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Abstract: Detecting an anomaly or an abnormal situation from given noise is highly useful in
an environment where constantly verifying and monitoring a machine is required. As deep learning
algorithms are further developed, current studies have focused on this problem. However, there are
too many variables to define anomalies, and the human annotation for a large collection of abnormal
data labeled at the class-level is very labor-intensive. In this paper, we propose to detect abnormal
operation sounds or outliers in a very complex machine along with reducing the data-driven
annotation cost. The architecture of the proposed model is based on an auto-encoder, and it uses
the residual error, which stands for its reconstruction quality, to identify the anomaly. We assess our
model using Surface-Mounted Device (SMD) machine sound, which is very complex, as experimental
data, and state-of-the-art performance is successfully achieved for anomaly detection.
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1. Introduction

Sound is one of the key aspects to identify an object. Many studies analyzing and classifying
sound events have been proposed and are still underway with many competitive goals. Furthermore,
recent developments in deep learning and machine learning are becoming more popular than
conventional methods including rule-based techniques [1,2]. As GPUs evolve and big data become
readily available, the development speed for deep learning has increased exponentially, and many
neural network models for sound classification have been proposed [3–5] using Convolution Neural
Networks (CNNs) [6]. Existing methods and deep learning algorithms solve the same problem such as
classification, using given data ranging from raw data to extracted data (features of interest), and they
differ only in which methods are used. For instance, Dai et al. [5] use the raw waveforms of a given
signal; Hershey et al. [3] and Gorin et al. [4] use frequency variations over time, such as STFT; and also
Vu et al. [7] use recurrent neural networks [8].

Industrial machines, such as semiconductor assembly equipment and automotive component
assembly equipment, tend to stop the entire production line once they detect faults or break down,
which often leads to large losses. Thus, to determine machine faults in advance, several approaches
have become available in various domains, including computer vision [9–11]. In particular, in an
environment where humans cannot constantly check inside machines, including motors, noise can be
used as a useful alternative to detect abnormal situations. Many approaches to conduct fault detection
through machine operating sounds and STFT have been previously proposed [12–14]. These have been
considered using a very cost-effective modality that uses the machine sound without other complicated
electrical signal sensors. Since auditory perception is quite sensitive to ambient noise, most sensors are
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inside the machine, closely attached to the target that they constantly observe. In medicine, on the
other hand, ambient noise is not very common, and many models have been proposed to verify patient
health by analyzing the heart [15] and snoring sounds [16]. The same modality can be divided into
several domains, ranging from raw waveforms to spectrograms with frequency variations over time,
and these are usually obtained via STFT. In addition, post-processing is also used with a spectrogram
that takes human audible frequencies into account and reduces the dimension to avoid unnecessary
frequencies [17,18]. This is referred to as Mel-Frequency Cepstral Coefficients (MFCCs) and has also
been utilized to describe the feature of interest and to apply machine learning algorithms [19].

However, most solutions include an approach that learns both abnormal and normal sounds in
classification. These generally classify at least two classes, including binary SVM, thereby the model
only focuses on hyper-planes that better distinguish the classes. As such, general classification models
can only discriminate among the finite set of predefined classes, which outputs the wrong prediction
when the data are measured well outside of the expected range or are not similar to the training set at
all. For this reason, existing models often suffer from the lack of strong prior information for unknown
abnormalities. A label that includes all other data can possibly solve this problem. However, “all other
data” is highly ambiguous. Even when the model is successfully trained, it is difficult to define how
abnormal sounds are different from the normal ones by their classification scores, as well as to obtain
meaningful measures from them. Thus, we recast this problem as a regression-based classification via
manifold-learning within a deep learning framework. The proposed model has succeeded not only
in achieving high performance on more complex and noisy data than simple and monotonous data,
but also in overcoming the limitations of the existing methods mentioned above.

The key contributions of our work are summarized below:

• We developed cost-effective anomaly detection from the given noise within an auto-encoder
framework, which classifies outliers without expensive annotation for anomalies.

• We introduced a straightforward method to determine anomalies based on high reconstruction
errors, which indicates how close data are to outliers or whether data approach the outliers.

• We successfully detected the abnormal sound of complex assembly machines, such as aging and
intermittent noise. These also include differences in the assembly parts and the one whose grease
has been removed.

2. Proposed Approach

In this section, our approach is described in detail based on the overall schematic of the model,
depicted in Figure 1. The basic steps for data pre-processing will be introduced in Section 2.1,
and the neural network-based regression method for the anomaly detection will be discussed in
Sections 2.2 and 2.3. We do not discuss the feedback because it only involves the user’s response or
request after detecting the anomaly using our approach.

Figure 1. Overall schematic of the proposed model.

2.1. Data Pre-Processing

The proposed approach detects an abnormal situation or monitors the state of the machine with
its operation sound. There are two typical data types for audio signals, amplitudes in the time domain
(raw waveform) and those in the frequency domain (spectrogram). Without any data pre-processing
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method, using raw waveforms directly is a more difficult problem for the neural network. The neural
network must learn the frequency bands of the raw data by itself, because the data that we use are
the audio signals. Theoretically, the difference between abnormal and normal data is observed in the
frequency domain. Therefore, the network needs many kernels corresponding to each frequency band
to analyze the different band. The deep learning approach somehow fits the model during the training
process, but most of the time, it is desirable to provide some small hints instead of entirely relying on
its system. The data pre-processing can be regarded as one of the guided trainings. It also pre-defines
the features that the neural network should learn, which allows the model to converge more quickly
and efficiently. Thus, we adopted the spectrogram through a Short-Time Fourier Transform (STFT).
Note that the neural network model without STFT needs some more layers instead of STFT, and this is
not quite efficient when we change the target machine. When we extend the model to other production
lines, the model should be re-trained by the normal operation data of the target machine. Therefore,
in terms of training time, adding layers is not efficient.

Mel-Frequency Cepstral Coefficients (MFCC) comprise a feature domain that is widely used
in speaker recognition and speech recognition [20], and it has been successfully applied in machine
diagnosis [17,18]. However, since the frequency changes from the Hz to mel scale by its mel-frequency
wrapping filters and discrete cosine transform, the details are often lost even if it focuses on the
significant component and discards background noises from the given signals. In addition, it is
highly unlikely to be effective with very complex machine defects where humans cannot easily make
distinctions due to the limitations in auditory ability. Therefore, we considered all frequency domain
ranges via STFT in our input for the deep learning model with a powerful performance.

In terms of the hyper-parameters in STFT, the higher the sampling rate, the higher the maximum
frequency that can be analyzed. As we get more details of the frequency bands, the performance often
gets improved; however, the data processing burden increases at the same time. The motivation of this
research is that the professional manager can successfully grasp the anomaly by the operation sound.
We designed the system especially when the experts cannot monitor the machine constantly, and the
goal of this research is to detect abnormalities and inform the managers. Therefore, we concluded
that the optimal sampling rate is close to the audible frequency, 16 kHz. We have experimented on
other values such as 44 K = kHz and detected that there is almost no available information in the
high frequency bands, as shown in Figure 2. Most of the energy is concentrated on audible frequency.
In addition, we have experimented with smaller window sizes and set the overlap length as a quarter
and a half of each window size. However, all these cases showed that the frequency resolution was
too small for the network to capture the frequency difference between abnormal and normal data and
that smaller overlap could not capture the intermittent noise. As a result, all STFT hyper-parameters
depicted in Figure 3 have been determined through several experiments.

Figure 2. Spectrogram from short time Fourier transform of the Surface-Mounted Device (SMD)
machine sound with sampling rate = 44,100 Hz, window = Hann, window size = 2048 samples and
overlap length = 512 samples.
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After applying the STFT to the audio files that we want to classify, we segmented the STFT results
about every 1.5 s. The segmentation interval also has been experimentally determined upon the
fact that experts generally need sounds at least 2 s long in complex machines to identify their states.
However, the segmentation interval can be adjusted according to the equipment type. In addition,
the DC component was first removed, and we normalized all spectrograms because the amplitude
differences depending on the recording volume could potentially exist, and this represents different
ranges of the feature distribution. The height of the spectrogram matrix shown in Figure 3 indicates
that the frequency resolution is 1024. Finally, we split the spectrogram into 32 columns for all data.
More details about the acquisition process of audio data and the use of spectrograms in our model will
be introduced in the next sections.

Figure 3. Example of STFT for recorded data from the SMD machine with sampling rate = 16,300 Hz,
window = Hann, window size = 2048 samples and overlap length = 512 samples.

2.2. Auto-Encoder-Based Architecture

General classification models can only discriminate among the finite set of classes predefined.
This approach needs at least two categories, “normal” and “abnormal”. However, as previously
described in Section 1, there are too many variables to define anomalies, and the human annotation for
a large collection of abnormal data labeled at the class level is very labor-intensive. It often suffers
from the lack of prior information for unknown abnormal classes, and they are practically impossible
to be predicted. When the abnormal data are not easily available, the neural network cannot perform
very well because of the data imbalance. All these problems are due to the fact that we attempt to
solve them by a classification problem and to select a better classifier. As a result, we propose to recast
this problem as a regression-based abnormality decision via manifold learning with the auto-encoder.

The technical details of the proposed model are all based on a general auto-encoder (see Figure 4).
The Variational Auto-Encoder (VAE) [21], which is a well-known extension model of the auto-encoder,
is a probabilistic model that approximates the likelihood and a posterior of the KL-divergence with
variational inference. However, it is difficult to view the proposed model as a generative model
similar to VAE. We do not require any generative models such as interpretation or interpolation on a
low-dimensional latent space that has high-level abstract features. In other words, our measures for
anomalies or outliers do not require prior knowledge for the latent variable z, unlike VAE. Since the VAE
series is easy to handle and has constraints on prior knowledge, such as Gaussian or the exponential
family, the performance of the reconstruction for the data with a high variance is lower than that of
a general auto-encoder. Therefore, we adopted a general auto-encoder that regularizes the data well
enough in our problem.

The auto-encoder is a network with the same input and output. The objective function to train the
network should aim to reduce the difference between the reconstruction and its original spectrogram.
The mean squared error is suitable for this case since it is not a classification problem, but rather
a regression problem. As depicted in Figure 5, the model produces an output, which is the same as
the input, by decoding (reconstructing) the encoded (dimensionality reduced) information. Without
an internal transformation process such as dimensionality reduction and expansion, the model is
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very likely to converge to an identity matrix that can easily achieve the objective function. Therefore,
this process can be considered the curve fitting in the low-dimensional space. Note that all spectrograms
are normalized to be zero-centered, which transforms the input into the regions that can utilize the
non-linearity of the proposed model and not get saturated. Further implementation details of the
proposed model can be found in Appendix A.

Figure 4. Basic framework for general auto-encoders. The latent variable z is the consequence of the
dimensionality reduction of the auto-encoder. The data that the encoder and the decoder have been
trained with must be able to be represented as a latent vector and be well reconstructed.

Figure 5. Overall structure of our model and geometrical change of an input as passing layers. The input
shape is set as height = 1024, width = 32, channel = 1, as we split the spectrograms into 32 columns
where the frequency resolutions is 1024.

The most compressed component in the middle of the network must contain the most important
information of the data. This information often means consistent features of the input dataset, and
finally, this kind of information is gathered into a single manifold. Here, we can use the least squares
estimation, assuming that the differences between inputs and outputs follow a normal distribution.
Therefore, the objective function that the model aims to minimize is as follows:

L(x,x̂) = ∑
i
||xi − x̂i||2 (1)

The mean of the normal distribution is the prediction of the model since we use the least squares
estimation, and we can express it in a certain non-linear combination through a network composed of
τ. Therefore, the likelihood of the observation (training data) x for certain µ and σ2 is:

p(x|τ) = p(x|µ, σ) =
n

∏
i=1

1√
2πσ2

e
−(xi−µ)2

2σ2 (2)

Finding the network parameters to minimize Formula (1) is, in fact, equivalent to maximizing
the likelihood in Formula (2). Note that log is monotone and can be used for the log-likelihood to
differentiate them easily. We can detect that the general auto-encoder still performs the maximum
likelihood scheme like any other probabilistic model. Although there is no prior distribution, such as
an exponential family to control the decoder, the encoder network can abstract the given data to a latent
space where the low-dimensional manifold exists, with the dimensionality reduction. The decoder
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network can also interpret the given abstraction and reconstruct it. This entire process is called
“auto-encoding”, which allows at least the networks to be able to learn the consistent features of training
data by regularizing them with manifold learning. Since we use the auto-encoder parameterized by τ

to output x̂, the parameters can be divided into two sets: the encoder network and the decoder network.
We denote them as fφ and gθ , respectively, and the training algorithm is described in Algorithm 1.
The training algorithm of the model minimizes the mean squared error and iteratively updates the
parameters of the given network. The parameters are initialized by Xavier [22] before training the
model, and then, the parameters are updated after computing the mean squared error until it is
qualitatively converged using the stochastic gradient descent method.

Algorithm 1: Auto-encoder training algorithm.
Input: Sets of data to train x1, x2...xn

Output: encoder fφ, decoder gθ

φ, θ ← Initialize network parameters
repeat

Compute mean squared error
L(φ,θ;xi)

= ∑i ||xi − gθ( fφ(xi))||2
φ, θ ← Update parameters by SGD

until convergence of parameters (φ, θ)

2.3. Abnormality Decision

The auto-encoder minimizes the loss of information during compression and expansion. Since the
high-frequency components are lost in the compression process of the encoder, they are not clearly
restored, even if the decoder restores them to the maximum. The objective function of the network
is to reduce the average difference between input and output spectrograms, and the element-wise
reconstruction is not completely equivalent to its original input. However, in this auto-encoding
process, we rather focus on the difference in reconstruction quality when the input is “normal” or
“abnormal”. The model learns the important features of the given data, and the low-dimensional
vector, which is a result of dimensionality reduction, implies the most significant (highly abstracted)
information. Formalizing this approach as learning specific consistent features in normal data, we can
use the low-dimensional manifold composed of these feature vectors for abnormality decisions,
as depicted in Figure 6.

Figure 6. Low-dimensional manifold composed of normal data of the model trained only with them.
The outliers cannot be mapped into the manifold properly due to different features from normal data.

There are two typical cues in this approach. First, the model expects the data that have a quite
similar distribution with the normal training data, and secondly, the abnormalities are characterized by
somewhat different features from normal. We integrate these in the auto-encoding steps. The outliers
cannot be well mapped to the low-dimensional manifold formed by the normal data, and they can
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be detected by the property of the decoder that cannot restore them clearly. The distinction between
the abnormal data and normal data is defined as the difference between the input and output of a
certain level or more. Thus, Formula (1) is an anomaly determinant for unseen data while being the
objective function in the training process. This determinant can be an indicator of how close the given
data are to the outliers, and whether the data are approaching the outliers. After successfully training
the auto-encoder to learn the low-dimensional manifold of normal data, the algorithm detecting the
anomalies is described in Algorithm 2.

In residual-error based anomaly detection algorithm, threshold α is determined by using the
results for the validation set in the same normal data, but reflecting several abnormal data is more
adaptive to selecting an optimal cutoff. Due to the nature of the machine, aging is inevitable and
necessary to adjust the threshold for the anomaly determinant as time goes by. The manifold shape
of the latent variable z of the existing model is slightly deformed. Therefore, it becomes more
adaptive when we further train the model with new data. The detection rate varies depending
on α; however, it can also be adjusted according to the number of samples used for the anomaly
determinant. More details will be described in the next section.

Algorithm 2: Residual error-based anomaly detection algorithm.
Input: Sets of data to classify x1, x2...xn

Output: Residual error L(x,x̂)
φ, θ ← train network parameters with Algorithm 1
α← set threshold based on training set

repeat
for i=1 to N do

Compute residual error L(x,x̂)
L(φ,θ;xi)

= ∑i ||xi − gθ( fφ(xi))||2
if residual error L(x,x̂) > α then

xi is abnormal
else

xi is normal
end if

end for

3. Experiment

The data to be classified as abnormal or normal consist of machine operation sounds. In this
section, we introduce our very complex experimental data source, a Surface-Mount Device (SMD)
assembly machine, which performs a dozen operations in a second, and it will be further described
with our results. Note that this residual error-based anomaly detection cannot be experimentally
compared with the general classification models. The experimental environment in this paper does
not include abnormal data in the training process. Using abnormal data for the abnormality decision
has different conditions, which is not the same environment. However, the abnormal data that we
have can be exploited in semi-supervision, and this will be discussed in the next section.

3.1. SMD

An SMD is an electronic device (see Figure 7) made using Surface-Mount Technology (SMT).
The produced devices are electronic circuits where the components are mounted on the surface of the
PCB board. This method provides a fast manufacturing process, but a risk of defects always exists
due to denser, miniaturized components. While existing sound-based anomaly detection research is
monotonous, the SMD machine is relatively complicated. It can also get more complicated in the sense
that the pattern can change according to the component that is assembled. Thus, our experimental
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data, the SMD machine sound, are considered to be quite complex and more challenging than other
machines where the operations are quite monotonous and simple.

Figure 7. SMD semiconductor assembly equipment.

The entire production line in our experimental data consists of the C-line and B-line. Both lines are
the names set by the company who provided these datasets, and they are different in terms of which
semiconductors are being assembled. We selected one production C-line as a normal category and
assumed all others to be abnormal (one vs. all). Abnormal refers to everything that is not normal. To test
the proposed model, we manually defined three abnormal categories: changing assembly part (from
C-Line to B-line), adding noise artificially (to represent broken internal components) and removing
grease in the same production C-line. In particular, a non-greased production line requires precise
detection because the operating sound is very similar to the normal sound, and it shows a slight
difference near the joints of the machine.

The machine operating sound is recorded by attaching the recording sensor to the machine being
monitored, as shown in Figure 8. Since the audio data are recorded from a fixed space and closely
attached inside the machine, additional processing for the ambient noise is not required. The C-line is
the most important normal data in our approach, and data collection is ongoing after the experiment.
Therefore, the proposed model becomes more robust once more data are collected. Another category
of abnormalities, as previously introduced, consists of the differences in the assembly parts (B-line),
non-greased C-line and C-line with intermittent noise. In the case of intermittent noise, we manually
added a clacking noise in the recording. We consider the non-greased C-line as an abnormal category
because it has no significant problems during operation, but it is likely to be potentially broken
down. Since the proposed model only regresses normal data, the abnormal category datasets are used
for testing purposes only. The sample dataset is available at https://github.com/DongYuls/SMD_
Anomaly_Detection and the total length for each category is shown in Table 1.

For our data preprocessing (see Figure 3), 2048 samples were transformed to a frequency domain
with a 512-sample overlap length. Therefore, the column of the input matrix already contained
temporal information for 2048 samples. However, anomalies differ not only in the frequency domain,
but also in the time domain along their actions; i.e., the joints can be broken or can produce strange
behavior over a long period of time.

Speriod =
window size + (width− 1) · (window size− overlap length)

sampling rate
(3)

Since the size of the spectrogram is only determined by the windowing size in STFT and the
audio sampling rate, we can easily determine how long we monitor the machine. Note that the
maximum frequency of the STFT cannot exceed half the sampling rate. We can still maximize the
frequency resolution by increasing the window size; however, the time resolution would decrease,

https://github.com/DongYuls/SMD_Anomaly_Detection
https://github.com/DongYuls/SMD_Anomaly_Detection
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which makes it difficult to detect the temporal anomaly or intermittent noise. Thus, the column size for
each segmentation was experimentally determined as previously introduced in Section 2.1; 32 columns,
and represents about 1.5 s considering a sampling rate of 16,300 Hz and 512 samples for the overlap
length in our implementation. We obtain 2100 segments in C-line as the total amount of the experiment.
The following is the time length represented by the spectrogram according to the hyperparameter of
the STFT.

Figure 8. Data collection with microphones. They were attached to each side of the machine joint and
the hydraulic cylinder.

3.2. Result

We regarded the C-line as a normal class, and the others including grease-removed C-line,
B-line and artificial-noise addition in both lines as an abnormal class. We also split the C-line dataset
into 2000 segments for the training set and 100 segments for the validation set. Note that we do not
use abnormal data in the training process, but instead use them to test whether the model outputs
high residual errors. The results of training our model are depicted in Figure 9.

Figure 9. Results of the training process (Adam optimizer with learning rate = 0.0008, batch size = 32)
for a normal assembly C-line, using GTX 1060 for 50 K steps and taking 8 h.

After training the model, we measured the distribution of the reconstruction errors for normal
and abnormal data before defining the threshold (refer to Algorithm 2). We had experiments to assess
the proposed approach on a single category, which is whether the model really distinguishes abnormal
and normal sounds. According to our anomaly detection method, the threshold α was adaptively
set based on the histogram of the reconstruction error for the validation set. However, we do not
use the maximum value in the histogram as a threshold due to the trade-off between the sensitivity
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and the specificity, as depicted in Figure 10. The supervisor’s demand is fully reflected in terms of
the optimal cutoff. That is, we can maximize the abnormal detection rate (high sensitivity) to ensure
that the machine constantly remains in a normal state, even if there are frequent false alarms due to
a low specificity.

We observed (refer to Figure 10) that the performance of the distinction between the non-greased
C-line and normal C-line is poor, while the intermittent sound is easily distinguishable because it
is rarely observed in normal operating sound. The B-line is also very easy to distinguish as the
assembly part changes since all operations, such as mounting and air rejection, are different. However,
the non-greased C-line can be thought of not only as a situation that is easily observed from an
environment related to the machine, but also as an indication of aging.

Figure 10. Receiver Operation Characteristic (ROC) curve of the proposed method for each category
corresponding to Table 1. The accuracy is measured by the Area Under the ROC Curve (AUC). Note
that this is not a multi-classification result, but an individual ROC curve with a normal C-line.

Table 1. Dataset of audio records in the experiment.

Category Length

C-line 24:49
Non-greased C-line 15:53

C-line with intermittent noise 06:08
B-line 11:00

In order to improve the performance on a non-greased C-line, we considered two observations,
which cause the fault detection using a single segment to produce many false alarms, as depicted in
Figure 11. First, the sound is identical regardless of whether it is greased or not in certain operations.
For example, since cylinders in the machine do not contain the grease, their sounds are independent
of the grease. We did not remove or process them in the training set, because there is no prior
knowledge of the abnormalities, and the machine does not always show an indication of them in
all sections. We applied the model to a more general situation where the abnormal noise and the
normal operation sound both exist. Second, the non-greased C-line and normal C-line have exactly
the same operations, but different sounds during the operations due to different frequency bands by
the presence of grease. We observed that grease makes a slight difference in low frequency bands,
and it is quite challenging for the model to distinguish them because of the frequency resolution
trade-off. Thus, we performed anomaly detection through an ensemble of several samples (segments).
Note that the x-axis in Figure 11 shows the residual errors for the average difference between the input
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spectrogram and the reconstructed spectrogram, according to the number of samples used for the
anomaly determinant, and the y-axis shows their frequency.

Figure 11. Histogram of the average residual errors between the input data and its reconstruction by
the auto-encoder: (a) the average error of single samples; (b) the average error of 20 samples. Note that
abnormal data shown above represent the non-greased C-line.

The noise caused by colliding internal components or severe damage of a gear can be detected in
real time, whereas the noise caused by aging cannot. This is because aging is a natural phenomenon
due to the nature of the machine, and it only shows a slight difference in frequency from normal
operation sound. However, the SMD managers also claim that this type of abnormality does not
need real-time service, since it does not cause serious defects in the production line immediately and
can be solved by the maintenance of the manager. As the number of samples in Figure 12 increases,
the accuracy will reach 100%. Consequently, it takes a longer time to detect the anomalies, and the
more short-lived anomalies can be neglected. We conclude that the number of the optimal samples in
actual use is 20. All these can be adjusted by the manager’s opinion for maintenance.

Figure 12. The variation in accuracy according to the number of samples used as a determinant for
a normal C-line. The entire audio data recorded in the abnormal line contain the features independent
of being abnormal and normal, such as the rest interval.
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4. Conclusions

Detecting whether a machine is approaching an abnormal state or not is more meaningful than
just distinguishing what is already broken. Therefore, it is possible to detect slight changes in the
frequency before a more severe fault occurs and to prepare measures against aging. The proposed
approach showed a high performance in detecting anomalies, and it can be applied to more general
situations and help solve the data imbalance problem. That is, we have created an auto-encoding
manifolder that can measure the differences without expensive annotations for anomalies.

In addition, we successfully detected anomalies using a cost-effective modality. The approach of
conventional models is mostly based on repeated-deterministic signals. However, our approach can
handle stochastic signals. In other words, the general classification model outperforms others if there is
prior knowledge of the situation, such as a limited variety within sound events. The key method of the
proposed model is the neural network-based regression analysis within the auto-encoder framework.
It can be used not only in the SMD machine, but also in various situations or in environments where
data acquisition is difficult, for example, in the medical field, people who are sick or cannot be
considered normal and abnormal, and their abnormal labels are difficult to obtain because only experts
or doctors can make a diagnosis through data.

Once having detecting anomalies or outliers, we need to classify the anomalies. The ensemble
with the operation-classification model based on semi-supervised learning techniques can be suitable to
further improve the performance by tracking the area where anomalies occur. In addition, tactile and
visual aspects of an object are the main modalities to define the object, as well as the auditory aspect.
This research was initiated by the SMD manufacturer’s opinion that the manager can distinguish the
abnormalities by the operation sound. It is possible to extend it to a visual or vibration sensor in a similar
way. In future work, we would like to explore the semi-supervision framework and the ensemble with
other modalities.
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Appendix A

Table A1. Implementation Detail.

Operation Kernel Stride Feature Maps Batch-Norm. Activation-Fn.

Encoder Input: 1024 × 32 × 1

Convolution 5 × 5 2 × 1 64 Yes ReLU
Convolution 5 × 5 2 × 1 64 Yes ReLU
Convolution 5 × 5 2 × 1 96 Yes ReLU
Convolution 5 × 5 2 × 1 96 Yes ReLU
Convolution 5 × 5 2 × 1 128 Yes ReLU
Convolution 4 × 4 2 × 2 128 Yes ReLU
Convolution 4 × 4 2 × 2 160 Yes ReLU
Convolution 4 × 4 2 × 2 160 Yes ReLU
Convolution 3 × 3 2 × 2 192 Yes ReLU
Convolution 3 × 3 2 × 2 192 No None

http://www.mdpi.com/1424-8220/18/5/1308/s1
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Table A1. Cont.

Operation Kernel Stride Feature Maps Batch-Norm. Activation-Fn.

Decoder Input: 1 × 1 × 192

Convolution 3 × 3 2 × 2 192 Yes ReLU
Convolution 3 × 3 2 × 2 160 Yes ReLU
Convolution 4 × 4 2 × 2 160 Yes ReLU
Convolution 4 × 4 2 × 2 128 Yes ReLU
Convolution 4 × 4 2 × 2 128 Yes ReLU
Convolution 5 × 5 2 × 1 96 Yes ReLU
Convolution 5 × 5 2 × 1 96 Yes ReLU
Convolution 5 × 5 2 × 1 64 Yes ReLU
Convolution 5 × 5 2 × 1 64 Yes ReLU
Convolution 5 × 5 2 × 1 1 No None

Activation function represents a type of non-linear combination as passing each layer. Batch-normalization
prevents internal covariance shift, which refers to the variation of input distribution with each non-linearity
in the network. More details about batch-normalization can be found in [23].
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