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ABSTRACT
Aims/Introduction: How to measure insulin resistance (IR) accurately and conveniently
is a critical issue for both clinical practice and research. In the present study, we tried to
modify the b-cell function, insulin sensitivity, and glucose tolerance test (BIGTT) in patients
with normal glucose tolerance (NGT) and abnormal glucose tolerance (AGT) by oral glu-
cose tolerance test (OGTT) and metabolic syndrome (MetS) components.
Materials and Methods: There were 327 participants enrolled and divided into NGT
or AGT. Data from 75% of the participants were used to build the models, and the
remaining 25% were used for external validation. Steady-state plasma glucose (SSPG) con-
centration derived from the insulin suppression test was regarded as the standard mea-
surement for IR. Five models were built from multiple regression: model 1 (MetS model
with sex, age and MetS components); model 2 (simple OGTT model with sex, age, plasma
glucose, and insulin concentrations at 0 and 120 min during OGTT); model 3 (full OGTT
model with sex, age, and plasma glucose and insulin concentrations at 0, 30, 60, 90, 120,
and 180 min during OGTT); model 4 (simple combined model): model 1 and model 2;
and model 5 (full model): model 1 and 3.
Results: In general, our models had higher r2 compared with surrogates derived from
OGTT, such as homeostasis model assessment-insulin resistance and quantitative insulin
sensitivity check index. Among them, model 5 had the highest r2 (0.505 in NGT, 0.556 in
AGT, respectively).
Conclusions: Our modified BIGTT models proved to be accurate and easy methods
for estimating IR, and can be used in clinical practice and research.

INTRODUCTION
Insulin resistance (IR), first described by Himsworth1, is a syno-
nym for impaired insulin action, which is now proved to be
related to defects of insulin signaling in the cells. Other than

being one of the most important pathophysiologies of type 2
diabetes, it is also considered to be the core of metabolic
syndrome (MetS)2–4. Although IR is very important, it is still
difficult to measure IR accurately in regular medical facilities.
Many methods, credible accurately to measure IR, have been

published in the past. At present, the rule of thumb is that theReceived 1 April 2013; revised 14 July 2013; accepted 6 August 2013
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more accurate the method, the more difficult and more expen-
sive it will be. The hyperinsulinemic euglycemic clamp is widely
accepted as the reference standard5. However, this method is
time-consuming, labor intensive and expensive. There are only
a few medical centers and laboratories that can carry out this
method. The steady-state plasma glucose (SSPG) concentration
obtained from the insulin suppression test (IST)6 is another
accurate method for quantifying IR, but it requires infusion of
somatostatin to suppress endogenous insulin secretion, and is
thus expensive. Finally, the oral glucose tolerance test (OGTT)
is simple, and widely used to diagnose glucose tolerance and
type 2 diabetes. However, it does not measure IR directly, and
the surrogates derived from OGTT are less accurate. So far,
there is no satisfactory method that is both accurate and easily
carried out for general researchers.
To solve the dilemma, Hansen et al.7 developed an algorithm

(b-cell function, insulin sensitivity and glucose tolerance test;
BIGTT) to estimate both insulin sensitivity (IS; the reciprocal
of IR conceptually) and acute insulin response accurately from
OGTT. In short, they used both plasma glucose and insulin
levels during OGTT to build a multiple regression equation
that is used to estimate IS. The r2 of the correlation between
BIGTT and intravenous glucose tolerance test (IVGTT) is as
high as 0.77 for IS. However, they did not put MetS compo-
nents into their equations, which might be a drawback for the
study as IR is the core of MetS, as aforementioned. Therefore,
it would be reasonable to premise that by adding the MetS
components into the equation, the predictive accuracy will be
further improved. However, in Hansen’s study7, the BIGTT
was only evaluated in participants with normal glucose toler-
ance (NGT). Further evaluating patients with abnormal glucose
tolerance (AGT) would perfect this test. In the present study,
we modified the original BIGTT by adding the MetS compo-
nents into the multiple regression equation (modified BIGTT;
M-BIGTT). The IR measured by IST (SSPG) was taken as the
standard. To validate the M-BIGTT, we compared the IR
derived from the M-BIGTT with SSPG in both NGT and
AGT. Our purpose was to find a more practical and accurate
method to measure IR.

METHODS
Study Participants
The participants enrolled in the present study were from the
clinics of Endocrinology and Metabolism of a local teaching
hospital in Taiwan. The study was approved by the hospital
ethics committee, and the nature, purpose and potential risks
of the study were explained to subjects before obtaining their
consent to participate. Subjects with major medical diseases,
such as coronary heart disease, myocardial infarction, stroke,
renal failure or type 1 diabetes, were excluded. If treated with
medications for diabetes or other diseases, the types and doses
of the medications were kept unchanged at least 3 weeks before
the study. Three days before the study, the participants were
asked to maintain a stable diet. On the day of study, study par-

ticipants visited the clinic at 08.00 h after a 10-h fast. After they
had signed the consent form, a complete physical examination
was carried out, and the body mass index (BMI) was calculated
as weight/height2 (kg/m2). Systolic blood pressure (SBP) and
diastolic blood pressure (DBP) were measured by nursing stuff
using standard mercury sphygmomanometers on the right arm
of seated participants. Two visits for either the OGTT or IST
were arranged randomly.

OGTT
On the study day, an intravenous catheter was placed in the
antecubital vein. Fasting blood samples were drawn for
biochemistry analysis. Participants orally consumed a standard
75-g dose of glucose. Plasma glucose and insulin concentrations
were measured before, and 30, 60, 90, 120 and 180 min after
the glucose challenge. The participants were classified either
NGT or AGT according to the results of the OGTT, which were
categorized by the American Diabetes Association in 19978. The
AGT included both prediabetic and diabetic participants9,10.

SSPG
On a separate day, IR was measured by the IST. An intrave-
nous catheter was placed in each of the patient’s arms as the
OGTT. One arm was used for the administration of a 180-min
infusion of somatostatin (250 lg/h), insulin (25 mU/m2/min)
and glucose (240 mg/m2/min). The other arm was used for col-
lecting blood samples. Blood was sampled every 30 min ini-
tially, and then at 10-min intervals from 150 to 180 min of the
infusion to determine the SSPG concentrations for each indi-
vidual. The SSPG concentration provided a direct measure of
the ability of insulin to mediate disposal of an infused glucose
load; the higher the SSPG, the more IR in the individual.
The IR surrogates, such as homeostasis model assessment-

insulin resistance (HOMA-IR) and quantitative insulin sensitiv-
ity check index (QUICKI) derived from OGTT11,12, were also
calculated and compared with SSPG.

Laboratory Measurement
On both days, determinations of glucose, insulin and lipid con-
centrations were made. Plasma was separated from blood
within 1 h of blood collection and was frozen at -30°C until
analysis.
Insulin was measured by the Coat-A-Count solid-phase

radioimmunoassay kit (Diagnostic Products, Los Angeles, CA,
USA). Intra- and interassay coefficients of variance for insulin
were 3.3 and 2.5%, respectively. Plasma glucose was measured
using the YSI 203 glucose oxidase analyzer (Yellow Spring
Instruments, Yellow Spring, OH, USA). Serum determinations
of triglyceride (TG) were measured using the dry, multilayer
analytical slide method in the Fuji Dri-Chem 3000 analyzer
(Fuji Photo Film, Tokyo, Japan). The serum level of high-
density lipoprotein cholesterol (HDL-C) was determined by an
enzymatic cholesterol assay method after dextran sulphate
precipitation.
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Statistical Analyses
SPSS version 13.0 statistical package for Windows (SPSS, Chi-
cago, IL, USA) was used for data analysis. All data were evalu-
ated for normal distribution by the Kolmogorov–Smirnov test,
and for homogeneity of variances by Levene’s test. The data of
SSPG were logarithmically transformed and used as the depen-
dent variables, as it is not normally distributed. A t-test was
used to compare data between two groups. Multiple regression
was used to build models with details given later. All data were
expressed as mean – standard deviation.

Building the Models
To estimate IR, we used multiple regression analysis to build
the models. We put sex, age, MetS components, plasma glucose
and insulin concentrations obtained from OGTT as indepen-
dent variables, and SSPG derived from IST as the independent
variable in the enter method of multiple regression. From the
simplest to the most complicated one, the variables put in the
models were as follows:

Model 1 (MetS model): sex, age and MetS components
(BMI, SBP, DBP, TG, HDL-C, fasting plasma glucose).
Model 2 (simple OGTT model): sex, age, plasma glucose
and insulin concentrations at 0 and 120 min during OGTT
(G0, G120, I0 and I120, respectively).
Model 3 (full OGTT model): sex, age, and plasma glucose
and insulin concentrations at 0, 30, 60, 90, 120, and 180
min during OGTT.
Model 4 (simple combined model): model 1 and model 2.
Model 5 (full model): model 1 and 3.
In order to validate our models, 75% of participants were

randomly selected. From these participants, each model gener-
ated its own optimal predictive equation for IR. To further
increase the accuracy of the models, we built the equations sep-
arately in the NGT and AGT group. Then these equations were
used to calculate IR in the remaining 25% of the study partici-
pants as external validation (NGTEV, AGTEV group, respec-
tively). The correlation between the calculated IR and SSPG
(the standard for IR) were evaluated with Pearson’s correlation.

The correlation coefficients (r2) obtained from each model were
used for evaluations and comparisons between models. In
general, the higher the r2, the more accurate the model was.

Table 1 | General characteristics in different glucose tolerance

NGT AGT NGTEV AGTEV

n 125 120 42 40
Sex (male/female) 45/80 62/58 17/25 21/19
Age (years)* 41.0 – 11.6 47.8 – 10.7 42.0 – 11.9 47.4 – 10.7
Body mass index (kg/m2)* 22.8 – 3.0 24.9 – 3.3 22.8 – 2.8 25.1 – 2.9
Systolic blood pressure (mmHg)* 114.3 – 15.6 122.1 – 14.9 114.4 – 11.3 122.8 – 17.8
Diastolic blood pressure (mmHg)* 75.2 – 9.9 78.8 – 9.0 73.2 – 8.7 78.0 – 9.4
Triglyceride (mmol/L)* 1.02 – 0.54 1.37 – 0.79 1.03 – 0.43 1.23 – 0.58
High density lipoprotein cholesterol (mmol/L) 1.09 – 0.35 1.06 – 0.34 1.03 – 0.36 1.08 – 0.40
Steady state plasma glucose (mmol/L)* 7.69 – 3.42 10.45 – 3.95 8.51 – 3.87 10.42 – 4.38

Data shown as means – standard deviation. *P < 0.001 significant difference between normal glucose tolerance (NGT) and abnormal glucose toler-
ance (AGT) groups. NGTEV, external validation group for normal glucose tolerance; AGTEV, external validation group for abnormal glucose tolerance.
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Figure 1 | The (a) plasma glucose and (b) insulin concentrations
during oral glucose tolerance test in normal glucose tolerance (NGT)
and abnormal glucose tolerance test (AGT) groups.
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RESULTS
A total of 327 participants were enrolled in the present study.
Among them, 167 participants were classified by OGTT as the
NGT group and 160 as the AGT group. The demographic and
biochemistry data are shown in Table 1. There were 18 partici-
pants (11.25%) with type 2 diabetes in the AGT group. The dura-
tions of type 2 diabetes were within 3 years. As participants in
the external validation groups were randomly selected, there was
no significant difference between the NGT and NGTEV group or
AGT and AGTEV group. Because of the grouping criteria, it is
not surprising that age, BMI, SBP, DBP, TG and SSPG were

higher in the AGT group. The plasma glucose and insulin levels
during the OGTT of each group are shown in Figure 1.
The equations for either NGT or AGT in each model are

shown in Table 2. The correlation (r2 value) between the pre-
dicted IR derived from the equations, traditional surrogates
derived from OGTT (HOMA-IR and QUICKI) and SSPG are
also shown. There are four important facts that could be noted
from the table: (i) all estimated IRs were highly correlated with
SSPG; (ii) model 5 had the highest r among the five models;
and (iii) the r2 values in AGT were all higher than those of
NGT. Finally, the r2 values of each model in both groups,

Table 2 | Predictive equation of each model and correlation between steady-state plasma glucose, other traditional insulin resistance surrogates
and models in different glucose tolerance

Model – Group Equation r2

Model 1
NGT (1.439 + 0.018 9 sex - 0.003 9 age + 0.029 9 BMI - 0.001 9 SBP + 0.006 9 DBP + 0.049 9 TG - 0.046 9

HDL - 0.116 9 G0) 9 103.333
0.238*

AGT (1.345 + 0.07 9 sex - 0.005 9 age + 0.034 9 BMI - 0.0001 9 SBP + 0.0002 9 DBP + 0.058 9 TG - 0.049 9

HDL - 0.005 9 G0) 9 103.333
0.341*

Model 2
NGT (1.643 - 0.096 9 sex - 0.002 9 age - 0.027 9 G0 + 0.027 9 G120 + 0.00165 9 I0 + 0.00037 9 I120) 9 103.333 0.325*
AGT (1.783 + 0.036 9 sex - 0.003 9 age - 0.008 9 G0 + 0.02 9 G120 + 0.00122 9 I0 + 0.00016 9 I120) 9 103.333 0.419*

Model 3
NGT (1.228 - 0.074 9 sex - 0.003 9 age - 0.007 9 G0 - 0.007 9 G30 - 0.036 9 G60 + 0.019 9 G90 + 0.064 9

G120 + 0.051 9 G180 + 0.00123 9 I0 + 0.00002 9 I30 + 0.00035 9 I60 + 0.00008 9 I90 + 0.00009 9 I120 -
0.00038 9 I180) 9 103.333

0.412*

AGT (1.852 + 0.045 9 sex - 0.005 9 age - 0.027 9 G0 - 0.017 9 G30 + 0.01 9 G60 + 0.029 9 G90 - 0.0002 9

G120 + 0.006 9 G180 + 0.00087 9 I0 + 0.00001 9 I30 + 0.0001 9 I60 + 0.00006 9 I90 + 0.00003 9 I120 +
0.000005 9 I180) 9 103.333

0.504*

Model 4
NGT (1.373 - 0.054 9 sex - 0.003 9 age + 0.02 9 BMI - 0.002 9 SBP + 0.005 9 DBP + 0.052 9 TG - 0.047 9

HDL - 0.085 9 G0 + 0.025 9 G120 + 0.00108 9 I0 + 0.00039 9 I120) 9 103.333
0.453*

AGT (1.381 - 0.053 9 sex - 0.004 9 age + 0.018 9 BMI - 0.002 9 SBP + 0.001 9 DBP + 0.031 9 TG - 0.024 9

HDL - 0.009 9 G0 + 0.017 9 G120 + 0.00073 9 I0 + 0.00013 9 I120) 9 103.333
0.489*

Model 5
NGT (1.129 - 0.069 9 sex - 0.003 9 age + 0.018 9 BMI - 0.003 9 SBP + 0.005 9 DBP + 0.051 9 TG - 0.074 9

HDL - 0.034 9 G0 - 0.007 9 G30 - 0.047 9 G60 + 0.012 9 G90 + 0.069 9 G120 + 0.036 9 G180 + 0.00075 9

I0 - 0.00001 9 I30 + 0.00026 9 I60 + 0.00014 9 I90 - 0.00012 9 I120 - 0.00014 9 I180) 9 103.333

0.505*

AGT (1.57 + 0.062 9 sex - 0.005 9 age + 0.014 9 BMI - 0.001 9 SBP + 0.002 9 DBP + 0.045 9 TG - 0.026 9

HDL - 0.029 9 G0 - 0.01 9 G30 + 0.007 9 G60 + 0.031 9 G90 - 0.001 9 G120 - 0.0002 9 G180 +
0.00051 9 I0 + 0.00003 9 I30 + 0.00009 9 I60 + 0.00003 9 I90 - 0.00002 9 I120 + 0.00003 9 I180) 9 103.333

0.556*

HOMA - IR
NGT G0 9 I0/22.5 0.245*
AGT G0 9 I0/22.5 0.234*

QUICKI
NGT 1/(logG0 + logI0) 0.179*
AGT 1/(logG0 + logI0) 0.143*

*P < 0.001. Sex: male = 0, female = 1. AGT, abnormal glucose tolerance, BMI, body mass index; DBP, diastolic blood pressure; Gt, plasma glucose
(mmol/L) at time t min; HDL-C, high-density lipoprotein-cholesterol; HOMA-IR, homeostasis model assessment-insulin resistance; It, plasma insulin
(pmol/L) at time t min; NGT, normal glucose tolerance; QUICKI, quantitative insulin sensitivity check index; SBP, systolic blood pressure; TG, triglyceride.
Model 1 (metabolic syndrome model): sex, age, BMI, SBP, DBP, TG, HDL, G0; model 2 (simple oral glucose tolerance test model): sex, age, G0, G120, I0,
I120; model 3 (full oral glucose tolerance test model): sex, age, G0, G30, G60, G90, G120, G180, I0, I30, I60, I90, I120, I180; model 4 (simple combined model):
sex, age, BMI, SBP, DBP, TG, HDL, G0, G120, I0, I120; model 5 (combined model): sex, age, BMI, SBP, DBP, TG, HDL, G0, G30, G60, G90, G120, G180, I0, I30, I60,
I90, I120, I180.
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except for NGT in model 1, were higher than those of
HOMA-IR and QUICKI.
To validate our most accurate model, we calculated the IR

with the equation derived from model 5, and compared the
values of IR to SSPG in the remaining 25% of participants (Fig-
ure 2). In both the NGT and AGT group, the correlation coef-
ficients were all significant and relatively high (r2 = 0.338 in
NGT; r2 = 0.376 in AGT; P < 0.001, respectively). Again, it
could be noted that the r2 in the AGT was still higher than that
in NGT.

DISCUSSION
Insulin resistance is one of the important defects in type 2 dia-
betes. If IR could be measured more extensively and accurately,
it might help to solve many genetic and clinical dilemmas of

diabetes. In the present study, we further modified Hansen’s
BIGTT in order to further increase its accuracy. Other than lev-
els of plasma glucose and insulin from OGTT, we put MetS
components into the model. The results of the present study
have confirmed our assumption that the accuracy of our mod-
els could be improved. This is true for both NGT and AGT
participants.
Generally speaking, the r2 in the present study were all lower

than those in Hansen’s study. For instance, in the ‘full model’
of their study, which had all time-points of the OGTT, sex and
BMI had the r2 equal to 0.77. Whereas in our study, model 5
was considered the most complete model, but it only had the
r2 value equal to 0.556. Other than the MetS components, the
factors used in the models in both studies were similar. Thus,
the r2 value was expected to be higher. The possible explana-
tion for our lower r2 might come from the different ethnic
group. It is known that diabetes in Asians does have different
aspects than in Caucasians. For instance, the BMI of patients
with type 2 diabetes is lower in Asians13. Furthermore, Seino
et al.14 had reported that Japanese type 2 diabetes is character-
ized by a larger decrease in insulin secretion and, contrary to
Caucasians, IR plays a less important role. However, this
discrepancy should not decrease the importance of the present
study, as our model was much better than other surrogates,
such as HOMA-IR and QUICKI (Table 2). In addition, our
models could be easily implanted in computer software, such
as Microsoft Excel, and then the IR could be estimated.
Revean4 suggested that IR is the core of MetS. A number of

studies also showed that MetS components are strong predic-
tors for the development of type 2 diabetes15–18, even since
childhood19. Therefore, it is reasonable to use MetS compo-
nents to predict the severity of IR. To date, there has been no
other study exploring the measurement of IR by MetS compo-
nents. Thus, it is also interesting to note that, from Table 2,
model 1 (MetS model) had a lower r2 than that of model 2
(simple OGTT model). This finding showed that the levels of
plasma glucose and insulin during OGTT are better predictors
for IR than the components of MetS. In other words, OGTT is
more tightly related to the IR. Again, the present study is the
first to explore the relative importance between the roles of
MetS and OGTT in predicting IR. Another important finding
worth further discussing is that when combining both OGTT
and MetS models together (model 4 and model 5), the r2 could
still be increased. If both MetS and OGTT are related through
a common pathway to IR, the combination of these two mod-
els would have little effect on the r2. Obviously, this was not
the case. The present study indirectly and further showed that
both OGTT and MetS interact with IR through different
pathways.
As glucose metabolism is assumed to be impaired in the

AGT group, we built the models separately in the NGT and
AGT group. However, in general, the r2 values in AGT were
higher than those in NGT. This might be due to the fact that
the plasma glucose, insulin and levels of MetS components
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Figure 2 | The linear relationship between calculated insulin resistance
from model 5 and steady-state plasma glucose (SSPG) in (a) the
normal glucose tolerance group (NGT) and (b) the abnormal glucose
tolerance group (AGT).
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were significantly higher in the AGT group. As the increases of
all these parameters are more or less related to IR, the high
correlation coefficients in the models from AGT reflect their
tighter relationships than the NGT. In other words, the more
severe the impaired glucose tolerance, the more accurate the
model is. This interesting finding further confirms the useful-
ness of our equations, especially in patients with AGT.
There were limitations to the present study. First, family

history is one of the important determinates for predicting
type 2 diabetes. However, we did not have this information in
the model. We would expect a higher estimation power if it
was included. Second, the number of external validations
seemed to not be enough. That might be the reason for the
decreased r2 value in the remaining 25% of participants com-
pared with the original r2 value from the 75% of participants.
However, we could not increase the number of the external
validation, as this would have reduced the model accuracy.
Third, type 2 diabetes was considered as chronic pro-inflam-
matory status. Among the inflammation markers, C-reactive
protein (CRP) has been shown to be associated with IR in
several studies20,21. Adding CRP could further increase accu-
racy in our models. However, the original goal of the present
study was to build models with routine laboratory data. As
CRP is not a necessary laboratory test for IR in daily practice,
we did include CRP in the model. We must point out that
this drawback might reduce the models’ prediction ability.
Fourth, it could be noted model 5 has the highest r2 for esti-
mating IR. However, this model is quite time-consuming,
which limits its use in daily practice. Thus, model 4 is proba-
bly the best model to be used. Fifth, in the models, we used
BMI instead of waist circumference, which is one of the MetS
components. We do agree that BMI might be less related to
IR than waist circumference. However, Reaven et al.22 have
shown that BMI and waist circumference are closely related.
This might justify the use of BMI in the present study. Finally,
it should be emphasized that there might be different underly-
ing pathophysiologies in different ethnic groups; the extrapola-
tion of our equations to other ethnic groups must be exercised
with caution. The coefficients of the equations might need to
be changed accordingly.
In conclusion, by using the MetS components and plasma

glucose/insulin levels during the OGTT, IR could be estimated
with high accuracy. The r2 values were 0.505 and 0.556 for
NGT and AGT, respectively. This is a relatively accurate and
easy method to be used in primary care settings.
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