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Abstract

To understand how evolving systems bring forth novel and useful phenotypes, it is essential

to understand the relationship between genotypic and phenotypic change. Artificial evolving

systems can help us understand whether the genotype-phenotype maps of natural evolving

systems are highly unusual, and it may help create evolvable artificial systems. Here we

characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital

evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction

sequences), which can form 512 different phenotypes. These phenotypes are distinguished

by different Boolean logic functions they can compute, as well as by the complexity of these

functions. We observe several properties with parallels in natural systems, such as con-

nected genotype networks and asymmetric phenotypic transitions. The likely common

cause is robustness to genotypic change. We describe an intriguing tension between phe-

notypic complexity and evolvability that may have implications for biological evolution. On

the one hand, genotypic change is more likely to yield novel phenotypes in more complex

organisms. On the other hand, the total number of novel phenotypes reachable through

genotypic change is highest for organisms with simple phenotypes. Artificial evolving sys-

tems can help us study aspects of biological evolvability that are not accessible in vastly

more complex natural systems. They can also help identify properties, such as robustness,

that are required for both human-designed artificial systems and synthetic biological sys-

tems to be evolvable.

Author summary

The phenotype of an organism comprises the set of morphological and functional traits

encoded by its genome. In natural evolving systems, phenotypes are organized into muta-

tionally connected networks of genotypes, which increase the likelihood for an evolving

population to encounter novel adaptive phenotypes (i.e., its evolvability). We do not know
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whether artificial systems, such as self-replicating and evolving computer programs—digi-

tal organisms—are more or less evolvable than natural systems. By studying how geno-

types map onto phenotypes in digital organisms, we characterize many commonalities

between natural and artificial evolving systems. In addition, we show that phenotypic

complexity can both facilitate and constrain evolution, which harbors lessons not only for

designing evolvable artificial systems, but also for synthetic biology.

Introduction

In natural and artificial systems that undergo Darwinian evolution by random mutation and

selection, a central distinction is that between a genotype (the entire set of genetic material or a

digital organism’s set of instructions, respectively) and a phenotype (the set of observable traits

encoded by the genotype). This distinction is important for two main reasons. First, genotypic

change causes heritable variation, whereas the phenotypic change it brings forth is the sub-

strate of natural selection. Second, phenotypes form through complex processes such as pro-

tein folding and embryonic development. These processes influence how genotypic variation

is translated into phenotypic variation. Specifically, they influence what kind of variation

becomes available to natural selection. They thus also constrain the directions of evolutionary

change. Most importantly, they affect the likelihood that new and beneficial phenotypes—evo-

lutionary adaptations and innovations—originate in the first place [1–5].

To understand the biases and constraints in the production of novel phenotypes, it is neces-

sary to understand how genotypic change translates into phenotypic change. The concept of

genotype-phenotype mapping was introduced by Pere Alberch in 1991 as a framework for

integrating genetics and developmental biology [6]. However, there is no universal definition

of the genotype-phenotype map. We refer to the genotype-phenotype map of natural systems

as a (mathematical) function from a space of genotypes to a space of phenotypes, which deter-

mines how genotypic information specifies phenotypes through processes such as protein fold-

ing and embryonic development. Genotype-phenotype maps have been studied in multiple

biological systems, including proteins and RNA molecules [7–12], genome-scale metabolism

[13, 14], as well as biological circuits that regulate gene activity [15–17]. These studies have

revealed a number of commonalities among otherwise very different systems. One of them is

that such systems are to some extent robust to genotypic change [7–21]. Another is that this

robustness leads to the existence of genotype networks [9, 10, 14, 15, 17, 22, 23], i.e., networks

of genotypes that share the same phenotype, and that can be converted into one another by a

series of phenotype-preserving small genetic changes (point mutations). Such networks can

facilitate the origins of novel phenotypes because they help populations explore many different

regions in genotype space that may harbor such phenotypes [24–26]. A third commonality is

pervasive epistasis—non-additive interactions among individual mutations—which makes the

phenotypic effects of individual mutations highly dependent on the genetic background on

which they occur [27–29].

In addition to naturally evolving systems, researchers are exploring an increasing number

of synthetic or artificial evolving systems [30–36] that range from minor modifications of nat-

ural systems, such as proteins with non-natural amino acids [37–41], to completely artificial

systems such as digital organisms and computer viruses [31, 33, 34]. We know little about the

genotype-phenotype maps of such artificial systems. Specifically, we know almost nothing

about the organization of their genotype spaces, and how readily novel adaptive phenotypes

can originate in such spaces. Such knowledge may help us compare and contrast natural and
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artificial evolving systems, including the extent to which natural systems are more evolvable.

Any such comparison should take into account that the genotype-phenotype map of artifical

systems has not evolved, but in contrast to that of natural systems, is designed. Here we address

these issues with the Avida platform for digital evolution [30].

Digital evolution is a form of evolutionary computation in which self-replicating computer

programs—digital organisms—evolve within a user-defined computational environment [31–

33]. Avida is the most widely used software platform for research in digital evolution [33]. It

satisfies the three essential requirements for evolution to occur: replication, heritable variation,

and differential fitness. The latter arises through competition for the limited resources of mem-

ory space and central processing unit (CPU) time. A digital organism in Avida consists of a

sequence of instructions—its genome or genotype—and a virtual CPU, which executes these

instructions. Some of these instructions are involved in copying an organism’s genome, which

is the only way the organism can pass on its genetic material to future generations. To repro-

duce, a digital organism must copy its genome instruction by instruction into a new region of

memory through a process that may lead to errors (i.e., mutations). A mutation occurs when

an instruction is copied incorrectly, and is instead replaced in the offspring genome by an

instruction chosen at random (with a uniform distribution) from a set of possible instructions.

Some instructions are required for replication (i.e., viability), whereas others are required to

complete computational operations (such as addition, multiplications, and bit-shifts), and are

executed on binary numbers taken from the environment through input-output instructions.

When the output of processing these numbers equals the result of a specific Boolean logic

operation, the digital organism is said to have a functional trait represented by that logic opera-

tion (Fig 1). An organism can be rewarded for having a functional trait with virtual CPU-

cycles, which speeds up its execution of instructions. These rewards create an additional

Fig 1. The genotype encodes the phenotype of a digital organism. The genotype of a digital organism with the smallest genome required to perform

the logic operation NAND is depicted as a circular set of 12 instructions (represented here as letters). Beyond the instructions necessary for copying the

genome, the genetic language of Avida contains instructions for storing and manipulating 32-bit binary numbers in buffers (input-1 and input-2) and

registers (AX, BX, and CX). Each binary number is represented here as a sequence of 32 boxes, one for each bit. The value of each bit is depicted as a

black box if it equals one and as a white box if it equals zero. The cartoon shows the execution of the input-output instruction (represented by the letter y;

highlighted in black). (A) The state of the input buffers and registers before executing the input-output instruction (the arrow points toward the next

instruction to be executed). (B) The state of the input-buffers, registers, and the output after executing the input-output instruction. The input-output

instruction outputs the number stored in the BX register, checking for any logic operation that may have been performed on the two binary numbers

previously stored in the input buffers. In this example, the output is the result of applying the logic operation NAND: for each bit pair, the result is 0 (white

box) if and only if the two bits are 1, and 1 otherwise (red box). Then, the input-output instruction places a new random binary number into the BX register

(a number that is also stored in the input-1 buffer after moving the number previously stored there to the input-2 buffer). The complete step-by-step self-

replication cycle of this digital organism is shown as S1 Appendix. Note that, in our study, the genome of digital organisms is much larger (i.e., 100

instructions long).

doi:10.1371/journal.pcbi.1005414.g001
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selective pressure (besides streamlining replication) which favours those organisms with muta-

tions that have produced sequences of instructions in their genomes that encode functional

traits. Organisms that are more successful—those that replicate faster—are more likely to

spread through a population.

We use the Avida framework to characterize the genotype-phenotype map of its digital

organisms, where this mapping is defined by a direct relationship between complex interac-

tions among computer instructions and the ability for digital organisms to perform Boolean

operations. On the one hand, we find that some properties of these maps resemble those found

in natural systems, such as robustness, epistasis, and genotype networks. On the other hand,

we also characterize a property that has not been found in natural systems. That is, a relation-

ship between phenotypic complexity and the ability to bring forth novel phenotypes [42]. This

property may be present but hidden in natural systems, whose overwhelming complexity hin-

ders the analysis of their genotype-phenotype maps. Digital organisms have thus helped us

identify a novel hypothesis about the evolvability of natural systems, potentially leading to new

fundamental biological principles.

Results

The genotype space for digital organisms with a genome length (number of instructions) L
taken from an alphabet of available instructions A comprises AL different genotypes. We here

consider genotypes with L = 100 instructions drawn from an alphabet of A = 26 instructions

(Methods), which yields a genotype space of

G ¼ 26100 � 3:14� 10141 ð1Þ

different genotypes. A genotype in this space encodes a viable organism if it is capable of self-

replication. In addition to being viable, the instructions in an organism’s genome may enable

it to compute one or more Boolean logic operations. We refer to this ability as a functional

trait or as the organism’s phenotype (Fig 1). Specifically, we here focus on 9 logic operations

such as the AND and OR Boolean functions, that organisms can perform on 32-bit one- and

two-input numbers taken from the environment (Methods). Because any organism could in

principle be capable of computing any subset of these operations, the total number of possible

phenotypes, i.e., the size of phenotype space, equals 29 = 512 phenoypes. We note that this

number includes organisms that are merely viable, i.e., they do not have any functional trait

because they cannot perform any of the operations consider in this study.

In a first analysis, we wished to determine the fraction of viable genotypes. To this end, we

uniformly sampled genotypes from genotype space until we had found 1000 viable organisms

(Methods). This required us to sample 1.5 × 109 genotypes, which implies that the fraction of

viable genotypes is�1000/(1000 + 1.5 × 109) =� 6.6 × 10−7, and its absolute number is

� 5 × 10135. Because there can be only 512 phenotypes, this result implies that, on average, an

astronomical number of genotypes must map onto any of these few possible phenotypes.

Because not a single genotype in our sample of 1000 viable genotypes was able to compute

any logic operation, we wanted to know next whether some of the immediate (1-mutant)

neighborhoods of genotypes in this sample have this ability. To this end, we created all

L × (A − 1) = 2500 1-mutant neighbors for each of the 1000 genotypes in our sample, and eval-

uated the phenotypes of the resulting 2.5 × 106 organisms. Even among this large number of

organisms, we found only 13 distinct phenotypes. The proportion of the 1000 neighborhoods

in which a phenotype appears at least once indicates a highly non-uniform distribution of phe-

notypes in genotype space (S1 Fig). These observations suggest that some phenotypes—those

we found—are frequent, whereas others must be very rare (Fig 2A). In addition, rarer

The genotype-phenotype map of an evolving digital organism
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phenotypes are more complex (ρ = −0.759, n = 13, p = 0.002). We define overall phenotypic

complexity as the sum of the complexity of the logic functions that an organism can compute.

We approximate each function’s complexity as the minimum number of times that a nand
instruction—the only instruction that is itself a logic operator—must be executed for comput-

ing the function [43, 44]. To compute phenotypic complexity, we add the complexity value of

the individual functions, and normalize the resulting sum by the complexity of the most com-

plex phenotype. This measure of phenotypic complexity is not only simple but also sensible:

when computed for all 511 functions, it is correlated with the minimum number of times that

the nand instruction is executed (ρ = 0.536, n = 511, p< 0.001). Note that a complex pheno-

type results from executing a repeated combination of instructions that simpler phenotypes

might already harbor in their genomes.

Given the low number of phenotypes our random sampling had identified, we next under-

took a two-step procedure to sample genotypes with all 512 phenotypes (directional selection

followed by purifying selection; see Methods). Briefly, the first step consisted of evolving 1000

populations of digital organisms subject to repeated cycles of mutations and selection for spe-

cific functional traits (i.e., favoring organisms with genomes where mutations had produced

sequences of instructions that compute specific logic operations). We initialized each popula-

tion from one of the 1000 randomly sampled viable genotypes. We allowed these 1000 popula-

tions to evolve for 106 updates, where an update is the amount of time during which an

organism executes on average 30 instructions. After 106 updates, the total number of distinct

Fig 2. Genotype space characterization. (A) A measure of the fraction of viable genotype space (see Methods) in the neighborhood of 1000 merely

viable genotypes. We computed the number of 1-mutant neighborhoods of merely viable organisms, in which a particular phenotype (including the merely

viable) appeared at least once, divided by 1000, i.e., by the total number of neighborhoods examined. We then normalized this quantity so that the sum

equals one. Few phenotypes (e.g., that of merely viable organisms and of organisms able to perform the NOT operation) are moderately frequent,

whereas most others (e.g., the NOR phenotype) are rare. (B) Genotypic distances between 100 pairs of genotypes per phenotype, after random walks

aiming to reach one genotype from the other through multiple phenotype-preserving point mutations. Distance was measured as the number of positions

at which both genotypes differ (Hamming distance). (C) Classification of genotypes that lie in the 1-mutant neighborhood of every organism having a

particular phenotype (x-axis). Each bar shows the fraction of those genotypes that are non-viable (light gray), viable having the same phenotype as the

focal phenotype (dark gray), and viable but having a distinct phenotype (black). Phenotypes are arranged from left to right in order of increasing

complexity. Panels B-C are focused on single-trait phenotypes (i.e., phenotypes whose organisms have only the functional trait posed by a single logic

operation) as well as merely viable organisms (labeled as no-trait).

doi:10.1371/journal.pcbi.1005414.g002
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phenotypes encountered in each evolving population did not increase further. At that point in

time, we stopped the evolution process and kept only one genotype per phenotype, chosen at

random from the genotypes previously encountered during the process. This procedure

allowed us to find at least one genotype that mapped to each one of the 512 phenotypes com-

prising the whole phenotype space. We observed that 60% of phenotypes were discovered by

only 10% of the populations, and only 12% of phenotypes were found by more than 90% of the

populations (S2 Fig). A few phenotypes—likely the rarest ones—were very difficult to find,

and two of them were discovered by only one population.

In the second step, we aimed to obtain a fixed number of 1000 independently sampled

genotypes for each phenotype. To this end, we started from the previously discovered geno-

types with a specific phenotype, and performed double-mutant random walks through geno-

type space that preserved viability and phenotype during 1000 mutational steps (Methods).

For each phenotype, we performed 1000 such random walks, thus creating 1000 randomly

sampled genotypes with this phenotype (data are provided as S1 File).

With these samples in hand, we first asked how different two organisms can be in their

genotypes if they share the same phenotype. For every phenotype, we found that the maximum

genotype distance—measured as the Hamming distance of genotype instruction sets—among

all genotypes with the same phenotype is as high as the genome length, D = 100. That means

that organisms whose genotypes differ in all positions along their genomes may indeed have

the same phenotype (Methods). This is possible because the effect of an instruction on a phe-

notype depends on other instructions contained in the genome, a phenomenon analogous to

epistasis in genetic systems [43]. By applying a multiple local alignment algorithm to the

genomes of organisms with the same phenotype (Methods), we did not find any recurring sub-

sequence pattern—sequence motif—revealing common ways of achieving the same phenotype

nor any sequence motif containing the instructions required for viability. We only found a

small motif in genotypes encoding the simplest phenotypes. It contains the flow-control opera-

tions involved in determining which intructions are going to be read and written (S3 Fig).

Overall, these observations show that genotypes with any one phenotype are not localized in a

single small region of genotype space, but might rather occur throughout this space.

We next asked whether genotypes with the same phenotype can be connected in sequence

space through a series of point mutations (single instruction changes) that leave the phenotype

intact. In other words, do genotypes with the same phenotype form a single connected net-

work of genotypes? To find out, we performed random walks involving multiple pairs of geno-

types with the same phenotype, where each random walk aimed to reach one of the genotypes

from the other without changing its phenotype. We found that this is not generally possible,

and recorded the minimal distance between genotypes that we were able to obtain with this

approach (Methods). Since this is a computationally time-consuming process, we carried it

out only for merely viable organisms and for organisms with single-trait phenotypes. We note

that the random walks we performed can only provide upper bounds on the distance between

different components of the same genotype network. Fig 2B shows the minimal distances

between pairs of genotypes for single-trait phenotypes, arranged as a function of the complex-

ity of the trait. We found that at least one pair of genotypes of every phenotype is connected

and that the average minimum distance between genotype pairs increases with trait complexity

(ρ = 0.940, n = 10, p = 0.005, for the median).

Even though the preceding observations suggest that genotype network fragmentation rises

with phenotypic complexity, an additional analysis shows that the gaps between different

genotype networks might be easily bridged. In this analysis, we performed random walks anal-

ogous to those just described, where each step needed to preserve both viability and the pheno-

typic traits of the starting genotype. In addition, we also accepted steps that lead to genotypes

The genotype-phenotype map of an evolving digital organism
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with additional traits that had not been present in the starting genotype. Under these condi-

tions, the average minimum distance between pairs of genotypes became significantly lower

than in the preceding analysis (from 4.5 to 4 for the simplest phenotype, and from 25.5 to 18

for the most complex one). In addition, the fraction of genotype pairs that were connected

increased by 11% for the simplest single-trait phenotype, and by 63% for the most complex

one. Because the additional traits we observe were not required by our selection criterion, they

emerged spontaneously. In the language of evolutionary biology, they can thus be viewed as

potential exaptations [44]—traits of organisms that are either not adaptive when they origi-

nate, or whose adaptive role changes [45].

Different phenotypes may not only differ in the number of genotypes that form them. They

may also differ in their accessibility from genotypes with other phenotypes, that is, in the likeli-

hood to reach them from such a genotype through a single point mutation. To estimate such

differences in phenotypic accessibility, we used our samples of 1000 organisms with a given

phenotype, and computed, for all phenotypes i and j, the probability of encountering an organ-

ism with phenotype j from an organism with phenotype i by a single point mutation. To this

end, we first identified all genotypes that lie in the 1-mutant neighborhood of every organism

having phenotype i. We then classified these genotypes according to phenotype, and computed

the fraction of those genotypes that have phenotype j. We also refer to this fraction as the tran-

sition probability from phenotype i to phenotype j (pi!j).

The organisms we encountered in these neighborhoods fall into three classes. The first class

holds inviable organisms. Fig 2C shows that the likelihood of encountering an inviable organ-

ism through a point mutation (pi!0) increases with the complexity of the phenotype i (Spear-

man’s ρ = 0.621, n = 512, p< 0.001; S4 Fig).

The second class comprises viable organisms that have the same phenotype as i (pi!i, see

Fig 2C). We refer to the fraction of point mutations that preserve an organism’s phenotype,

averaged over all organisms with this phenotype, as the mutational robustness of this pheno-

type. The higher the complexity of a phenotype, the lower is its robustness (ρ = −0.689,

n = 512, p< 0.001; S4 Fig). Since some instructions of an organism’s genome might not be exe-

cuted during its self-replication process, we asked to what extent simple phenotypes corre-

spond to organisms that execute fewer instructions. To answer this question, we computed the

fraction of the genome as well as the number of instructions that organisms encoding the same

phenotype executed during their replication. Neither one nor the other were correlated with

phenotypic complexity (ρ = 0.017, n = 512, p = 0.709; ρ = −0.049, n = 512, p = 0.271; respec-

tively). Another factor that could be responsible for the association between phenotypic com-

plexity and robustness is the fixed length of the genome. To rule this possibility out, we

reduced the genome size for all organisms with single-trait phenotypes by deleting one ran-

domly chosen instruction at a time, while preserving viability and phenotype, until no more

instructions could be removed. We found that organisms having more complex functional

traits required a larger minimal genome (ρ = 0.902, n = 9, p< 0.001, for the median, see S5

Fig). This observation implies that the higher the phenotypic complexity of an organism is, the

smaller is the number of instructions in the genome that can be altered without perturbing the

phenotype. In other words, phenotypic complexity comes at the price of lower phenotypic

robustness.

The third and most important class of organisms comprises the 1-mutant neighbors that

have a different phenotype j. The greater the complexity of phenotype i is, the greater is the

probability (pi!j) of finding a genotype with a novel phenotype (ρ = 0.633, n = 512, p< 0.001;

see Fig 2C and S4 Fig). We also found that the distribution of non-zero transition probabilities

(68%) is heavy-tailed (Fig 3A). This means that only a few novel phenotypes are highly accessi-

ble through single point mutations, whereas most have a very low chance of being encountered.

The genotype-phenotype map of an evolving digital organism
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The probabilities of phenotypic change may be asymmetric [46, 47]; that is, phenotype i
may be easily accessible from phenotype j but not vice versa (pi!j 6¼ pj!i). We quantified this

asymmetry by computing the quantity AS(i, j) = |pi!j − pj!i|/max(pi!j, pj!i), where max refers

to the maximum of two values [48]. We found that most reciprocal transition probabilities are

highly asymmetric (Fig 3B). These asymmetries in transition probabilities are just a conse-

quence of the fact that different phenotypes have different numbers of genotypes that code for

them (see Methods for a simple mathematical explanation). This direct relationship between

transition probabilities and the frequency of phenotypes has also been reported in models for

Fig 3. Most phenotypic transitions are rare and asymmetric. (A) Distribution of transition probabilities

from phenotype i to any other phenotype j, computed as the fraction of all genotypes with phenotype j that lie

in the 1-mutant neighborhoods of organisms with phenotype i. Most transition probabilities are very low. (B)

Distribution of the asymmetry AS(i, j) of the transition probabilities between all pairs of phenotypes i and j.

Most reciprocal transition probabilities are highly asymmetric. (C) Transitions between single-trait phenotypes

(i.e., phenotypes whose organisms have only one single trait) as well as merely viable organisms (labeled as

no-trait). Nodes represent phenotypes (arranged in order of increasing complexity from left to right) and

arrows depict transition probabilities. Node size is scaled to the logarithm of phenotypic robustness (i.e., the

fraction of 1-mutant neighbors without altered phenotype). Transitions from phenotype i to phenotype j, where

j is more (less) complex than i are depicted by green (red) arrows. The thickness of an arrow between two

nodes is proportional to the transition probability between the phenotypes represented by that pair of nodes.

(Green arrows are drawn 10 times thicker than red ones for visualization purposes.). The figure illustrates that

(i) it is generally harder for a simple phenotype i to reach a more complex phenotype j than vice versa; (ii) the

only way to encounter the most complex single-trait phenotype (EQU) from the least complex one of mere

viability (bottom) requires going through at least two phenotypes of intermediate complexity (e.g., to NOT,

AND, and from there to EQU).

doi:10.1371/journal.pcbi.1005414.g003
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protein folding and self-assembling protein quaternary structure [49]. Indeed, the ratios of the

transition probabilities between pairs of phenotypes provide an estimate of the ratios of the fre-

quencies of each phenotype in genotype space (although this estimate might deviate from the

exact value because of sampling errors).

We also estimated the frequency of the single-trait phenotypes in genotype space relative to

the number of merely viable organisms Nj. That is, Ni ¼
pj!i
pi!j
� Nj, where Nj = 1. It ranges

between 10−3 and 10−11 for the simplest and most complex phenotypes, respectively. We found

a negative relationship between the estimated frequency of each phenotype and its phenotypic

complexity (ρ = −0.889, p = 0.001, n = 9). This result explains the association found between

phenotypic complexity and phenotypic transition probabilities. Specifically, for 90% of pheno-

type pairs i and j, the probability of encountering phenotype i from phenotype j was higher if j
was more complex than i. In other words, it is harder for a simple phenotype i to reach a more

complex phenotype j than vice versa because genotypes with complex phenotypes are less

common than genotypes with simple ones (see Fig 3C). According to the predictions of mod-

els assuming a random distribution of genotypes in genotype space [50], the robustness of sin-

gle-trait phenotypes increases logarithmically with the frequency of the phenotypes estimated

from the ratios of their transition probabilities (R2 = 0.876, n = 9, p< 0.001).

Computational approaches have shown that epistasis is more common between mutations

that fix under purifying selection than among randomly selected mutations [29, 51, 52]. There-

fore, our non-uniform sampling procedure to find genotypes encoding the same phenotype

(directional selection followed by purifying selection) might influence the topology of the

genotype-phenotype map around evolved genotypes. To rule out this possibility, we calculated

the correlation between the proportion of the 1000 neighborhoods of the merely viable organ-

isms (randomly sampled) in which a phenotype appears at least once, and the frequencies of

those phenotypes estimated from the ratio of the transition probabilities for our evolved geno-

types. We found a positive and statistically significant relationship between the two estimates

of the size of the genotype space occupied by a given phenotype (ρ = 0.985, n = 13, p< 0.001).

This suggests that the topology of the genotype space around evolved genotypes might not be

different from that around randomly sampled ones (at least for the single-trait phenotypes).

We next studied the evolvability of individual genotypes with phenotype i, which we define

as the number of distinct phenotypes j 6¼ i that can be reached by a single point mutation from

genotypes with phenotype i. This genotypic evolvability increases with phenotypic complexity

(ρ = 0.833, n = 511, p< 0.001). This association might be a simple consequence of the fact that

it is easier to lose abilities (functional traits) than to gain them by random mutation. To

exclude such degenerative mutations, we repeated this analysis with a constrained definition

of evolvability including only those phenotypes j as novel that can compute at least one addi-

tional logic function compared to i. Because the number of phenotypes with novel traits j 6¼ i
decreases as the complexity of phenotype i increases, we divided the evolvability of phenotype

i by the total number of phenotypes with novel traits j 6¼ i. Even with this much more conser-

vative notion of evolvability, genotypes with more complex phenotypes were more evolvable

(ρ = 0.832, n = 510, p< 0.001).

The preceding analysis did not take into account that different phenotypes differ in the size

of their genotype network. That is, we analyzed the same number of genotypes for each pheno-

type, regardless of the fraction of genotype space occupied by each phenotype. This approach

can be biased because genotype network size can affect the total number of novel phenotypes

that are reachable by one mutation from any genotype with a given phenotype [53]. We refer

to this number also as the evolvability of a phenotype, as opposed to that of a genotype. In

other words, rare phenotypes were sampled more intensively than common ones. To estimate

The genotype-phenotype map of an evolving digital organism
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this phenotypic evolvability, we multiplied the genotypic evolvability from the preceding para-

graph by the frequency of the corresponding phenotype in genotype space, which adjusts for

genotype network size assuming that the number of phenotypes found scales linearly with the

number of genotypes sampled. Fig 4 shows that evolvability increases with robustness for the

13 phenotypes for which we have frequency data (ρ = 0.754, n = 13, p = 0.003). In addition,

more complex phenotypes (larger circles) are less evolvable (ρ = −0.701, n = 13, p = 0.008),

most likely because they occupy a smaller subset of genotype space.

Discussion

Our analysis of the genotype-phenotype map in the artificial life system Avida (see Fig 5)

revealed that the number of genotypes forming a phenotype differs greatly among phenotypes.

The more complex the logic operations are that a phenotype performs, the fewer genotypes

form this phenotype. Genotypes with any one phenotype tend to form one or more networks

whose members are likely connected to one another by series of small genotypic changes that

leave the phenotype unchanged, and thus help explore different regions of genotype space.

The larger any one such network is, the greater is the number of novel phenotypes that can be

reached through single point mutations from its members. We also find that the accessibility

of novel phenotypes is highly asymmetric: it is much harder to evolve more complex pheno-

types than simpler ones through single point mutations.

Fig 4. Phenotypic evolvability increases with phenotypic robustness. We computed the robustness of

phenotype i as the fraction of 1-mutant neighbors with the same phenotype as i, averaged over the 1000

genotypes with phenotype i. We computed the evolvability of phenotype i as the fraction of the phenotype

space that occur in the 1-mutant neighborhood of 1000 genotypes with phenotype i, multiplied by the

frequency of phenotype i. Only those phenotypes where we have frequency data are considered in this figure.

Text labels indicate the logic functions that define each phenotype. The diameter of the circles is proportional

to phenotypic complexity.

doi:10.1371/journal.pcbi.1005414.g004
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One of the obvious parallels between biological systems and Avida is that our digital organ-

isms are to some extent robust to genotypic changes, i.e., to “point mutations” in their instruc-

tion sequence. It is this robustness that might give rise to large phenotype-preserving genotype

networks [54, 55]. In natural systems, most robustness to mutations is a consequence of the

fact that organisms must persist in multiple different environments [55]. In an artificial system

like Avida, robustness can be achieved in simple ways, by providing a genome with more

instructions than needed, as we did. The resulting excessive genomic size allows more flexibil-

ity in tinkering with instructions while preserving a phenotype, which facilitates the origin of

novel phenotypes near these genotypes. Observations like this provide guiding principles to

design evolvable artificial systems.

The genotype networks we examined are not all connected, and may consist of multiple dif-

ferent components. However, this fragmentation is most pronounced when we require the

strict preservation of phenotypes in the random walks that aim to connect different organisms

with the same phenotype. During some steps of these random walks, genotypes fortuitously

acquire novel computational abilities that they do not require, and if we do not allow such

“innovative” steps, some genotype networks are disconnected. If, however, we admit such

steps, the chances for all phenotypes we examined to be connected in a single genotype

Fig 5. Cartoon summarizing the architecture of the genotype-phenotype map. This subset of a hypothetical genotype space shows 18 genotypes

(large circles). The genotype of each organism is represented by a circular set of 20 instructions (small letters inside small yellow circles). Two genotypes

are connected by a black line if they differ in a single instruction (white letters inside small black circles). Only the 1-mutant neighbors that are relevant for

characterizing the genotype-phenotype map are drawn. The size of the circle representing an organism’ genotype is proportional to the organism’s

robustness to mutations (i.e., to single instruction changes). Phenotypic complexity of each genotype is indicated by gray shading that ranges from white

(least complex) to black (most complex). Genotypes with the same phenotype are represented by the same shading. The number of novel phenotypes

encoded by the 1-mutant neighbors of each genotype is indicated inside the large circles. The cartoon illustrates several of our main observations. First,

the most robust phenotype (largest circles) is the most abundant, and its genotypes likely form a single genotype network (i.e., all pairs of such genotypes

can be connected in genotype space through a series of point mutations that leave the phenotype intact). Second, the more complex the phenotype of an

organism is (the darker the shading) the larger is its genotypic evolvability (i.e., the number of its 1-mutant neighbors with novel phenotypes), and the

smaller its robustness (i.e., the number of its 1-mutant neighbors with the same phenotype). Third, organisms with the least complex phenotype (white

circles) can only access the most complex phenotypes (e.g., black circles) through phenotypes of intermediate complexity (gray circles).

doi:10.1371/journal.pcbi.1005414.g005
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network increases. We view such non-adaptive novel traits, which also exist in metabolic sys-

tems [56], as analogous to potential exaptations [44]. They are not adaptive, but could become

adaptive in the right environment. Moreover, they can help bridge gaps between disconnected

genotype networks, and thus make more genotypes accessible by populations subject to phe-

notype-preserving point mutation. This additional connectivity, in turn, makes more novel

phenotypes accessible that reside near these genotypes.

The asymmetric phenotypic transitions we observe, where the likelihood of reaching phe-

notype i from phenotype j through a single point mutation is not equal to the converse proba-

bility, also have parallels in natural systems. For example, such asymmetries have been

observed in phenotypic transitions between different RNA secondary structures [46, 47, 57].

They also occur in anisotropic morphospaces of paleobiology [58], where a clade’s propensity

to vary depends on the direction of phenotypic change. In our study system, asymmetric phe-

notypic transitions result from the vastly different number of genotypes that encode each phe-

notype. Some phenotypes, regardless of their adaptive value, are more likely to be “discovered”

by evolving populations than others. Because such differences in phenotypic rarity are perva-

sive in other systems [8, 42, 53, 54, 59, 60], asymmetric transitions are likely to be a universal

characteristic of phenotypic evolution. Regardless of their causes, they have practical conse-

quences. For example, they can lead to spurious incidences of convergent evolution, and they

can mislead reconstructions of ancestral phenotypes [61].

To our knowledge, the relationship we found between phenotypic complexity and evolva-

bility has not been reported for any natural system. These relationships exist on two levels of

organization. The first is that of individual genotypes with a specific phenotype. Mutations are

more likely to create novel phenotypes in digital organisms with complex phenotypes. It is not

difficult to see why, and we fully expect similar causes to be at work in natural systems. Pheno-

types emerge from the coordinated execution of “genetic building blocks”, which are analo-

gous to developmental processes guided by regulatory programs in biology. These building

blocks can be modified to perform different logic operations. Evolving genomes can “discover”

complex phenotypes only by combining the genetic building blocks of preexisting, simpler

phenotypes [62]. The genome of organisms with complex phenotypes is expected to harbor

more such building blocks, which can be altered and combined in more ways than in organ-

isms with simpler phenotypes.

The second level of organization is that of the entire genotype space. Here, we observe that

complex phenotypes are more rare, that is, they are encoded by fewer genotypes. (The larger

minimal genomes required for such phenotypes are consistent with this observation, because

they constrain genotypic evolution to a smaller region of genotype space). The main conse-

quence of the rarity of complex phenotypes is that the total number of novel phenotypes from

any of these genotypes—phenotypic evolvability—is lower.

Both levels of organization can help explain the relationship of asymmetric transitions to

phenotypic complexity, i.e., single mutations from any one phenotype are more likely to yield

a simple phenotype than a complex one, and the most complex phenotypes can be reached

only through multiple steps. From the individual, mechanistic perspective, mutations are

more likely to lead to a loss than a gain of a function in a genetic building block required for a

phenotype. They are thus more likely to create a simpler phenotype (or an inviable organism),

than a complex phenotype. This asymmetry is also at the core of why the most complex pheno-

types must be built in multiple small steps. From the collective, genotype space perspective,

mutations are simply less likely to “hit” the smaller target of a complex phenotype with a small

genotype network.

We expect that natural systems, which display dramatic differences in the number of geno-

types that form specific phenotypes [8, 42, 53, 54, 59, 60] would show a similar relationship

The genotype-phenotype map of an evolving digital organism
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between complexity and evolvability. If so, two predictions follow. First, mutations in an evolv-

ing population whose members have a complex phenotype are more likely to create novel phe-

notypes. Second, on long evolutionary time scales, these phenotypes may be less diverse than

for organisms with a simpler phenotype.

Our results also have implications for the development of genetic languages in artificial life

[63]. Not only can Avida organisms display robustness to mutations, Avida’s genetic language

is itself robust to several modifications of the instruction set [64]. Only few modifications, such

as the separation of the input and output instruction can alter an organism’s ability to perform

logic operations. Future studies may systematically compare different genotype-phenotype

maps, and identify those that are most evolvable. Their insights may also guide synthetic biolo-

gists in designing genetically engineered devices primed for evolutionary innovation [65].

Methods

The genotype of a digital organism

The genome of a digital organism is a circular sequence of instructions taken from a

26-instruction alphabet [33]. It comprises instructions for copying, as well as for completing

computational operations (such as additions, subtractions, and bit-shifts), which are executed

on binary numbers taken from the environment. The default environment provides the organ-

ism with new, random input strings every time an input-output instruction is executed. The

genome of a digital organism can harbor one or several input-output instructions that can be

executed either only once or many times during the time it takes to generate an offspring. This

means that the organism can take input numbers from the environment more than once

before replicating and can compute the result of more than one logic operation (see below).

Only one instruction from the instruction set is itself a logic operator. This is the nand (not-

and) instruction, which must be executed in coordination with input-output instructions to

perform the NAND logic operation. The nand instruction reads in the contents of the BX and

CX registers and performs a bitwise NAND operation on them (i.e., it returns 0 if and only if

both inputs at the corresponding bit positions are 1, otherwise it returns 1). The result of this

operation is placed in the BX register. The IO (input-output) instruction takes the contents of

the BX register and outputs it, checking it for any logic operations that may have been per-

formed. It will then place a new input into BX (see S1 Appendix). All other logic operations

must be performed using one or more nand instructions in combination with input-output

instructions [33]. Since previous work has shown that organisms with a genome of 83 instruc-

tions are able to perform the most complex logic operation we consider here [66], we decided

to focus on genomes with L = 100 instructions—a genome size large enough to permit explora-

tion of all phenotypes, but at the same time small enough to be computationally tractable.

The phenotype of a digital organism

Phenotypes are defined by the combination of the following 9 Boolean logic operations that

organisms can perform on 32-bit one- and two-input numbers: NOT, which returns 1 at a bit

position if the input is 0 at that bit position, and 0 if the input is 1; NAND, which returns 0 if

and only if both inputs at the corresponding bit positions are 1 (otherwise it returns 1); AND,

which returns 1 if and only if both inputs are 1 (otherwise it returns 0); OR_N (or-not), which

returns 1 if for each input bit pair one input bit is 1 or the other is 0 (otherwise it returns 0);

OR, which returns 1 if either the first input, the second input, or both are 1 (otherwise it

returns 0); AND_N (and-not), which only returns 1 if for each bit pair one input is 1 and the

other input is 0 (otherwise it returns 0); NOR (not-or), which returns 1 only if both inputs are

0 (otherwise it returns 0); XOR (exclusive or), which returns 1 if one but not both of the inputs

The genotype-phenotype map of an evolving digital organism
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are 1 (otherwise it returns 0); EQU (equals), which returns 1 if both bits are identical, and 0 if

they are different [33]. This logic operations are listed above in order, from least complex to

most complex. Here, we define complexity as the minimum number of times that a nand
instruction—the one required to compute all other logic operations—must be executed for

completing a specific logic operation. Specifically, their complexities are 1 (NOT), 1 (NAND),

2 (AND), 2 (ORN), 3 (OR), 3 (ANDN), 4(NOR), 4 (XOR), and 5 (EQU) [33]. We used a test

environment provided by Avida to compute the phenotype of each digital organism’s geno-

type. In such a test environment each organism executes its instructions in isolation until it

produces a viable offspring or until a timeout is reached, whichever comes first. We note that

it is impossible to determine with certainty whether an organism is able to produce a viable off-

spring (i.e., its viability), because the number of instructions executed before replicating might

be extremely large, for example because they might involve loops. We therefore limit how long

an organism remains in the test environment before assuming that it is not going to replicate.

Specifically, we set this limit to 20 × L because we found no additional viable organism when a

sample of 107 randomly generated genomes was left in the test environment twice as long as

our limit. That is, we kept each organism in the test environment until it had executed 2000

instructions. For the purpose of determining an organism’s phenotype, we allowed no muta-

tions, such that the offspring is an exact copy of its parent. We recorded the logic operations

performed by the organism in the test environment, thus assigning a unique phenotype to

each genotype. Note that we have also explored to what extent a variable environment may

elicit additional phenotypes for the same genotype (S6 Fig).

Sequence motifs

Instruction sequences representing the genomes of digital organisms might contain similar

regions (instruction sequence motifs) that reflect similar ways of achieving specific phenotypes

and/or self-reproduction. To find out whether such regions exist, we have applied the GLAM2

algorithm [67, 68] for discovering both gapless and gapped motifs from the instruction

sequences constituting the genomes of our sampled digital organisms. We searched for over-

represented gapped motifs because digital organisms may execute jump instructions that

move the execution flow from one region of the genome to another. Although searching for

gapped motifs might miss jumps, it would be less appropriate to search for gapless motifs in

Avida. One of the advantages of GLAM2 is that it operates on sequences over arbitrary, user-

defined alphabets. GLAM2 defines a scoring scheme for local alignments of multiple sequences

and finds the alignment with the maximum score using simulating annealing. Since GLAM2 is

a heuristic algorithm, we ran it 100 times to verify that it finds a reproducible, highly-scoring

motif (we used the default settings, except very large values for the following parameters to

turn off deletions and insertions completely: -E 1e99 -J 1e99). GLAM2 provides the statistical

significance of an alignment by comparing its score with that obtained after a random reshuffl-

ing of the instructions along the sequences.

Sampling genotype space

To sample genotype space, we first aimed to generate 1000 viable organisms. To this end we

first generated random genomes with 100 instructions, where we chose each instruction in a

genome randomly and uniformly among the 26 possible instructions, and examined each

genome for viability. After having generated 1.5 × 109 genomes in this way, we had found 1000

viable genomes. None of them were able to perform any logic operation. Next, we evolved

1000 populations of organisms in the standard mode of Avida, where we initialized each of the

populations with one of the 1000 previously sampled organisms. We configured the standard
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mode of Avida to follow a Moran process, where every time an organism produces a viable off-

spring, the offspring replaces one organism randomly chosen from a population of 104 organ-

isms. In our simulations, each offspring differed from its parent by a single point mutation,

i.e., one randomly chosen instruction in its genome was replaced with a instruction randomly

chosen from the instruction set. In addition, we rewarded the ability of an organism to per-

form any of the 9 logic operations defining a phenotype with an extra amount of virtual CPU-

cycles that sped up its replication process. This procedure introduced a selective pressure that

favored organisms with genomes where mutations had produced sequences of instructions

that compute one or more logic operations (the more the better). We let each population

evolve for 106 updates, where an update is the amount of time during which an organism exe-

cutes on average 30 instructions. Every 1000 updates we recorded, for every distinct phenotype

encountered in the population at that time, the genotype of one randomly chosen organism

with that phenotype. After 106 updates, the number of distinct phenotypes encountered in

each evolving population reached an asymptote. Then, we stopped the evolution process and

kept only one genotype per phenotype and population, chosen at random from those previ-

ously recorded during the process. These 1000 evolving populations were enough to find at

least one genotype that mapped to each one of the 512 phenotypes comprising the whole phe-

notype space. This number of 512 phenotypes includes the phenotype of the ancestors (i.e.,

merely viable organisms). In order to obtain a fixed number of 1000 independently sampled

genotypes for each phenotype, we then performed 1000 random walks through the genotype

space for each phenotype. These random walks started from the organisms (genotypes) with a

given phenotype that had been found by our evolving populations. Some genotypes were used

more than once because for some phenotypes fewer than 1000 genotypes with that phenotype

had been found. We performed these random walks in the test environment. Each step in each

random walk mutated two randomly chosen instructions in the random-walking genotype,

and replaced them with two randomly chosen instructions from the 26-instruction alphabet.

Whenever such mutations produced a non-viable organism or an organism whose phenotype

had changed, we reverted the mutations and mutated two new, randomly chosen instructions,

repeating this procedure until a viable organism with an unchanged phenotype appeared. We

repeated this procedure for 1000 steps, that is, until a chain of 1000 viable organisms with the

same phenotype as the starting genotype had been discovered, and kept the last genotype in

the chain for further analysis. In sum, this procedure helped us create 1000 randomly sampled

viable organisms for each phenotype (data are provided as S1 File).

Searching for genotype networks

We wished to estimate to what extent organisms with the same phenotype are connected in a

single network of genotypes (a graph whose nodes are genotypes with the same phenotype and

where two nodes are connected if they differ by a single instruction). To this end, we started

from 100 pairs of organisms with identical phenotypes produced through the random walks

described above. For each such pair, we performed a random walk through genotype space, in

which we changed one member of the pair through a series of single point mutations, where

each mutation was required to preserve both viability and phenotype. In addition, no mutation

was allowed to increase the genotype distance to the second member, which was measured as

the number of positions at which the genomes of both organisms differed, i.e., their Hamming

distance. The goal of each random walk was to find a path through genotype space that would

approach and eventually reach the other member of the pair of genotypes, while preserving the

phenotype. Note that our algorithm does not take into account that finding connections

among genotypes encoding the same phenotype might require reversals of mutations. After
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104 steps, that is, until a chain of 104 viable organisms with the same phenotype as the initial

genotype had been discovered, we counted the number of instruction matches in the genome

of the random walker and the other member of the initial genotype pair. We repeated this pro-

cedure 10 times for each of the 100 pairs of organisms with a given phenotype. Finally, we

recorded the smallest distance value from these 10 × 100 = 1000 replicates as the minimum

genotype distance between the organisms with the same starting phenotype. This process is

computationally time-consuming and we performed it only for the single-trait phenotypes

(i.e., those corresponding to a single logic function). In addition, we repeated the entire pro-

cess by relaxing the criterion of exact phenotype preservation during a random walk. Specifi-

cally, in this kind of random walk, the random walkers had to preserve viability and all the

logic operations they were able to perform at the beginning of the random walk, but if they

acquired the ability to perform additional logic operations during any one step (but not any

fewer), we considered that step acceptable.

Phenotypic transitions

To estimate how likely it is that single point mutations cause transitions between two pheno-

types i and j, we first computed, for each of the 1000 randomly sampled organisms with a

given phenotype i, all of its L × (A-1) = 2500 single point mutation neighbors. We then deter-

mined for all of the resulting 1000 × 2500 neighbors the fraction of neighbors that were viable

and had phenotype j. We considered this fraction as an estimate of the likelihood that a single

point mutation can produce a genotype with phenotype j from a genotype with phenotype i
(i.e., the transition probability pi!j). We denote the fraction of non-viable neighbors of the

1000 genotypes with phenotype i as pi!0. We note that transition probabilities smaller than

2.5 × 10−6 would be equal to zero. We repeated this procedure for all pairs of phenotypes i and

j, and note that transition probabilities need not be symmetric, that is, it may be easier or

harder to reach phenotype j from phenotype i than vice versa.

The asymmetries in transition probabilities are just a consequence of the fact that different

phenotypes have different numbers of genotypes that code for them. That is, if a forward muta-

tion produces phenotype i from phenotype j, then the back mutation produces phenotype j
from phenotype i. Denote as Ni and Nj the number of genotypes with phenotype i and j,
respectively, as nij and nji the number of mutations from phenotype i to phenotype j and from j
to i, respectively, and as A the size of the alphabet. Then for sequences of length L = 100, pi!j ¼

nij
ð100ðA� 1ÞNi

and pj!i ¼
nji

ð100ðA� 1ÞNj
. Since nij = nji,

pi!j
pj!i
¼

Nj
Ni

. This result requires no mathematical

approximations and does not depend on any assumptions about the topology of the genotype-

phenotype map.

Since novel phenotypes arise in evolving populations, we computed the likelihood of reach-

ing phenotype j from phenotype i in such populations, to test whether the corresponding entry

of the transition probability matrix reflect this likelihood (S7 Fig).

Supporting information

S1 Fig. Genotypes with different phenotypes occupy different fractions of genotype space.

(PDF)

S2 Fig. Sampling phenotype space.

(PDF)

S3 Fig. Sequence logo.

(PDF)

The genotype-phenotype map of an evolving digital organism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005414 February 27, 2017 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s003


S4 Fig. Genotype space characterization.

(PDF)

S5 Fig. Minimum genome length depends on phenotypic complexity.

(PDF)

S6 Fig. Phenotypic plasticity varies among phenotypes.

(PDF)

S7 Fig. Phenotypic transitions probabilities calculated from random sampling and from

evolving populations are highly correlated.

(PDF)

S1 File. Data set. The phenotypes of 1000 × 512 randomly sampled genotypes comprising the

whole phenotype space (512 distinct phenotypes for the 9 Boolean operations considered in

this study).

(BZ2)

S2 File. Configuration files. Avida configuration files and bash scripts used to generate the

data set.

(ZIP)

S1 Appendix. Self-replication and genotype-phenotype mapping of a digital organism.

(PDF)

Acknowledgments

We thank Jordi Bascompte for providing feedback on a previous version of the manuscript,

and Raúl Ortega for computing assistance.

Author Contributions

Conceived and designed the experiments: MAF AW.

Performed the experiments: MAF.

Analyzed the data: MAF AW.

Contributed reagents/materials/analysis tools: LZ CO.

Wrote the paper: MAF AW.

References
1. Arthur W. Biased embryos and evolution. Cambridge University Press.; 2004. doi: 10.1017/

CBO9780511606830

2. Alberch P. Ontogenesis and morphological diversification. Amer Zool. 1980; 20:653–667. doi: 10.1093/

icb/20.4.653

3. Alberch P. The logic of monsters: evidence for internal constraint in development and evolution. Geo-

bios. 1989; 12:21–57. doi: 10.1016/S0016-6995(89)80006-3

4. Mayr E. Animal species and evolution. Harvard University Press.; 1963. doi: 10.4159/harvard.

9780674865327

5. Salazar-Ciudad I, Marı́n-Riera M. Adaptive dynamics under development-based genotype-phenotype

maps. Nature. 2013; 497:361–365. doi: 10.1038/nature12142 PMID: 23636325

6. Alberch P. From genes to phenotype: dynamical systems and evolvability. Genetica. 1991; 84:5–11.

doi: 10.1007/BF00123979 PMID: 1874440

The genotype-phenotype map of an evolving digital organism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005414 February 27, 2017 17 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005414.s010
http://dx.doi.org/10.1017/CBO9780511606830
http://dx.doi.org/10.1017/CBO9780511606830
http://dx.doi.org/10.1093/icb/20.4.653
http://dx.doi.org/10.1093/icb/20.4.653
http://dx.doi.org/10.1016/S0016-6995(89)80006-3
http://dx.doi.org/10.4159/harvard.9780674865327
http://dx.doi.org/10.4159/harvard.9780674865327
http://dx.doi.org/10.1038/nature12142
http://www.ncbi.nlm.nih.gov/pubmed/23636325
http://dx.doi.org/10.1007/BF00123979
http://www.ncbi.nlm.nih.gov/pubmed/1874440


7. Lipman DJ, Wilbur WJ. Modelling neutral and selective evolution of protein folding. Proc R Soc B. 1991;

245:7–11. doi: 10.1098/rspb.1991.0081 PMID: 1682931

8. Schuster P, Fontana W, Stadler PF, Hofacker IL. From sequences to shapes and back: a case study in

RNA secundary structures. Proc R Soc B. 1994; 255:279–284. doi: 10.1098/rspb.1994.0040 PMID:

7517565

9. Huynen MA. Exploring phenotype space through neutral evolution. J Mol Evol. 1996; 43:165–169. doi:

10.1007/BF02338823 PMID: 8703081

10. Weinreich DM, Delaney NF, DePristo MA, Hartl DL. Darwinian evolution can follow only very few muta-

tional paths to fitter proteins. Science. 2006; 312:111–114. doi: 10.1126/science.1123539 PMID:

16601193

11. Hietpas RT, Jensen JD, Bolon DNA. Experimental illumination of a fitness landscape. PNAS. 2011;

108:7896–7901. doi: 10.1073/pnas.1016024108 PMID: 21464309

12. Szendro IG, Schenk MF, Franke J, Krug J, de Visser JAGM. Quantitative analyses of empirical fitness

landscapes. J Stat Mech. 2013:P01005. doi: 10.1088/1742-5468/2013/01/P01005

13. Matias Rodrigues JF, Wagner A. Evolutionary plasticity and innovations in complex metabolic reaction

networks. PLoS Comput Biol. 2009; 5:e1000613. doi: 10.1371/journal.pcbi.1000613 PMID: 20019795

14. Samal A, Matias Rodrigues JF, Jost J, Martin OC, Wagner A. Genotype networks in metabolic reaction

spaces. BMC Systems Biology. 2010; 4:30. doi: 10.1186/1752-0509-4-30 PMID: 20302636

15. Guet CC, Elowitz MB, Hsing W, Leibler S. Combinatorial synthesis of genetic networks. Science. 2002;

5572:1466–1470. doi: 10.1126/science.1067407 PMID: 12029133

16. Ciliberti S, Martin OC, Wagner A. Innovation and robustness in complex regulatory gene networks.

PNAS. 2007; 104:13591–13596. doi: 10.1073/pnas.0705396104 PMID: 17690244

17. Schaerli Y, Munteanu A, Gili M, Cotterell J, Sharpe J, Isalan M. A unified design space of synthetic

stripe-forming networks. Nature Comm. 2014; 5:4905. doi: 10.1038/ncomms5905 PMID: 25247316

18. van Nimwegen E, Crutchfield JP, Huynen M. Neutral evolution of mutational robustness. PNAS. 1999;

96:9716–97. doi: 10.1073/pnas.96.17.9716 PMID: 10449760

19. Kitano H. Biological robustness. Nat Rev Genet. 2004; 5:826–837. doi: 10.1038/nrg1471 PMID:

15520792

20. Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J. Robustness of cellular functions. Cell. 2004;

118:675–685. doi: 10.1016/j.cell.2004.09.008 PMID: 15369668

21. Masel J, Trotter MV. Robustness and evolvability. Trends Genet. 2010; 26:406–414. doi: 10.1016/j.tig.

2010.06.002 PMID: 20598394

22. Maynard-Smith J. Natural selection and the concept of a protein space. Nature. 1970; 225:563–564.

doi: 10.1038/225563a0 PMID: 5411867

23. Cowperthwaite MC, Meyers LA. How mutational networks shape evolution: lessons from RNA models.

Ann. Rev. Ecol. Evol. Syst. 2007; 38:203–230. doi: 10.1146/annurev.ecolsys.38.091206.095507

24. Hayden E, Ferrada E, Wagner A. Cryptic genetic variation promotes rapid evolutionary adaptation in an

RNA enzyme. Nature. 2011; 474:92–95. doi: 10.1038/nature10083 PMID: 21637259

25. Paaby AB, Rockman MV. Cryptic genetic variation: evolution’s hidden substrate. Nat Rev Genet. 2014;

15:247–258. doi: 10.1038/nrg3688 PMID: 24614309

26. Payne JL, Wagner A. The robustness and evolvability of transcription factor binding sites. Science.

2014; 343:875–877. doi: 10.1126/science.1249046 PMID: 24558158

27. Wagner A. Neutralism and selectionism: a network-based reconciliation. Nature Rev Genet. 2008;

9:965–974. doi: 10.1038/nrg2473 PMID: 18957969

28. Draghi JA, Parsons TL, Wagner GP, Plotkin JB. Mutational robustness can facilitate adaptation. Nature.

2010; 463:353–355. doi: 10.1038/nature08694 PMID: 20090752

29. Draghi JA, Plotkin JB. Selection biases the prevalence and type of epistasis along adaptive trajectories.

Evolution. 2013; 67:3120–3131. doi: 10.1111/evo.12192 PMID: 24151997

30. Rasmussen S, Knudsen C, Feldberg R, Hindsholm M. The coreworld: emergence and evolution of

cooperative structures in a computational chemistry. Physica D. 1990; 75:1–3. doi: 10.1016/0167-2789

(90)90070-6

31. Ray TS. An approach to the synthesis of life. In: Langton C, Taylor C, Farmer JD, Rasmussen S, edi-

tors. Proceedings of Artificial Life II. Addison-Wesley. Redwood City.; 1991. pp.371–408.

32. Adami C. Introduction to artificial life. Springer-Verlag, New York.; 1998. doi: 10.1007/978-1-4612-

1650-6

33. Ofria C, Wilke CO. Avida: a software platform for research in computational evolutionary biology. Artifi-

cial Life. 2004; 10:191–229. doi: 10.1162/106454604773563612 PMID: 15107231

The genotype-phenotype map of an evolving digital organism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005414 February 27, 2017 18 / 20

http://dx.doi.org/10.1098/rspb.1991.0081
http://www.ncbi.nlm.nih.gov/pubmed/1682931
http://dx.doi.org/10.1098/rspb.1994.0040
http://www.ncbi.nlm.nih.gov/pubmed/7517565
http://dx.doi.org/10.1007/BF02338823
http://www.ncbi.nlm.nih.gov/pubmed/8703081
http://dx.doi.org/10.1126/science.1123539
http://www.ncbi.nlm.nih.gov/pubmed/16601193
http://dx.doi.org/10.1073/pnas.1016024108
http://www.ncbi.nlm.nih.gov/pubmed/21464309
http://dx.doi.org/10.1088/1742-5468/2013/01/P01005
http://dx.doi.org/10.1371/journal.pcbi.1000613
http://www.ncbi.nlm.nih.gov/pubmed/20019795
http://dx.doi.org/10.1186/1752-0509-4-30
http://www.ncbi.nlm.nih.gov/pubmed/20302636
http://dx.doi.org/10.1126/science.1067407
http://www.ncbi.nlm.nih.gov/pubmed/12029133
http://dx.doi.org/10.1073/pnas.0705396104
http://www.ncbi.nlm.nih.gov/pubmed/17690244
http://dx.doi.org/10.1038/ncomms5905
http://www.ncbi.nlm.nih.gov/pubmed/25247316
http://dx.doi.org/10.1073/pnas.96.17.9716
http://www.ncbi.nlm.nih.gov/pubmed/10449760
http://dx.doi.org/10.1038/nrg1471
http://www.ncbi.nlm.nih.gov/pubmed/15520792
http://dx.doi.org/10.1016/j.cell.2004.09.008
http://www.ncbi.nlm.nih.gov/pubmed/15369668
http://dx.doi.org/10.1016/j.tig.2010.06.002
http://dx.doi.org/10.1016/j.tig.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20598394
http://dx.doi.org/10.1038/225563a0
http://www.ncbi.nlm.nih.gov/pubmed/5411867
http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095507
http://dx.doi.org/10.1038/nature10083
http://www.ncbi.nlm.nih.gov/pubmed/21637259
http://dx.doi.org/10.1038/nrg3688
http://www.ncbi.nlm.nih.gov/pubmed/24614309
http://dx.doi.org/10.1126/science.1249046
http://www.ncbi.nlm.nih.gov/pubmed/24558158
http://dx.doi.org/10.1038/nrg2473
http://www.ncbi.nlm.nih.gov/pubmed/18957969
http://dx.doi.org/10.1038/nature08694
http://www.ncbi.nlm.nih.gov/pubmed/20090752
http://dx.doi.org/10.1111/evo.12192
http://www.ncbi.nlm.nih.gov/pubmed/24151997
http://dx.doi.org/10.1016/0167-2789(90)90070-6
http://dx.doi.org/10.1016/0167-2789(90)90070-6
http://dx.doi.org/10.1007/978-1-4612-1650-6
http://dx.doi.org/10.1007/978-1-4612-1650-6
http://dx.doi.org/10.1162/106454604773563612
http://www.ncbi.nlm.nih.gov/pubmed/15107231


34. Knibbe C, Mazet O, Chaudrier F, Fayard JM, Beslon G. Evolutionary coupling between the deleterious-

ness of gene mutations and the amount of non-coding sequences. J Theor Biol. 2007; 244:621–630.

doi: 10.1016/j.jtbi.2006.09.005 PMID: 17055537

35. Hindre T, Knibbe C, Beslon G, Schneider D. New insights into bacterial adaptation through in vivo and

in silico experimental evolution. Nat Rev Microbiol. 2012; 10:352–365. doi: 10.1038/nrmicro2750 PMID:

22450379

36. Arias CF, Catalán P, Manrubia S, Cuesta JA. ToyLIFE: a computational framework to study the multi-

level organisation of the genotype-phenotype map. Scientific Reports. 2014; 4:7549. doi: 10.1038/

srep07549 PMID: 25520296

37. Wang L, Brock A, Herberich B, Schultz PG. Expanding the genetic code of Escherichia coli. Science.

2001; 292:498–500. doi: 10.1126/science.1060077 PMID: 11313494

38. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG. An expanded eukariotic genetic

code. Science. 2003; 301:964–967. doi: 10.1126/science.1084772 PMID: 12920298

39. Hino N, Hayashi A, Sakamoto K, Yokoyama S. Site-specific incorporation of non-natural amino acids

into proteins in mammalian cells with an expanded genetic code. Nat Protoc. 2006; 1:2957–2962. doi:

10.1038/nprot.2006.424 PMID: 17406555

40. Bacher JM, Ellington AD. Global incorporation of unnatural amino acids in Escherichia coli. Methods

Mol Biol. 2007; 352:23–34. doi: 10.1385/1-59745-187-8:23 PMID: 17041257

41. Liu CC, Schultz PG. Adding new chemistries to the genetic code. Annu Rev Biochem. 2010; 79:413–

444. doi: 10.1146/annurev.biochem.052308.105824 PMID: 20307192

42. Hosseini S-R, Barve A, Wagner A. Exhaustive analysis of a genotype space comprising 1015 central

carbon metabolisms reveals an organization conducive to metabolic innovation. PLoS Comput Biol.

2015; 11:e1004329. doi: 10.1371/journal.pcbi.1004329 PMID: 26252881

43. Adami C. Digital genetics: unravelling the genetic basis of evolution. Nat Rev Genet. 2006; 7:109–118.

doi: 10.1038/nrg1771 PMID: 16418746

44. Gould SJ, Vrba ES. Exaptation—a missing term in the science of form. Paleobiology. 1982; 8:4–15. doi:

10.1017/S0094837300004310

45. Lenski RE, Ofria C, Pennock RT, Adami C. (2003) The evolutionary origin of complex features. Nature

423, 139–144. doi: 10.1038/nature01568 PMID: 12736677

46. Fontana W, Schuster P. Shaping space: the possible and the attainable in RNA genoytpe-phenotype

mapping. J. Theor. Biol. 1998; 194:491–515. doi: 10.1006/jtbi.1998.0771 PMID: 9790826

47. Stadler BMR, Stadler PF, Wagner GP, Fontana W. The topology of the possible: formal spaces underly-

ing patterns of evolutionary change. J Theor Biol. 2001; 213:241–274. doi: 10.1006/jtbi.2001.2423

PMID: 11894994

48. Bascompte J, Jordano P, Olesen JM. Asymmetric coevolutionary networks facilitate biodiversity main-

tenance. Science. 2006; 312:431–433. doi: 10.1126/science.1123412 PMID: 16627742

49. Greenbury SF, Shaper S, Ahnert SE, Louis AA. Genetic correlations greatly increase mutational robust-

ness and can both reduce and enhance evolvability. PLos Comput. Biol. 2016; 12:e1004773. doi: 10.

1371/journal.pcbi.1004773 PMID: 26937652

50. Greenbury SF, Ahnert SE. The organization of biological sequences into constrained and uncon-

strained parts determines fundamental properties of genotype-phenotype maps. J. R. Soc. Interface.

2015; 12:20150724. doi: 10.1098/rsif.2015.0724 PMID: 26609063

51. Shah P, McCandlish DM, Plotkin JB. Contingency and entrenchment in protein evolution under pufifying

selection. PNAS. 2015;E3226–E3235. doi: 10.1073/pnas.1412933112 PMID: 26056312

52. Blanquart F, Achaz G, Bataillon T, Tenaillon O. Properties of selected mutations and genotypic land-

scapes under Fisher’s Geometric Model. Evolution. 2014; 68:3537–3554. doi: 10.1111/evo.12545

PMID: 25311558

53. Wagner A. Robustness and evolvability: a paradox resolved. Proc R Soc B. 2008; 275:91–100. doi: 10.

1098/rspb.2007.1137 PMID: 17971325

54. Reidys C, Stadler P, Schuster P. Generic properties of combinatory maps: neutral networks of RNA

secondary structures. Bull Math Biol. 1997; 59:339–397. doi: 10.1007/BF02462007 PMID: 9116604

55. Wagner A. (2011) The origins of evolutionary innovations. Oxford University Press. doi: 10.1093/

acprof:oso/9780199692590.001.0001

56. Barve A, Wagner A. A latent capacity for evolutionary innovation through exaptation in metabolic sys-

tems. Nature. 2013; 500:203–206. doi: 10.1038/nature12301 PMID: 23851393

57. Fontana W, Schuster P. Continuity in evolution: on the nature of transitions. Science. 1998; 280:1451–

1455. doi: 10.1126/science.280.5368.1451 PMID: 9603737

The genotype-phenotype map of an evolving digital organism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005414 February 27, 2017 19 / 20

http://dx.doi.org/10.1016/j.jtbi.2006.09.005
http://www.ncbi.nlm.nih.gov/pubmed/17055537
http://dx.doi.org/10.1038/nrmicro2750
http://www.ncbi.nlm.nih.gov/pubmed/22450379
http://dx.doi.org/10.1038/srep07549
http://dx.doi.org/10.1038/srep07549
http://www.ncbi.nlm.nih.gov/pubmed/25520296
http://dx.doi.org/10.1126/science.1060077
http://www.ncbi.nlm.nih.gov/pubmed/11313494
http://dx.doi.org/10.1126/science.1084772
http://www.ncbi.nlm.nih.gov/pubmed/12920298
http://dx.doi.org/10.1038/nprot.2006.424
http://www.ncbi.nlm.nih.gov/pubmed/17406555
http://dx.doi.org/10.1385/1-59745-187-8:23
http://www.ncbi.nlm.nih.gov/pubmed/17041257
http://dx.doi.org/10.1146/annurev.biochem.052308.105824
http://www.ncbi.nlm.nih.gov/pubmed/20307192
http://dx.doi.org/10.1371/journal.pcbi.1004329
http://www.ncbi.nlm.nih.gov/pubmed/26252881
http://dx.doi.org/10.1038/nrg1771
http://www.ncbi.nlm.nih.gov/pubmed/16418746
http://dx.doi.org/10.1017/S0094837300004310
http://dx.doi.org/10.1038/nature01568
http://www.ncbi.nlm.nih.gov/pubmed/12736677
http://dx.doi.org/10.1006/jtbi.1998.0771
http://www.ncbi.nlm.nih.gov/pubmed/9790826
http://dx.doi.org/10.1006/jtbi.2001.2423
http://www.ncbi.nlm.nih.gov/pubmed/11894994
http://dx.doi.org/10.1126/science.1123412
http://www.ncbi.nlm.nih.gov/pubmed/16627742
http://dx.doi.org/10.1371/journal.pcbi.1004773
http://dx.doi.org/10.1371/journal.pcbi.1004773
http://www.ncbi.nlm.nih.gov/pubmed/26937652
http://dx.doi.org/10.1098/rsif.2015.0724
http://www.ncbi.nlm.nih.gov/pubmed/26609063
http://dx.doi.org/10.1073/pnas.1412933112
http://www.ncbi.nlm.nih.gov/pubmed/26056312
http://dx.doi.org/10.1111/evo.12545
http://www.ncbi.nlm.nih.gov/pubmed/25311558
http://dx.doi.org/10.1098/rspb.2007.1137
http://dx.doi.org/10.1098/rspb.2007.1137
http://www.ncbi.nlm.nih.gov/pubmed/17971325
http://dx.doi.org/10.1007/BF02462007
http://www.ncbi.nlm.nih.gov/pubmed/9116604
http://dx.doi.org/10.1093/acprof:oso/9780199692590.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199692590.001.0001
http://dx.doi.org/10.1038/nature12301
http://www.ncbi.nlm.nih.gov/pubmed/23851393
http://dx.doi.org/10.1126/science.280.5368.1451
http://www.ncbi.nlm.nih.gov/pubmed/9603737


58. Gerber S. Not all roads can be taken: development induces anisotropic accesibility in morphospace.

Evol Dev. 2014; 16:373–381. doi: 10.1111/ede.12098 PMID: 25212955

59. Cowperthwaite M, Economo EP, Harcombe WR, Miller EL, Meyers LA. The ascent of the abundant:

how mutational networks constrain evolution. PLoS Comput Biol. 2008; 4:e1000110. doi: 10.1371/

journal.pcbi.1000110 PMID: 18636097

60. Schaper S, Louis AA. The arrival of the frequent: how bias in genotype-phenotype maps can steer pop-

ulations to local optima. PLoS One. 2014; 9:e86635. doi: 10.1371/journal.pone.0086635 PMID:

24505262

61. Adams DC, Collyer ML. A general framework for the analysis of phenotypic trajectories in evolutionary

studies. Evolution. 2009; 63:1143–1154. doi: 10.1111/j.1558-5646.2009.00649.x PMID: 19210539

62. Ofria C, Huang W, Torng E. On the gradual evolution of complexity and the sudden emergence of com-

plex features. Artificial Life. 2008; 14:255–263. doi: 10.1162/artl.2008.14.3.14302 PMID: 18489251

63. McKinley PK, Cheng BHC, Ofria C, Knoester D, Beckmann B, Goldsby H. Harnessing digital evolution.

Computer. 2008; 41:54–63. doi: 10.1109/MC.2008.17

64. Bryson DM, Ofria C. Understanding evolutionary potential in virtual CPU instruction set architectures.

PLoS One. 2013; 8:e83242. doi: 10.1371/journal.pone.0083242 PMID: 24376669

65. Renda BA, Hammerling J, Barrick JE. Engineering reduced evolutionary potential for synthetic biology.

Mol BioSyst. 2014; 10:1668–1678. doi: 10.1039/c3mb70606k PMID: 24556867

66. Lenski RE, Ofria C, Collier TC, Adami C. Genome complexity, robustness and genetic interactions in

digital organisms. Nature. 1999; 400:661–664. doi: 10.1038/23245 PMID: 10458160

67. Frith MC, Saunders NFW, Kobe B, Bailey TL. Discovering sequence motifs with arbitrary insertions and

deletions. PLoS Comput Biol. 2008; 4:e1000071. doi: 10.1371/journal.pcbi.1000071 PMID: 18437229

68. Frith MC, Hansen U, Spouge JL, Weng Z. Finding functional sequence elements by multiple local align-

ment. Nucleic Acids Res. 2004; 32:189–200. doi: 10.1093/nar/gkh169 PMID: 14704356

The genotype-phenotype map of an evolving digital organism

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005414 February 27, 2017 20 / 20

http://dx.doi.org/10.1111/ede.12098
http://www.ncbi.nlm.nih.gov/pubmed/25212955
http://dx.doi.org/10.1371/journal.pcbi.1000110
http://dx.doi.org/10.1371/journal.pcbi.1000110
http://www.ncbi.nlm.nih.gov/pubmed/18636097
http://dx.doi.org/10.1371/journal.pone.0086635
http://www.ncbi.nlm.nih.gov/pubmed/24505262
http://dx.doi.org/10.1111/j.1558-5646.2009.00649.x
http://www.ncbi.nlm.nih.gov/pubmed/19210539
http://dx.doi.org/10.1162/artl.2008.14.3.14302
http://www.ncbi.nlm.nih.gov/pubmed/18489251
http://dx.doi.org/10.1109/MC.2008.17
http://dx.doi.org/10.1371/journal.pone.0083242
http://www.ncbi.nlm.nih.gov/pubmed/24376669
http://dx.doi.org/10.1039/c3mb70606k
http://www.ncbi.nlm.nih.gov/pubmed/24556867
http://dx.doi.org/10.1038/23245
http://www.ncbi.nlm.nih.gov/pubmed/10458160
http://dx.doi.org/10.1371/journal.pcbi.1000071
http://www.ncbi.nlm.nih.gov/pubmed/18437229
http://dx.doi.org/10.1093/nar/gkh169
http://www.ncbi.nlm.nih.gov/pubmed/14704356

