare 
them to the previous studies by Counsell et al.21 and Barkovich et al.4.

Estimation of gestational ages.  The spatio-temporal models of MLS were utilised for estimation of ges-
tational ages at scan (GA), to evaluate whether MLS were suitable markers of GA. The individual segmentations 
registered to the reference space were compared with models for each time-point using sum of squared errors 
and the GA with smallest error between the model and the segmentation was chosen as the final GA estimate for 
each subject.

The estimated GAs were plotted against the nominal values in Fig. 3. We obtained root mean squared errors 
(RMSEs) of 1.41 weeks and 2.56 weeks in the deep brain region and brainstem respectively. Therefore, each ROI 
has a different predictive power that best assesses a particular period of brain development. The the deep brain 
region with the more prominent MLS growth between 29 and 44 weeks GA produced the more accurate age esti-
mates for preterm infants in this age range.

Discussion
In this work we proposed quantitative markers of the myelination patters in preterm neonates with GA between 
29 and 44 weeks using T2-weighted MRI. We have proposed a novel dedicated method for segmentation of 
myelin-like signals with high reproducibility comparable to the intra-rater variability. The achieved Dice overlap 
with manual segmentations 0.83 can be considered particularly high given small size of myelinated structures 
compared to the voxels size. This was achieved by defining a clear segmentation protocol and designing a ded-
icated method to reproduce the protocol reliably. We have used Gaussian Mixture Model (GMM) to estimate 
the intensity profiles of myelinated and non-myelinated tissues to overcome the problem of qualitative nature 
T2-weighted MRI. Modelling of partial volume effect proved to be particularly important, as GMM alone did 
not produce reliable results. On the other hand, modeling the partial volume by an extra class and constraining 
its location using Markov Random Fields resulted in a stable segmentation method. We have demonstrated, that 
resulting segmentations can be used to produce quantitative markers of myelination by calculating volumes of 
myelinated tissues in absolume terms (e.g. in mL) or as a proportion of a pre-defined region of interest, to account 
for individual differences in brain sizes. Additionally, modelling of typical patterns of myelination during this 
age-range and accurate method for estimation of myelination status in form of predicted GA has been proposed. 
This method might have potential in uncovering developmental delays in this age group. Other studies have 
explored myelination paterns in infancy and childhood52–56, but this is the first such detailed study during pre-
term neonatal period.

Inherent limitation of any study of myelination patters stems from lack of specificity of MRI sequences 
towards myelin. Histological studies consistently demonstrate that many MRI sequences (including quantitative 

Figure 1.  (a,b) Volumes of the automatic segmentations for myelin-like signals (MLS) in the deep brain region 
and brainstem obtained using the proposed segmentation method, (c,d) volume fractions of MLS plotted 
against the gestational ages at scan (GAs) of 114 subjects between 29 and 44 weeks GA. In deep brain region the 
MLS volume appears to grow exponentially with GA, and this trend persists in the MLS volume fraction after 
correcting for the different sizes of the deep brain region in individual subjects. In brainstem the trend for MLS 
volume appears nearly linear with GA, which results in an almost constant MLS volume fraction after correcting 
for the different sizes of the brainstem in individual subjects.
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MRI such as relaxometry and MTI) are sensitive to myelin, but none is specific, which means that intensity pat-
terns linked to degree of myelination could also be attributed to other underlying biological processes1. We have 
overcome this issue by defining a segmentation protocol based on the available literature21 and creating a ROI 
“deep brain region” to separate myelinating structures from the structures that are more likely to be composed 
of densely packed grey matter. Inherently, uncertainties in the existing anatomical knowledge also exist in the 
proposed segmentation methodology. Nevertheless, gradual increase of the MLS in our spatio-termporal model 
supports the hypothesis that we are indeed detecting developing myelin.

Interesting direction for future work would be to quantify myelination progress using combination of T1 
and T2-weighted imaging. Given that shortening of T1 and T2 relaxation times determine different stages of 
myelination process17, their joint analysis could provide more detailed staging of myelination of different brain 
structures56, resulting in further insights into brain maturation during perinatal period.

Though our segmentation method offers quatitative measure of volume of myelinated tissue, it cannot deter-
mine proportion of myelin within each voxel. Quantitative methods such as relaxometry and MTI could produce 
even more accurate quantification of myelin maturation once large databases in this age-range become available. 
Our results however show that the proposed methods can be nevertheless a useful marker of brain maturation 

Figure 2.  Spatio-temporal growth model for myelin-like signals (MLS) in the deep brain region between 
29 and 44 weeks GA. The ventrolateral nuclei (VLN) and subthalamic nuclei (STN) appear to be myelinated 
before 29 weeks GA. MLS becomes evident in both tracts of the posterior limbs of the internal capsule (PLIC) 
at approximately 40 weeks GA. This is an important landmark for evaluating neonatal brain development. As 
the different deep brain region sizes in individual subjects have been corrected through non-rigid registration, 
the progression of MLS is completely due to the appearance of new myelination without contribution from the 
overall brain growth.
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during this period of brain development and has particular applications in large-scale studies to determine con-
sequences of preterm birth on developing myelin.

Methods
Subjects and MR acquisition.  114 T2-weighed scans of 95 preterm infants were acquired between 29 
and 44 weeks GA at Hammersmith Hospital, London, UK. Ethical permission for this study was granted by the 
Hammersmith and Queen Charlotte’s and Chelsea Research Ethics Committee (07/H0707/101). Informed writ-
ten parental consent was obtained prior to imaging. All methods and experiments were performed in accordance 
with relevant guidelines and regulations. T2-weighted fast spin-echo brain images were acquired on a 3 T Philips 
Intera system with repetition time = 8700 ms, echo time = 160 ms and voxel sizes = 0.86 mm × 0.86 mm × 1 mm. 
Full information about the subjects is given in Table 2.

Segmentation protocol.  Our segmentation protocol focuses on central brain structures (thalamus, basal 
ganglia and internal capsule) and brainstem for assessing MLS because in these regions the myelination is present 
between 29 and 44 weeks GA21,48. Cerebellum was not included in this study. Since the myelinated nuclei can 
have similar intensities to the densely organized GM in the basal ganglia which are thought not to contain myelin 
between 29 and 44 weeks GA21, we create a custom ROI containing the posterior limbs of the internal capsule 
(PLIC), ventrolateral nuclei (VLN) and subthalamic nuclei (STN), referred to as deep brain region in this paper. 
The MLS segmentation protocol is defined based on both image intensities and anatomical knowledge21. We 
delineate three structures, PLIC, VLN and STN in the the deep brain region. In the brainstem we define the seg-
mentation protocol mainly based on intensities because the image resolution is insufficient to identify the detailed 
anatomical structures. An example of the segmentation protocol is shown in Fig. 4.

Segmentation pipeline.  The overall pipeline proposed for MLS segmentation on T2-weighted neonatal 
brain MR images is shown in Fig. 5. The images are first pre-processed to achieve brain extraction and bias field 
correction, and to obtain the binary ROI masks of the deep brain region and brainstem for individual subjects. 
We remove the non-brain tissues using label propagation31 of manually annotated brain masks, and segment 
the skull-stripped images using the Statistical Parametric Mapping (SPM) software (www.fil.ion.ucl.ac.uk/spm, 
version SPM8)30. The spatial priors are provided by a publicly available (brain-development.org/brain-atlases) 4D 
probabilistic neonatal brain atlas35. Subsequently, we obtain the bias-corrected images as well as the segmenta-
tions of the cortical GM, WM, deep gray matter (DGM), brainstem, cerebellum and CSF.

We use the automatic SPM segmentations of the brainstem directly as the ROI mask. The DGM segmenta-
tions include the basal ganglia, thalami, hippocampi and amygdalae. Since the myelinated nuclei can have similar 
intensities to the densely organized GM in the basal ganglia which is considered not to contain myelin between 

Region structures Counsell et al. Barkovich et al. Myelin atlas

Brainstem SCP, DSCP, IC, LL, 
ML, MLF, VN 25–30 weeks GA 25–30 weeks GA ≤29 weeks GA

Deep brain VLN 25 weeks GA — ≤29 weeks GA

Deep brain STN 28 weeks GA — ≤29 weeks GA

Deep brain PLIC 40 weeks GA 40 weeks GA 39–40 weeks GA

Table 1.  Comparison of myelination milestones between the spatio-temporal atlas (Myelin atlas) and the 
qualitative description4,21. The milestone refers to first time-point in gestation when the myelin is identified in a 
new site. The full names of the structures are provided in the section “Segmentation Protocol”.

Figure 3.  Gestational ages (GAs) predicted for 114 preterm infants and compared to the nominal GAs 
using the logistic growth models for myelin-like signals (MLS) in the deep brain region and brainstem. The 
predictions based on MLS in the brainstem display larger deviations from the nominal GAs than in the deep 
brain region. This is because most of the MLS spatio-temporal changes between 29 and 44 weeks GA occur 
in the deep brain region, whereas the brainstem provides much less information on progressing myelination 
during this particular age period.
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29 and 44 weeks GA21, we extract the ROI masks for the deep brain region from the DGM segmentations in order 
to prevent misclassifications by the intensity-based segmentation model. We first manually delineate the deep 

Subjects All scans Preterm scans Term scans

Number 95 114 58 56

GA scan (weeks) 36.6 ± 4.6 32.4 ± 2.2 40.9 ± 1.5

GA birth (weeks) 29.6 ± 2.6 29.5 ± 2.6 29.4 ± 2.3 29.7 ± 2.9

Birth weight (kg) 1.27 ± 0.52 1.26 ± 0.48 1.20 ± 0.33 1.33 ± 0.61

Female 48 58 32 26

Male 47 56 26 30

Singletons 37 50 27 23

Twins 58 64 31 33

WM lesions 1 2 1 1

WM cysts 2 2 1 1

Cerebellar heam orrage 1 1 1 0

Table 2.  Subjects and scans in the study. Some subjects had two or three scans. The first column refers to 
numbers and averages over all subjects. The other columns refer to numbers or averages over all scans, scans at 
preterm period (GA at scan between 27 and 37 weeks) and term equivalent age (GA at scan between 37 and 44 
weeks).

Figure 4.  Manual annotations of myelin-like signals (green label) in the deep brain region and brainstem of 
a subject at 42 gestational weeks, delineated according to the defined segmentation protocol. The regions of 
interest are labeled in yellow. The columns from left to right show the deep brain region in the axial and coronal 
views, and the brainstem in the axial view. Abbreviations: PLIC–posterior limb of the internal capsule, VLN–
ventrolateral nucleus, STN–subthalamic nucleus, SCP–superior cerebellar peduncle, DSCP–decussation of the 
superior cerebellar peduncle, IC–inferior colliculus, LL–lateral lemniscus, ML–medial lemniscus, MLF–medial 
longitudinal fasciculus, VN–vestibular nucleus.

https://doi.org/10.1038/s41598-019-49350-3
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brain region on the T2-weighted image of a single reference subject at 36 weeks GA. We register the reference 
image with the dilated DGM region of each subject using free-form deformation (FFD) non-rigid registration50, 
and then transform the manual delineation of the deep brain region from the reference space to each individual 
subject’s space.

Segmentation of myelin like signals.  The segmentation of myelin like signals is performed in 
Expectation Maximisation framework. We model three classes, MLS, BKG and PV, with their intensities defined 
by a Gaussian distribution μ σG y( , , )k k  with means μk and variances σk

2, where y is the voxel intensity and k is the 
class index. We approximate the PV class mean as the arithmetic mean of the composing pure tissue means μMLS 
and μBKG, and assume that the variances of all three classes are identical:

μ μ μ= +
1
2

( ) (1)PV MLS BKG

σ σ σ= = (2)MLS PV BKG
2 2 2

By substituting Eqs. 1 and 2 into the objective function of log likelihood57, the ML estimations for the means 
of the MLS and BKG classes result in the following system of linear equations (see more details in the appendix):
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Figure 5.  Schematic flow of the proposed segmentation approach for myelin-like signals (MLS) on T2-weighted 
neonatal brain images. Through image preprocessing, we achieve brain extraction and bias field correction, 
and obtain the binary masks of the deep brain region and brainstem for individual subjects. The automatic 
segmentations of the deep gray matter (DGM), obtained using the Statistical Parametric Mapping (SPM) 
software, contain the basal ganglia, thalami, hippocampi and amygdalae. We extract the masks for the deep 
brain region from the DGM segmentations via label propagation.
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where pik is the posterior probability of voxel i belonging to class k, yi is the observed intensity of voxel i, K 
the number of classes, and m the iteration number. The above equations comprise the M-step of Expectation 
Maximisation algorithm.

The E-step of the expectation maximisation algorithm calculates the posterior probabilies, which represent 
probabilistic segmentation. The probabilistic segmentation is regularised with the spatial prior = | Φz e pp( , )i k
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Here pjk is the probability that neighbor j belongs to class k, and dij the Euclidean distance between voxel i and 
neighbor j. The element of the connectivity tensor, denoted as k kT ( , )k 1 2 , indicates the penalty when classes k1 and 
k2 are both present in the neighborhood of class k. By assigning a large value to k kT ( , )k 1 2  in Eq. 7, we are able to 
penalize a particular configuration when the probabilities of classes k1 and k2 are both high in the neighborhood. 
This would result in a large value of the energy function 

| Φe pU ( , )k zMRF i
, making voxel i less probable to belong 

to class k.
We assign the penalties k kT ( , )k 1 2  according to the following rules based on the triplet that contains class k of 

the current voxel and classes k1 and k2 of a pair of neighboring voxels:

•	 T (MLS, MLS)k  and T (BKG, BKG)k : We set the penalty to 0 if class k is the same as the pair. We assign a pen-
alty t1 if k is a pure tissue class different from the pair to encourage the PV class as MLS and BKG are both in 
the triplet. We assign a penalty t3 if k is PV as there is no evidence for PV in the triplet. This effectively pre-
vents over-estimation of the PV class.

•	 T (MLS, BKG)k : We assign a penalty t2 if k is MLS or BKG, and set the penalty to 0 if k is PV. We aim to encour-
age the PV class by deliberately penalizing the MLS and BKG classes if they are both present in the 
neighborhood.

•	 T (MLS, PV)k , T (PV, PV)k  and T (BKG, PV)k : We set the penalty to 0 regardless of the class of k.

The values of penalties t1, t2 and t3 needed to be determined empirically and were set to 0.05, 0.03 and 0.01 by 
optimising the agreement with manual segmentation using Dice score46.

The EM algorithm is initialized by assigning 6 percent voxels with lowest intensities to MLS and rest to BKG 
class in deep brain region, while 25th percentile is used for brainstem. These values were estimated from manual 
segmentations. Tissue classification is achieved by interleaving the E-step and M-step until the relative change 
in the objective function of log likelihood57 is less than 0.01%. The resultant PPMs are converted into hard seg-
mentations using the maximum-vote rule. In addition, we reclassify the PV voxels as one of the composing pure 
tissues by calculating the fraction of the MLS class, denoted as fi, at PV voxel i:
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μ

μ μ
=

−
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f

y

(9)i
iBKG

BKG MLS

where μMLS and μBKG are the means of the MLS and BKG classes, and yi the observed intensity. PV voxels with 
fractions above 0.5 are reclassified as MLS and combined with the voted hard segmentation of the MLS class to 
form the final segmentation.

Evaluation of automatic segmentation.  The automatic segmentation method of MLS was evaluated 
against manual annotations of MLS for 16 preterm infants, each at a different time point, between 29 and 44 
weeks GA at one-week intervals. Eight of the 16 subjects, from 30 weeks GA onward at two-week intervals, have 
a repeated manual segmentation delineated by the same rater in order to assess the intra-rater reliability. The 
quality of these manual annotations was confirmed by a clinical expert.

We compared agreement with manual segmetations for three different methods: Gaussian Mixture Model 
with 2 classes MLS and BKG (GMM), Gaussian Mixture Model with explicit PV modelling but no spatial regular-
isation (GMM-PV) and the proposed three class model with spatial regularisation using MRF (GMM-PV-MRF). 
The proposed method clearly outperformed the other methods as well as the initial tresholding as shown in 
Tables 3 and 4. Additionally, the proposed method GMM-PV-MRF was found to be insensitive to the initialisa-
tion, while other tested method depended on correct initial threshold.

We also assessed the intra-rater reliability as DCs between two sets of manual annotations that were available 
for eight of the 16 test subjects at two-week intervals between 30 and 44 weeks GA. We evaluated the automated 
model-based methods with respect to each manual set. The average DCs over the eight subjects are shown in 
Tables 5 and 6 along with the p-values of two-tailed Student’s t-tests with the intra-rater DCs at the 5% signifi-
cance level. It can be seen that only GMM-PV-MRF performed equally well as a human rater in both ROIs, and 
demonstrated no significant differences with respect to the repeated manual annotations.

We achieved high Dice overlaps of 0.83 comparable to the intra-rater variability. This proves that our method 
is reliable and reproducible across the target age-range. In contrast, the Dice overlap achieved by the methods that 

Method Average DC p-value

Thresholding at the 6th 
percentile 0.789 ± 0.091 0.043

GMM 0.762 ± 0.092 0.001

GMM-PV 0.662 ± 0.192 0.002

GMM-PV-MRF 0.837 ± 0.057 —

Table 3.  Average Dice coefficients (DCs) (±standard deviations) for automatic segmentations of myelin-like 
signals in deep brain region compared with manual segmentations for 16 test subjects aged between 29 and 44 
gestational weeks. GMM-PV-MRF is compared with all the other methods using two-tailed Student’s t-tests at 
the 5% significance level.

Method Average DC p-value

Thresholding at the 25th 
percentile 0.827 ± 0.035 0.020

GMM 0.675 ± 0.206 0.010

GMM-PV 0.762 ± 0.057 5.449 × 10−4

GMM-PV-MRF 0.831 ± 0.038 —

Table 4.  Average Dice coefficients (DCs) (±standard deviations) for automatic segmentations of myelin-
like signals in brainstem compared with manual segmentations for 16 test subjects aged between 29 and 44 
gestational weeks. GMM-PV-MRF is compared with all the other methods using two-tailed Student’s t-tests at 
the 5% significance level.

Method

Manual set 1 Manual set 2 Intra-
raterreliabilityAverage DC p-value Average DC p-value

GMM 0.785 ± 0.085 0.257 0.754 ± 0.054 0.023

0.834 ± 0.043GMM-PV 0.662 ± 0.210 0.060 0.626 ± 0.217 0.028

GMM-PV-MRF 0.843 ± 0.051 0.624 0.816 ± 0.046 0.413

Table 5.  Average Dice coefficients (DCs) (±standard deviations) for automatic segmentation of myelin-like 
signals in deep brain region of eight test subjects with respect to two sets of manual annotations compared to 
the intra-rater reliability. The p-values indicate the outcomes of two-tailed Student’s t-tests with the intra-rater 
DCs at the 5% significance level. The performance of GMM-PV-MRF is close to the intra-rater reliability.
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entered Neonatal Segmentation Challenge29, achieved Dice overlap 0.16–0.69 for 30 weeks GA and 0.23–0.68 for 
40 weeks GA. None of the method achieved Dice overlap over 0.6 for both age groups.

Spatio-temporal growth models for MLS.  We constructed MLS growth models in the deep brain 
region and brainstem using voxelwise logistic regression based on the automatic segmentations computed using 
GMM-PV-MRF for the 114 subjects49. First we registered the T2-weighted image of each individual subject with 
the dilated ROI of the single reference subject at 36 weeks GA using FFD non-rigid registration50. This was the 
same reference subject used to create the ROI masks of the deep brain region. We used normalized mutual infor-
mation (NMI) as the similarity measure and 10 mm B-spline control point spacing. The automatic MLS segmen-
tations were then transformed accordingly from each subject’s space to the common reference space. Lastly, we 
constructed the growth model in each ROI by fitting a voxelwise logistic function to the transformed segmenta-
tions. Details of constructing of the spatio-temporal models can be found in our previous work49.

We further used the MLS growth models in the deep brain region and brainstem to predict GAs of the 
114 preterm infants. The age estimates were determined by minimizing the sum of squared differences (SSD) 
between each individual transformed segmentation and the average growth model constructed in a leave-one-out 
procedure.
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