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This paper derives stochastic partial differential
equations (SPDEs) for fluid dynamics from a
stochastic variational principle (SVP). The paper
proceeds by taking variations in the SVP to derive
stochastic Stratonovich fluid equations; writing
their Itô representation; and then investigating
the properties of these stochastic fluid models
in comparison with each other, and with the
corresponding deterministic fluid models. The
circulation properties of the stochastic Stratonovich
fluid equations are found to closely mimic those
of the deterministic ideal fluid models. As with
deterministic ideal flows, motion along the stochastic
Stratonovich paths also preserves the helicity of
the vortex field lines in incompressible stochastic
flows. However, these Stratonovich properties are not
apparent in the equivalent Itô representation, because
they are disguised by the quadratic covariation drift
term arising in the Stratonovich to Itô transformation.
This term is a geometric generalization of the
quadratic covariation drift term already found for
scalar densities in Stratonovich’s famous 1966 paper.
The paper also derives motion equations for two
examples of stochastic geophysical fluid dynamics;
namely, the Euler–Boussinesq and quasi-geostropic
approximations.

1. Introduction
In this paper, we propose an approach for including
stochastic processes as cylindrical noise in systems of
evolutionary partial differential equations (PDEs) that
derive from variational principles which are invariant
under a Lie group action. Such dynamical systems
are called Euler–Poincaré equations [1,2]. The main
objective of the paper is the inclusion of stochastic
processes in ideal fluid dynamics, in which case the
variational principle is invariant under the Lie group of
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smooth invertible maps acting to relabel the reference configuration of Lagrangian coordinates for
the fluid. Examples include Euler’s fluid equations for incompressible flows and also geophysical
fluid dynamics (GFD) of ocean and atmosphere circulation. The approach is via a stochastic
extension of the well-known variational derivation of the Eulerian representation of ideal fluid
dynamics [2].

The resulting stochastic partial differential equations (SPDEs) contain a type of multiplicative,
cylindrical, Stratonovich noise that depends on the gradients of the solution variables. This
unfamiliar feature does not interfere with the passage to the Itô representation, though, since the
space variable is treated merely as a parameter when dealing with cylindrical noise. That is, one
may regard the cylindrical noise process as a finite dimensional stochastic process parametrized
by x (the space variable). Then, the Stratonovich equation makes analytical sense pointwise, for
each fixed x. Once this is agreed, then the transformation to Itô by the standard method also
makes sense pointwise in space.

To specify the spatial correlations required in applications of the cylindrical Stratonovich
noise process, we advocate the strategy of applying proper orthogonal decompositions (PODs)
to the appropriate numerical and observational data available at resolvable scales [3]. One may
then regard the stochastic process as arising physically as the effect of sub-grid scale degrees of
freedom on the resolved scales of fluid motion.1

In more detail, the aim of this paper is to use the methods of geometric mechanics to enable
fluid dynamics to be effectively adapted to include Stratonovich stochastic processes. Towards
this end, we derive a set of stochastic fluid equations for the motion of an either compressible, or
incompressible fluid in R

3 from a stochastically constrained variational principle δS = 0, with action,
S, given by

S(u, p, q) =
∫

(�(u, q) dt + 〈p, dq + £dxt q〉V), (1.1)

where �(u, q) is the unperturbed deterministic fluid Lagrangian, written as a functional of velocity
vector field u and advected quantities q. Here, u ∈ X(R3) is the fluid velocity vector field, the
angle brackets

〈p, q〉V :=
∫
〈p(x), q(x, t)〉 dx (1.2)

denote the spatial L2 integral over the domain of flow of the pairing 〈p, q〉 between elements q ∈ V
and their dual elements p ∈ V∗. In (1.1), the quantity p ∈ V∗ is a Lagrange multiplier and £dxt q is the
Lie derivative of an advected quantity q ∈ V, along a vector field dxt defined by the following sum
of a drift velocity u(x, t) and Stratonovich stochastic process with cylindrical noise parametrized by
spatial position x, [4,5]

dxt(x) = u(x, t) dt −
∑

i

ξi(x) ◦ dWi(t). (1.3)

Remark 1.1. Note at the outset that dxt(x) is a stochastic vector field parametrized by the spatial
position x. The corresponding time integral of this vector field is a stochastic function (ω, t, x) →
xt(ω, x) defined as2

xt(x) = x0(x) +
∫ t

0
u(x, s) ds −

∑
i

∫ t

0
ξi(x) ◦ dWi(s). (1.4)

In particular, the xt treated here is not the stochastic flow satisfying the SDE

xt(x) �= x +
∫ t

0
u(xs(x), s) ds −

∑
i

∫ t

0
ξi(xs(x)) ◦ dWi(s), (1.5)

which arises in other treatments of stochastic fluid dynamics, e.g. [6]. This difference in the
definitions between the stochastic vector fields treated here and the usual notation in the
1PODs are also called empirical orthogonal functions (EOFs), Karhunen–Loeve projections (KLPs) and singular value
decompositions (SVDs), and they comprise a standard approach that has been useful in a variety of contexts [3].
2The symbol ω for stochastic quantities will be understood throughout, but will not be written explicitly hereafter.
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SDE setting for stochastic fluids is necessary for our purposes here, and it greatly facilitates
the analysis. We want to combine geometric mechanics with stochastic analysis for fluids.
However, the usual flow relationships between Lagrangian particle maps and Eulerian fluid
velocities are problematic in the stochastic setting, since expressions involving tangent vectors
to stochastic processes are meaningless. Therefore, we shall develop a theory entirely within the
Eulerian interpretation of fluid dynamics. That is, all the variables discussed below will depend
parametrically on the spatial coordinate x.

At this point, we have introduced Stratonovich stochasticity into the action principle for
fluids in (1.1) through the constraint that advected quantities q should evolve by following the
Stratonovich perturbed vector field. This advection law is formulated as a Lie derivative with
respect to the Stratonovich stochastic vector field in (1.3). For mathematical discussions of Lie
derivatives with respect to stochastic vector fields [7–11].

The definition of Lie derivative we shall use here is the standard Cartan definition in terms of
the action of the differential operator d acting on functions of the spatial coordinate x, for example,

£dxt q = d(idxt q) + idxt dq, (1.6)

where idxt dq denotes insertion of the vector field dxt(x) into the differential form dq(x), with the
usual rules for exterior calculus. For a review of exterior calculus in the context of fluid dynamics,
e.g. [12].

One may interpret dxt(x) in (1.3) as the decomposition of a vector field defined at position
x and time t into a time-dependent drift velocity u(x, t) and a stochastic vector field. The time-
independent quantities ξi(x) with i = 1, 2, . . . , K in the cylindrical stochastic process are usually
interpreted as ‘diffusivities’ of the stochastic vector field, and the choice of these quantities must
somehow be specified from the physics of the problem to be considered. Here, we will specify
the diffusivities ξi(x) as a set of preassigned physical spatial correlations for the stochasticity.
This information is to be provided during the formulation of the problem under consideration.
As an example, we will interpret the ξi(x) with i = 1, 2, . . . , K as spatial correlations obtained
from, say, coarse-grained observations or computations (e.g. as PODs) which supply the needed
information for K independent Wiener (Brownian) processes, dWi(t), in the Stratonovich sense.
Note that the number of vector fields K need not be equal to the number of spatial dimensions.

The L2 pairing 〈·, ·〉V in the stochastic variational principle (SVP) written in (1.1) with Lagrange
multiplier p ∈ T∗V enforces the advection condition that the quantity q ∈ V is preserved along the
Stratonovich stochastic path. (1.3), namely,

dq + £dxt q = 0. (1.7)

The advection relation (1.7) for the quantities q ∈ V may be regarded as a stochastic constraint
imposed on the variational principle (1.1) via the Lagrange multiplier p. Requiring that the
solution to (1.7) exists locally in time amounts to assuming that the ‘back-to-labels’ map for the
solution of (1.3) exists locally in time for the flow generated by the vector field (1.3), cf. [13,14].

An interesting physical situation occurs when numerical and observational data are available
for comparison with the dynamics of the stochastic model. This is the situation in which the
standard method of PODs may become useful. In particular, one may compute the PODs
corresponding to the dominant correlations in this numerical and observational data, then select
among those PODs according to well-defined physical criteria the modes corresponding to ξi(x)
with i = 1, 2, . . . , K for finite K. In that case, the stochastic terms in equation (1.3) represent a
specific finite set of spatially correlated, but unresolved, degrees of freedom represented by noise,
that are coupled nonlinearly to the deterministic evolution of velocity u and advected quantity
q through the Lagrange-to-Euler stochastic tangent map in equation (1.3). For example, one may
choose the PODs ξi(x) with i = 1, 2, . . . , K as the first K eigenfunctions of the correlation tensor for
the observed or simulated velocity fields determined by [3]∫

〈u(x)u(x′)〉ξi(x
′) dx′ = λ2

i ξi(x) no sum on i = 1, 2, . . . , K with λ1 >λ2 > · · ·>λK, (1.8)
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so that these first K eigenfunctions represent the highest correlations of velocity and thus
account for the greatest fraction of kinetic energy in the data, compared with any other set of
the same dimension. (The eigenvalues λ2

i are all positive because of their interpretation as the
relative kinetic energies of the eigenfunctions ξi(x).) Naturally, one might want to weight the
eigenfunctions in equation (1.3) as ξi(x) → λiξi(x) (the positive square roots λi of their relative
kinetic energy eigenvalues λ2

i ), to give them the correct dimensional meaning (velocity) and
relative importance.

Remark 1.2. Of course, the strategy of dividing the solution into essential and non-essential
modes, then replacing the dynamical effects of the non-essential modes by noise is well known.
For example, one may refer to Majda et al. [15] for the history and motivation for this approach,
as well as descriptions of their own approach, called stochastic mode reduction (SMR). Some
versions of SMR can be based, for example, on truncating the Fourier representation of the
numerical method at a certain level that defines the essential modes, then stochastically modelling
the nonlinear interactions among the remaining modes, deemed to be non-essential.

(a) Main results
The SPDEs which will result from the stochastically constrained variational principle δS = 0 for S
defined in (1.1) are expressed in Stratonovich form in terms of the Lie-derivative operation £dxt as

d
δ�

δu
+ £dxt

δ�

δu
− δ�

δq

 q dt = 0 and dq + £dxt q = 0, (1.9)

in which dxt is the Eulerian vector field in equation (1.3) for the velocity along the Lagrangian
Stratonovich stochastic path and the diamond operation (
) will be explained below in
definition 1.5.

The corresponding Itô forms of these equations are

d
δ�

δu
+ £dx̂t

δ�

δu
− δ�

δq

 q dt = 1

2

∑
i,j

£ξj(x)

(
£ξi(x)

δ�

δu

)
[dWi(t), dWj(t)]

and dq + £dx̂t
q = 1

2

∑
i,j

£ξj(x)(£ξi(x)q)[dWi(t), dWj(t)],

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.10)

in which the Eulerian vector field dx̂t tangent to the Lagrangian Itô stochastic path x̂t is given by

dx̂t = u(x, t) dt −
∑

i

ξi(x) dWi(t). (1.11)

In equation (1.10), the quantities [dWi(t), dWj(t)] with i, j = 1, 2, . . . , K for K independent stochastic
processes denote the quadratic covariations of the temporal Itô noise. For Brownian processes,
these quantities satisfy [dWi(t), dWj(t)] = 0 unless i = j and satisfy [dWj(t), dWj(t)] = dt (no sum)
[16]. Hereafter, in choosing Brownian processes, we may write [dWi(t), dWj(t)] = δij dt.

(b) Interpretations of the main results as Kelvin circulation theorems
for incompressible flow

The interpretations of the equations (1.9) and (1.10) may be expressed quite succinctly in the case
of incompressible flow. In that case, volume elements are preserved and the advected variables q
are absent. The corresponding Kelvin circulation theorems about the evolution of the integral of
the circulation 1-form (δ�/δu) around a material loop are, as follows.
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For the Stratonovich case,

d
∮

c(t)

δ�

δu
= 0 for loops c(t) governed by dc(t) = −£dxt c(t), (1.12)

and equivalently for the Itô case,

d
∮

ĉ(t)

δ�

δu
=

∮
ĉ(t)

1
2

∑
i,j

£ξj(x)

(
£ξi(x)

δ�

δu

)
δij dt for dĉ(t) = −£dx̂t

ĉ(t). (1.13)

Thus, the Kelvin theorem in (1.12) shows that circulation is conserved for loops moving along the
Stratonovich stochastic path with velocity vector field dxt in equation (1.3). However, perhaps not
surprisingly, because the velocities of the loops are different, the equivalent Kelvin theorem (1.13)
shows that the Stratonovich circulation law is masked in the Itô formulation for loops moving
along the Itô stochastic path with velocity dx̂t in equation (1.11), because the Itô terms cannot be
expressed as a single Lie derivative of the circulation 1-form. Specifically, the circulation created
in these Itô loops in (1.13) is determined from the spatial correlation vector fields ξi(x).

The proofs of these Kelvin circulation theorems are straightforward. For example, equation
(1.13) is proved, as follows:

d
dt

∮
ĉ(t)

δ�

δu
=

∮
ĉ(t)

(∂t + £dx̂t
)
δ�

δu
= 1

2

∮
ĉ(t)

∑
j

£ξj(x)

(
£ξj(x)

δ�

δu

)
, (1.14)

in which the last step is made by referring to equation (1.10) for the case when the advected
quantities q are absent.

Remark 1.3. When the noise is completely uncorrelated in each spatial dimension so that
ξi = const., for i = 1, 2, 3, and also provided q = 1 (volume preservation), the double Lie-derivative
operator

∑
i £ξi (£ξi ·) appearing in equations (1.10), (1.13) and (1.14) reduces to the metric

Laplacian operator, �= div grad. Some foundational results on related SPDEs can be found in
Flandoli [17,18] and references therein.

Remark 1.4. It remains to define the diamond operation (
) appearing in equations (1.9) and
(1.10). The diamond operation (
) appears when we include potential energy terms depending on
the advected variables q in the stochastically constrained variational principle in (1.1).

Definition 1.5 (The diamond operation). On a manifold M, the diamond operation (
) : T∗V →
X∗ is defined for a vector space V with (q, p) ∈ T∗V and vector field ξ ∈ X is given in terms of the
Lie-derivative operation £u by

〈p 
 q, ξ〉X := 〈p, −£ξ q〉V (1.15)

for the pairings 〈·, ·〉V : T∗V × TV → R and 〈·, ·〉X : X∗ × X → R with p 
 q ∈ X∗.

Remark 1.6 (Momentum map). The quantity J(q, p) = p 
 q in (1.15) defines the cotangent-lift
momentum map for the action of the vector fields ξ ∈ X on the vector space V [2]. In terms
of the momentum map p 
 q, the action integral S in (1.1) for the SVP δS = 0 may be written
equivalently as

S(u, p, q) =
∫ (

�(u, q) +
〈
p,

dq
dt

+ £uq
〉

V

)
dt︸ ︷︷ ︸

Lebesgue integral

+
∫ ∑

i

〈p 
 q, ξi(x)〉X ◦ dWi(t)

︸ ︷︷ ︸
Stratonovich integral

. (1.16)

Thus, the vector-field coupling between the deterministic and stochastic parts of the SVP in this
equivalent form in (1.16) of the action integral (1.1) is through the momentum map in (1.15).
In finite dimensions, formula (1.16) fits within the framework of [19,20] for stochastic canonical
Hamilton equations and generalizes the work of [21] for stochastic variational integrators applied
to the rigid body. This sort of momentum-map coupling in finite dimensions was also noted for
symmetry reduction of mechanical systems with stochastic non-holonomic constraints studied
in [22].
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Remark 1.7 (Variational derivations of the Navier–Stokes equations from stochastic
equations). The derivation of the Navier–Stokes equations in the context of stochastic processes
has a long and well-known history (e.g. [13,14] and references therein). Previous specifically
variational treatments of stochastic fluid equations generally started from the famous remark by
Arnold [23] (about Euler’s equations for the incompressible flow of an ideal fluid being geodesic
for kinetic energy given by the L2 norm of fluid velocity) and they have mainly treated Itô noise
in this context. For more discussion of these variational derivations of stochastic fluid equations
and their relation to the Navier–Stokes equations, one should consult original sources such as
Inoue & Funaki [24], Rapoport [25,26], Gomes [27], Cipriano & Cruzeiro [28], Constantin & Iyer
[13], Eyink [14], Gliklikh [29] and Arnaudon et al. [6]. We emphasize that the goal of this work
is to derive SPDEs for fluid dynamics by following the stochastic variational strategy outlined
above. It is not our intention to derive the Navier–Stokes equations in the present context.
However, as mentioned previously, in imposing the stochastic constraint (1.7), we have assumed
the existence of a ‘back-to-labels’ map. This assumption is also often made in the derivation
of the Navier–Stokes equations in a stochastic setting, e.g. [13,14]. For additional information,
review and background references for random perturbations of PDEs and fluid dynamic models,
viewed from complementary viewpoints to the present paper, see also Flandoli et al. [17,18].
In particular, Flandoli et al. [17,18] studies the interesting possibility that adding stochasticity
can have a regularizing effect on fluid equations which might otherwise be ill-posed.

(c) Plan of the paper
The remainder of the paper will derive the SPDEs for fluids in (1.9) and (1.10) from the variational
principle δS = 0 with stochastic action integral S given in (1.1), or equivalently (1.16). Towards this
objective, we shall take the following steps.

Section 2 will derive the Stratonovich motion equations for S in (1.1) in the Lagrangian
formulation. Section 3b will write the Itô representation of these equations. Section 4 will treat
the abstract Kelvin circulation theorems in their Stratonovich 4a and Itô forms 4b. Section 5
will consider examples of stochastic fluid flows in the Stratonovich representation. Section 5a
will discuss Stratonovich stochastic fluid flows without advected quantities. In particular,
§5a will derive the Kelvin circulation theorem for Stratonovich stochastic fluids and verify
their preservation of helicity (the linkage number for the vorticity field lines). Section 5b will
derive the contributions of various advected quantities to the motion equation. Section 5c will
treat the effects of these advected quantities in two examples of stochastic geophysical fluid
dynamics (SGFD). These two stochastic GFD examples comprise the stochastic Euler–Boussinesq
equations and the stochastic quasi-geostrophic (SQG) equations. In all of these examples, we will
present both the Stratonovich and Itô forms of the stochastic fluid equations and contrast their
implications. Section 6 will provide conclusions, further discussion and outlook.

We will proceed formally without addressing technical issues of stochastic analysis, by
assuming all the objects we introduce in the paper are semimartingales. This assumption is
possible because the parametric spatial dependence of the dynamical variables allows essentially
finite-dimensional stochastic methods to be applied at each point of space. From that viewpoint,
the paper presents a slight generalization of earlier work by Bismut [19], Lázaro-Camí & Ortega
[20] and Bou-Rabee & Owhadi [21], which unifies their Hamiltonian and Lagrangian approaches
to temporal stochastic dynamics, and extends them to the case of cylindrical noise in which
spatial dependence is parametric, while temporal dependence is stochastic. Having made this
assumption, we will be able to apply the normal rules of variational calculus to the Stratonovich
integrals in Hamilton’s principle (1.1) to derive the equations of motion. We will then transform
the equations to the Itô side and derive the expected drift terms as generalizations of the
second-order operators which first appeared in the original paper of Stratonovich [30]. A general
principle will be given in theorem 2.1 and the results for a series of examples will be derived.
The present approach introduces new stochastic terms into these examples which improve the
geometric structure of the equations and preserve the invariants of the underlying deterministic
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models. These new stochastic terms contain multiplicative noise depending on the gradients
of the solution variables. We hope this paper will stimulate new research, not only by experts
in geometric mechanics, but also by those who approach stochastic fluid dynamics using more
analytical methods, because the equations we derive here are new and pose new challenges.

2. Stratonovich stochastic variational principle

(a) Stochastic Euler–Poincaré formulation
Theorem 2.1 (Stratonovich Stochastic Euler–Poincaré equations). The action for the SVP δS = 0

in (1.16),

S(u, p, q) =
∫ (

�(u, q) +
〈
p,

dq
dt

+ £uq
〉

V

)
dt︸ ︷︷ ︸

Lebesgue integral

+
∫ ∑

i

〈p 
 q, ξi(x)〉X ◦ dWi(t)

︸ ︷︷ ︸
Stratonovich integral

, (2.1)

leads to the following Stratonovich form of the Stochastic Euler–Poincaré (SEP) equations:

dm + £dxt m − δ�

δq

 q dt = 0, dq = −£dxt q and dp = δ�

δq
dt + £T

dxt
p, (2.2)

where dxt ∈ X is the Stratonovich stochastic vector field in equation (1.3) and

m := δ�

δu
= p 
 q ∈ X∗ (2.3)

is the 1-form density of momentum.

Proof. The first step is to take the elementary variations of the action integral (2.1), to find

δu :
δ�

δu
− p 
 q = 0, δp : dq + £dxt q = 0 and δq :

δ�

δq
dt − dp + £T

dxt
p = 0. (2.4)

The first variational equation captures the relation (2.3), and the latter two equations in (2.4)
produce the corresponding equations in (2.2). The governing equation for m in (2.2) will be
recovered by using the result of the following Lemma. �

Lemma 2.2. Together, the three equations in (2.4) imply the first formula in (2.2), namely

dm − δ�

δq

 q dt = −£dxt m. (2.5)

Proof. For an arbitrary η ∈ X, one computes the pairing〈
dm − δ�

δq

 q dt, η

〉
X

=
〈
− δ�
δq


 q + dp 
 q + p 
 dq, η
〉
X

By equation (2.4) = 〈(£T
dxt

p) 
 q − p 
 £dxt q, η〉X
= 〈p, (−£dxt £η + £η£dxt )q〉V

= 〈p, addxtηq〉V = −〈p 
 q, addxtη〉X
= −〈ad∗

dxt
(p 
 q), η〉X = −〈£dxt m, η〉X. (2.6)

Since η ∈ X was arbitrary, the last line completes the proof of the Lemma. In the last step, we have
used the fact that coadjoint action is identical to Lie-derivative action for vector fields acting on
1-form densities.

In turn, the result of lemma 2.2 now produces the m-equation in (2.2) of theorem 2.1. �
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3. Stratonovich→ Itô equations

(a) Stratonovich form
Since dxt = u dt −∑

i ξi(x) ◦ dWi(t), one may rewrite the Stratonovich SEP equations (2.2) in
theorem 2.1, so as to separate out the various Lie derivative operations, as follows:

dm + £um dt − δ�

δq

 q dt =

∑
i

£ξi(x)m ◦ dWi(t),

dq + £uq dt =
∑

i

£ξi(x)q ◦ dWi(t)

and dp − £T
up dt − δ�

δq
dt = −

∑
i

£T
ξi(x)p ◦ dWi(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

in which the stochastic process terms all appear on the right-hand sides of the equations. When
those terms are absent, one recovers standard deterministic ideal fluid dynamics.

(b) Itô form
The corresponding Itô forms of the equations in (3.1) are found by using Itô’s formula to identify
the quadratic covariation terms as

dm + £dx̂t
m dt − δ�

δq

 q dt = 1

2

∑
j

£ξj(x)(£ξj(x)m) dt,

dq + £dx̂t
q dt = 1

2

∑
j

£ξj(x)(£ξj(x)q) dt

and dp − £T
dx̂t

p dt − δ�

δq
dt = −1

2

∑
j

£T
ξj(x)(£

T
ξj(x)p) dt,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where we have used [dWi(t), dWj] = δij dt for Brownian motion and rearranged as shown in (3.8)
below, in order to rewrite the Lie derivatives in terms of the stochastic Itô vector field, dx̂t, given
in equation (1.11).

Remark 3.1. The right-hand sides in the Itô stochastic equations (3.2) define a second-order
operator via double Lie derivatives with respect to the POD vector fields, ξj(x), j = 1, 2, . . . , K.
This seems like a type of the Laplace operator based on double Lie derivatives. To follow this
intuition, we first introduce a Lie-dual δξj to the exterior derivative d, defined by the differential
form operations

δξj q := ξj � (d (ξj � q)) or, in other notation, δξj q := ιξj d(ιξj q), (3.3)

where ξj� and ιξj denote two standard expressions for the operation of insertion of a vector field
into an arbitrary differential k-form q ∈Λk and {ξj} is taken as the given basis of POD vector fields
associated with the spatial correlations of the cylindrical noise, enumerated in increasing order of
eigenvalue by the subscript j. In terms of the Lie-dual operation δξj and the exterior differential
operator d, we define the Lie–Laplacian operator �Lie by∑

j

£ξj (£ξj q) =
∑

j

(δξj d + dδξj )q =:�Lieq. (3.4)

Proposition 3.2. The Lie Laplacian operator �Lie commutes with the exterior differential operator d.
That is,

[�Lie, d] =�Lied − d�Lie = 0. (3.5)
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Proof. This commutation relation follows immediately from the definition of the Lie Laplacian
operator �Lie in (3.4) and the property of the exterior differential that d2q = 0 when acting on a
differentiable k-form q. It also follows from the definition (3.4) because Lie derivatives commute
with exterior derivatives. �

Remark 3.3 (Derivation of the Lie Laplacian operator in equation (3.2)). Let us seek the Itô
form of the stochastic part of the Stratonovich evolution in (3.1), ignoring drift. The stochastic part
of the process in (3.1) can be written as a linear differential operator

dq(x, t) = £ξ (x)q(x, t) ◦ dW(t), (3.6)

in which we have ignored the drift term and suppressed indices on the vector fields ξi(x) for
simplicity of notation. Upon pairing this equation with a time independent test function φ(x) ∈ V∗,
we find the weak form of the Stratonovich advection equation (3.6),

d〈φ(x), q〉V = 〈φ(x), dq〉V = 〈φ(x), £ξ (x)q ◦ dW(t)〉V = 〈£T
ξ (x)φ(x), q〉V ◦ dW(t), (3.7)

where we have taken advantage of the parametric x-dependence in φ(x) to pass the evolution
operation d through it in the first step. Here, 〈φ, q〉V = ∫

<φ(x), q(x, t)> dx denotes L2 integral
pairing of a quantity q ∈ V with its tensor dual φ ∈ V∗ in the domain of flow, the symbol £T

ξ (x)
is the L2 adjoint of the Lie derivative £ξ (x), and 〈·, ·〉 denotes pairing between elements of V and
their dual elements in V∗ at each point x in the domain. The corresponding weak form of the Itô
evolution is

d〈φ, q〉V = 〈£T
ξ (x)φ, q〉V dW(t) + 1

2 [d〈£T
ξ (x)φ, q〉V , dW(t)].

By equation (3.7) = 〈£T
ξ (x)φ, q〉V dW(t) + 1

2 [〈£T
ξ (x)(£

T
ξ (x)φ), q〉V dW(t), dW(t)]

= 〈φ, £ξ (x)q〉V dW(t) + 1
2 [〈φ, £ξ (x)(£ξ (x)q)〉V dW(t), dW(t)]

= 〈φ, £ξ (x)q〉V dW(t) + 1
2 〈φ, £ξ (x)(£ξ (x)q)〉V dt, (3.8)

Hence, because φ(x) ∈ V∗ was chosen arbitrarily, the Itô form of the Stratonovich stochastic
advection equation for q ∈ V in (3.1) is

dq + £uq dt =
∑

i

(£ξi(x)q) dWi(t) + 1
2

∑
i,j

£ξj(x)(£ξi(x)q)[dW(t)i, dWj(t)]. (3.9)

For Brownian motion, the last term in (3.9) simplifies via [dWi(t), dWj] = δij dt, and the middle
equation in (3.2) emerges. Note that the last term in (3.9) (the quadratic Itô term) cannot be written
as a Lie derivative of the Stratonovich-advected quantity q. Instead, it is a double Lie derivative,
and this has the effect of masking the interpretation of the q-evolution in Itô form as advection.

4. Abstract Kelvin theorem

(a) Stratonovich circulation theorem
Next, we shall define the circulation map K : C × V∗ → X(D)∗∗, where C is a space of material loops,
for which c ∈ C satisfies

dc(t) = −£dxt c(t). (4.1)

Given a 1-form density m ∈ X∗ we can create a 1-form (no longer a density) by dividing it by the
mass density, D. We denote the result just by m/D. We let the circulation map K then be defined
by the integral of the 1-form m/D around a loop moving with the Stratonovich flow,

〈K(c(t), q(t)), m〉 =
∮

c(t)

m
D

. (4.2)
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The expression in this definition is called the circulation of the 1-form m/D around the loop c(t)
moving along a Stratonovich stochastic path xt(x0) with Eulerian velocity vector field dxt given as
in equation (1.3),

dxt = u(x, t) dt −
∑

i

ξi(x) ◦ dWi(t). (4.3)

Consider the stochastic flow equation for the loop integral
∮

c(t) m/D. The differential of this loop
integral is the total differential of the integrand, as the loop c(t) itself is moving with the stochastic
flow as in (4.1). Consequently, we find

d
∮

c(t)

m
D

=
∮

c(t)
(d + £dxt )

(m
D

)
=

∮
c(t)

1
D
δ�

δq

 q dt, (4.4)

where we have used equation (2.2) in theorem 2.1 as well as the advection relation for density D,

dD = −£dxt D = −£u(x,t)D dt +
∑

i

£ξi(x)D ◦ dWi(t).

This calculation has proven the following theorem for the Kelvin–Noether circulation map I:
C × V∗ × X → R defined by:

I(t) = I(c, q, u) :=
〈
K(c, q),

δl
δu

(u, q)
〉

. (4.5)

Theorem 4.1 (Abstract Kelvin–Noether theorem for Stratonovich Euler–Poincaré SPDEs).
For c(t) ∈ C, let u(t), q(t) satisfy the reduced Stratonovich Euler–Poincaré SPDEs in (2.2) in theorem 2.1.
Choose the map K : C × V∗ → X∗∗ given by integration around a loop c(t) satisfying (4.1). Then the
Kelvin–Noether circulation map in (4.5) satisfies

dI(t) =
〈
K(t),

1
D
δl
δq


 q
〉

dt. (4.6)

Remark 4.2. Upon using the definition (4.2) for the Kelvin–Noether quantity in equation (4.5),
one recovers the explicit formula (4.4) from the abstract Kelvin–Noether theorem in (4.6).

In particular, in the case of incompressible flow where q = D = 1 (volume preservation) and
δl/δq = 0 for q �= D, then the Kelvin–Noether circulation map in (4.5) is conserved, as upon using
the definitions of the circulation in (4.2) and the diamond operation in (1.15) we find,

d
∮

c(t)

δ�(u)
δu

=
∮

c(t)
(d + £dxt )

δ�(u)
δu

= 0, (4.7)

for any co-moving loop c(t), i.e. any loop satisfying equation (4.1), with stochastic vector field dxt

defined in (4.3).

(b) Itô circulation theorem
As we have seen in equation (4.4), the Kelvin circulation theorem for the Stratonovich case is,

d
∮

c(t)

1
D
δ�

δu
=

∮
c(t)

1
D
δ�

δq

 q dt, (4.8)

for loops c(t) satisfying equation (4.1) with the stochastic path velocity vector field dxt defined
in (4.3).

For the Itô case, according to equation (3.2) this circulation law becomes

d
∮

ĉ(t)

1
D
δ�

δu
=

∮
ĉ(t)

1
D
δ�

δq

 q +

∮
ĉ(t)

1
2

∑
i,j

£ξj(x)

(
£ξi(x)

1
D
δ�

δu

)
δij dt, (4.9)

for loops ĉ(t) following paths generated by flows of the Itô stochastic vector field dx̂t given in
equation (1.11).
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Hence, the Itô equations have extra sources of circulation, even in the absence of advected
quantities, q. In particular, the Kelvin–Noether result in theorem 4.1 shows that circulation is
conserved for loops moving along the stochastic Stratonovich path when the advected quantities q
are absent. However, not unexpectedly, because the velocities of the loops c(t) and ĉ(t) are different,
the Kelvin–Noether theorem shows that circulation is conserved only for loops moving along the
stochastic Stratonovich path, c(t), and this conservation is masked in the Itô representation, because
it does not hold for loops moving along the stochastic Itô path, ĉ(t), and the quadratic covariation
terms cannot be expressed as a single Lie derivative operation. Thus, as viewed along the Itô path,
ĉ(t), misalignment of the correlation eigenvectors creates or destroys circulation.

5. Examples

(a) Stratonovich stochastic fluid flows without advected quantities
(i) Stratonovich stochastic Euler–Poincaré flows

The Stratonovich form of the stochastic Euler–Poincaré equations (2.2) in theorem 2.1 is, in the
absence of advected quantities,

dv + £dxtv= −dp dt, (5.1)

in which bold d denotes the differential in the standard exterior calculus sense, while italic d
still denotes the stochastic change, including both the drift and the stochastic process. Here the
variational derivative v = δ�/δu ∈Λ1 is the momentum 1-form dual to the velocity vector field.
The divergence-free velocity vector field u = u · ∇ ∈ X(R3) in the covariant basis defined by the
spatial gradient (∇) has vector components also written in bold as u ∈ R

3 which satisfy div u = 0.
In fact, we shall assume that div ξ i = 0 with ξ i ∈ R

3, also, so we may write the divergence of the
stochastic path in equation (4.3) in vector form as

div(dxt) = 0, with dxt = u(x, t) dt −
∑

i

ξ i(x) ◦ dWi(t). (5.2)

This means the stochastic flow of the vector field dxt preserves volume elements. In this case,
we may define the variational derivative 1-form density δ�/δu in Eulerian spatial coordinates as
simply the 1-form

v := δ�

δu
= v · dx.

The Lie derivative in equation (5.1) is then written in vector form, so that equation (5.1) becomes

(dv) · dx + £dxt (v · dx) = (dv + dxt · ∇v + (∇dxt)T · v) · dx = −∇p · dx dt.

In three-dimensional vector form, this equation is

dv + dxt · ∇v + (∇dxt)T · v = −∇p dt

= dv − dxt × curl v + ∇(dxt · v). (5.3)

Taking the curl of equation (5.3) yields the stochastic equation for the vorticity ω = curl v

dω − curl(dxt × ω) = 0. (5.4)

We define the vorticity flux as a 2-form ω with basis area element dS as

ω := dv = d(v · dx) = (curl v) · dS = ω · dS. (5.5)

Consequently, we may write the vorticity vector equation (5.4) in geometric form as

dω + £dxtω= 0. (5.6)

This equation also follows directly from the exterior derivative of the geometric form of the
motion equation in (5.1) by invoking commutation of the Lie derivative and the exterior
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derivative. It means the flux of vorticity ω · dSt through a surface element following the stochastic
path x = xt(x0) is invariant. For an alternative formulation of the stochastic fluid vorticity
equations in terms of a nonlinear version of the Feynman–Kac formula, see [31].

Remark 5.1 (Itô stochastic Euler–Poincaré equations). The Itô forms of the motion equation in
(5.1) and vorticity equation (5.6) for incompressible motion in the absence of advected quantities
are given by

dv + £dx̂t
v= −dp + 1

2

∑
i,j

£ξj(x)(£ξi(x)v)δij dt

and dω + £dx̂t
ω= 1

2

∑
i,j

(£ξj(x)(£ξi(x)ω))δij dt,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.7)

where the vorticity 2-form ω= ω · dS is given in (5.5), and we have used commutation of exterior
derivative d and Lie derivative £ξj(x) twice.

(ii) Helicity preservation for Stratonovich stochastic Euler–Poincaré flows

Definition 5.2 (Helicity). The helicity Λ[curl v] of a divergence-free vector field curl v that is
tangent to the boundary ∂D of a simply connected domain D ∈ R

3 is defined as

Λ[curl v] =
∫

D
(v · curl v)d3x, (5.8)

where v is a divergence-free vector-potential for the field curl v and d3x is the spatial volume
element.

Remark 5.3. The helicity of a vector field curl v measures the average linking of its field lines, or
their relative winding. For excellent historical surveys refer to Arnold & Khesin [32] and Moffatt &
Tsinober [33] . The helicity is unchanged by adding a gradient to the vector v, and div v = 0 is not
a restriction for simply connected domains in R

3, provided curl v is tangent to the boundary ∂D.

The principal feature of this concept for Stochastic Euler flows is embodied in the following
theorem.

Theorem 5.4 (Stratonovich stochastic Euler flows preserve helicity). When homogeneous or
periodic boundary conditions are imposed, Euler’s equations for an ideal incompressible fluid flow preserves
the helicity, defined as the volume integral

Λ[curl v] =
∫

D
v · curl vd3x =

∫
D
v ∧ dv, (5.9)

where v = δ�/δu = v · dx is the circulation 1-form, dv = curl v · dS is the vorticity flux (a 2-form),
curl v = ω is the vorticity vector and d3x is the spatial volume element.

Proof. Rewrite the geometric form of the Stochastic Euler equations (5.1) for rotating
incompressible flow with unit mass density in terms of the circulation 1-form v := v · dx as

dv + £dxtv= −dp dt. (5.10)

and £dxt d
3x = div(dxt)d3x = 0. Then the helicity density, defined as

v ∧ dv = (v · curl v)d3x = λd3x, with λ= v · curl v, (5.11)
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obeys the dynamics it inherits from the Stochastic Euler equations,

(d + £dxt )(v ∧ dv) = −(dp ∧ dv) dt − (v ∧ d2p) dt = −(d(p dv)) dt, (5.12)

after using d2p = 0 and d2v = 0. In vector form, this result may be expressed as a conservation law,

(dλ+ div λ dxt) d3x = −div(p curl v)d3x dt. (5.13)

Consequently, the time derivative of the integrated helicity in a domain D obeys

dΛ[curl v] =
∫

D
(dλ)d3x = −

∫
D

div(λ dxt + p curl v dt)d3x

= −
∮
∂D

(λ dxt + p curl v dt) · n̂ dS, (5.14)

which vanishes when homogeneous or periodic boundary conditions are imposed on ∂D. �

Corollary 5.5 (The Itô representation of stochastic Euler flows masks the Stratonovich
preservation of helicity).

Proof. Equation (5.7) for Itô Euler–Poincaré incompressible flow yields, for ω= dv as before,

(∂t + £dx̂t/dt)(v ∧ ω) = (−dp + 1
2�Liev) ∧ ω + v ∧ 1

2�Lieω

= −d(pω + v ∧ 1
2�Liev) + v ∧�Lieω. (5.15)

In vector form, the last equation in (5.15) may be integrated over space and written as

d
dt

∫
D

(v · ω)d3x = −
∫

D
div

(
(v · ω)

dx̂t

dt
+ pω + 1

2
v ×�Lieω

)
d3x +

∫
D

(v ·�Lieω)d3x. (5.16)

�

Remark 5.6. Hence, even for homogeneous or periodic boundary conditions, in which the
integral of the divergence would vanish, there remains a non-vanishing term on the right-
hand side of equation (5.16) for the Itô evolution of the helicity, due to the additional
quadratic drift term arising in the Itô calculus. Thus, the Itô stochastic dynamics appears to
predict reconnection of vorticity field lines, although their linkages are actually preserved in the
Stratonovich representation. Hence, as usual, one must take caution in drawing conclusions about
stochastic fluid dynamics, because some of its features may be representation-dependent.

(b) The effects of advected quantities
In this section, we compute the explicit formulae needed in applications of the system of stochastic
equations in (2.2) for the vector space V of three-dimensional quantities q ∈ V consisting of
elements with the following coordinate functions in three-dimensional Euclidean vector notation,

q ∈ {b, A · dx, B · dS, Dd3x} =: V. (5.17)

Dual quantities under the L2 pairing are (b, Dd3x) and (A · dx, B · dS). The vector space V contains
the geometric quantities that typically occur in ideal continuum dynamics. These are scalar
functions (b), 1-forms (A · dx), 2-forms (B · dS) and densities (Dd3x) in three dimensions. In
addition, with applications to magnetohydrodynamics (MHD) in mind, we also choose B =
curl A and d(A · dx) = B · dS. In Euclidean coordinates on R

3, this is d(Ak dxk) = Ak,j dxj ∧ dxk =
1
2 εijkBi dxj ∧ dxk, where εijk is the completely antisymmetric tensor density on R

3 with ε123 = +1.
The 2-form B·dS = d(A · dx) is the physically interesting special case of Bkj dxj∧ dxk for MHD, in
which Bkj = Ak,j, so that ∇ · B = 0.

Definition 5.7 (Deterministic advection relations for q ∈ V in (5.17)). The deterministic
advection relations ∂tq = −£uq for the quantities q ∈ V in (5.17) are given explicitly by the
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Lie-derivative action of smooth vector fields u ∈ X(R3) on the vector space of variables q ∈ V.
These deterministic advection relations are given by

∂tb = −£ub = −u · ∇b,

∂tA · dx = −£u(A · dx) = −((u · ∇)A + Aj∇uj) · dx

= (u × curlA − ∇(u · A)) · dx,

∂tB · dS = −£u(B · dS) = (curl (u × B)) · dS = d(∂tA · dx)

and ∂tD d3x = −£u(Dd3x) = −∇ · (Du)d3x.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.18)

The diamond operation. The diamond operation (
) : T∗V → X∗ is defined for (q, p) ∈ T∗V and
u ∈ X(R3) by equation (1.15) as

〈p 
 q, u〉X = 〈p, −£uq〉V , (5.19)

for the L2 pairings 〈·, ·〉V : T∗V × TV → R and 〈·, ·〉X : X∗ × X → R with p 
 q ∈ X∗. Under the L2

pairing, we assume that boundary terms arising from integrations by parts may be dropped, by
invoking natural boundary conditions.

In particular, for the set of advected quantities q ∈ V in (5.17) above, we find the following
Euclidean components of the sum of terms δ�/δq 
 q in the motion equation (2.2), for stochastic
EP equations,(

δ�

δq

 q
)

k
= − δ�

δb
(∇b)k + D

(
∇ δ�

δD

)
k
+
(

− δ�

δA
× curl A + A div

δ�

δA
+ B × curl

δ�

δB

)
k

. (5.20)

With these definitions, one may write explicit formulae for the fluid examples needed in
applications of the system of stochastic equations in (2.2) for deterministic advected quantities
q in the vector space V of three-dimensional quantities in (5.17). These applications include, for
example, GFD and magnetohydrodynamics (MHD). The applications of the present theory to
MHD will be pursued elsewhere. In this paper, we restrict ourselves to examples from GFD.

(c) Stochastic geophysical fluid dynamics
(i) Euler–Boussinesq approximation

Stochastic Euler–Boussinesq equations of a rotating stratified incompressible fluid. In SGFD, the SEP
equations in (2.2) are found in the Euler–Boussinesq approximation, for example, by choosing the
Lagrangian �(u, b, D) depending on the set q ∈ {b, D} and given by [34]

�(u, b, D) =
∫

D
2

|u|2 + Du · R − gbDz − p(D − 1)d3x, (5.21)

where u is fluid velocity, D is the volume element, 2Ω = curlR(x) is the Coriolis vector, while
R(x), a given function of x is its vector potential, g is the constant gravitational acceleration, b is
buoyancy and the pressure p is a Lagrange multiplier which enforces D = 1, so that div u = 0. The
GFD Lagrangian (5.21) possesses the following variations at fixed x and t,

m
D

= 1
D
δl
δu

= u + R(x),
δl
δb

= −Dgz

and
δl
δD

= 1
2
|u|2 + u · R − gzb − p,

δl
δp

= −(D − 1).

⎫⎪⎪⎬
⎪⎪⎭ (5.22)

Hence, from the SEP equations in (2.2), we find the motion equation for an Euler–Boussinesq fluid
in three dimensions,

du + £dxt (u + R(x)) = −gb∇z dt + ∇(−p + 1
2 |u|2 + u · R) dt and db + £dxt b = 0, (5.23)
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with dxt given as before in (1.3) and (4.3).3 Consequently, we find the stochastic advection law,

(d + £dxt )Q = dQ + dxt · ∇Q = 0, (5.24)

for the potential vorticity, Q, defined by its traditional formula,

Q := curl(u + R(x)) · ∇b, (5.25)

where the total vorticity ω= curl(u + R(x)) satisfies

dω= curl(dxt × ω) − g∇b × ∇z dt, with db + dxt · ∇b = 0. (5.26)

These results are implied by the Stratonovich circulation theorem in §4a. The stochastic
conservation law for the potential vorticity Q in equation (5.24), means that Q is preserved along
each Stratonovich stochastic path.

Itô form of the potential vorticity equation. The interpretation of the Itô form of the potential
vorticity equation (5.24) may be obtained by expanding it out using the Itô equations in (3.2).
Indeed, the Itô form of the Stratonovich equation (5.24) for potential vorticity Q is the precisely the
same as the double Lie-derivative formula for the advected quantity q in equation (3.2); namely,

dQ + £dx̂t
Q dt = 1

2

∑
i,j

£ξj(x)(£ξi(x)Q)δij dt, (5.27)

or, in vector calculus form,

dQ + dx̂t · ∇Q = 1
2

∑
i,j

ξ j(x) · ∇(ξ i(x) · ∇Q)δij dt. (5.28)

Upon comparing equations (5.24) and (5.28), one concludes that the stochastic Euler–
Boussinesq equations (5.23) in three dimensions preserve the potential vorticity Q defined in
equation (5.25) along the Stratonovich stochastic path xt(x) but Q preservation is masked in the
Itô representation, because Q is not preserved along the Itô stochastic path x̂t(x), which of course
is a different path. The operator �Lie in the last term in the Itô equation (5.28) reduces to the
metric Laplacian �= ∇2 in the case that the vectors ξ j with j = 1, 2, 3, are linearly independent
unit vectors in three dimensions.

(ii) Quasi-geostrophic approximation

Deterministic quasi-geostrophic equations. The quasi-geostrophic (QG) approximation is a
fundamental model which is often used for the analysis of meso- and large-scale motion in
geophysical and astrophysical fluid dynamics [35]. Physically, the QG approximation applies
when the motion is nearly in geostrophic balance, i.e. when pressure gradients nearly balance
the Coriolis force. In the simplest case of a barotropic fluid in a domain D on the plane R

2

with coordinates (x1, x2), geostrophic balance determines the geostrophic fluid velocity u as
u := ẑ × ∇ψ , where ψ is the stream-function, the flow is incompressible (∇ · u = 0) and ẑ is the
unit vector normal to the plane.

The QG dynamics in the β-plane approximation is expressed by the following evolution
equation for the stream-function ψ of the geostrophic fluid velocity u,

∂(�ψ − Fψ)
∂t

+ [ψ ,�ψ]Jac + β
∂ψ

∂x1
= 0, (5.29)

where ∂/∂t is the partial time derivative, � is the planar Laplacian, F denotes rotational Froude
number, the square bracket [·, ·]Jac denotes

[a, b]Jac := ∂(a, b)
∂(x1, x2)

= ẑ · ∇a × ∇b, (5.30)

3In this section, we distinguish between a vector field dxt ∈ X(R3) and its vector representation in a Cartesian basis, dxt ∈ R
3.

For example, with this notation one may write dxt = dxt · ∇.
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which is the Jacobi bracket (Jacobian) for functions a and b on R
2, and β is the x2-gradient of the

Coriolis parameter, f , taken as f = f0 + βx2 in the β-plane approximation, with constants β and f0.
Neglecting β gives the f -plane approximation.

The QG equation (5.29) may be derived from the basic equations of rotating shallow water flow
by rescaling to define non-dimensional variables and making an asymptotic expansion in terms
of the Froude number given by the square of the ratio of the characteristic scale of the motion to
the deformation radius, e.g. Pedlosky [35], Allen & Holm [36] and Zeitlin & Pasmenter [37], for
details of the QG derivation.

Equation (5.29) may be written alternatively as an advection law for the potential vorticity, Q,

∂Q
∂t

= −u · ∇Q = −ẑ × ∇ψ · ∇Q, where Q :=�ψ − Fψ + f . (5.31)

This form of QG dynamics emphasizes its basic property; namely, potential vorticity Q is
conserved on geostrophic fluid parcels.

Much is known about the mathematical structure of the deterministic QG equations (5.29) and
(5.31). In particular, they are Hamiltonian with a Lie–Poisson bracket given in Weinstein [38] as

{F, H} = −
∫

Q
[
δF
δμ

,
δH
δμ

]
Jac

dx1 ∧ dx2, (5.32)

where μ := Q − f and the square bracket [·, ·]Jac is the Jacobi bracket in (5.30). In terms of the
variable μ, the Hamiltonian for QG is expressed as

H = 1
2

∫
D

(|Vψ |2 + Fψ2) dx1 ∧ dx2 = 1
2

∫
D
μ(F −�)−1μ dx1 ∧ dx2 + 1

2

∑
i

∮
γi

ψu · dx, (5.33)

where γi is the ith connected component of the boundary ∂D. In what follows, we will discuss
cases where the domain D is either a torus (periodic boundary conditions) or the whole plane R

2

with decaying boundary conditions and, thus, the boundary terms may be ignored. Hence, we
may write the Hamiltonian in terms of the L2 pairing 〈·, ·〉L2 as

H(μ) = 1
2
〈μ, (F −�)−1μ〉L2 with

δH
δμ

= (F −�)−1μ=ψ . (5.34)

Consequently, the Lie–Poisson bracket (5.32) gives, after integration by parts, the dynamical
equation for μ,

∂μ

∂t
= {μ, H} = −[ψ , Q]Jac = −u · VQ, (5.35)

in agreement with the QG potential vorticity equation (5.31). Casimirs of the Lie–Poisson bracket
(5.32) are given by

CΦ =
∫
Φ(Q) dx1 ∧ dx2, (5.36)

for an arbitrary function Φ and they satisfy {CΦ , H} = 0 for all Hamiltonians H(μ). Level surfaces
of the Casimirs CΦ define coadjoint orbits of the group of symplectic diffeomorphisms of the
domain of the flow [38].

Stochastic quasi-geostrophic equations. The SQG may be derived by applying the Lie–Poisson
structure in (5.32) to a stochastic Hamiltonian. Thus, to introduce stochastic forcing into the QG
equations, we propose to augment the QG Hamiltonian in (5.34) with a Stratonovich stochastic
term, as

h dt =
〈
μ,

1
2

(F −�)−1μ dt −
∑

i

ξi(x) ◦ dWi

〉
L2

, (5.37)

in which the {ξi(x)} are prescribed spatial functions. The variational derivative of the augmented
QG Hamiltonian in (5.37) yields the Stratonovich stochastic stream function

δh
δμ

dt =ψ(x, t) dt −
∑

i

ξi(x) ◦ dWi =:Ψ dt. (5.38)
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Consequently, the Lie–Poisson bracket (5.32) gives, after integration by parts, the dynamical
equation for μ,

dμ= {μ, h dt} = −[Ψ dt, Q]Jac = −[ψ , Q]Jac dt +
∑

i

[ξi(x), Q]Jac ◦ dWi = −dxt · ∇Q, (5.39)

in which, cf. equation (4.3),

dxt := ẑ × ∇Ψ dt = ẑ × ∇
(
ψ dt −

∑
i

ξi(x) ◦ dWi

)
= u dt −

∑
i

(ẑ × ∇ξi(x)) ◦ dWi. (5.40)

This result is in agreement with the advection law in the stochastic equation (5.24) for potential
vorticity in the Euler–Boussinesq approximation, provided we identify ẑ × ∇ξi(x) for these
stochastic QG equations with the R

3 vector functions ξ i(x) for the stochastic Euler–Bouusinesq
equations in the previous example.

Of course, the Casimirs of the Lie–Poisson bracket (5.32) given by CΦ = ∫
Φ(Q) dx1 ∧ dx2 for an

arbitrary functionΦ are still conserved along the Stratonovich stochastic path, since this property
holds for the Lie–Poisson bracket, independently of the choice of a stochastic Hamiltonian.

Itô form. The Itô form of equation (5.39) is,

dμ= −
[
ψ dt −

∑
i

ξi(x) dWi, Q

]
Jac

+ 1
2

∑
j

[ξj(x), [ξj(x), Q]Jac]Jac dt, (5.41)

where we have assumed that the Itô stochastic processes dWi(t) and dWj(t) are Brownian
processes, whose quadratic covariations satisfy [dWi(t), dWj(t)] = δij dt [16]. This SQG version
of the Itô dynamics for potential vorticity Q is reminiscent of potential vorticity dynamics for
dissipative QG with viscosity.

6. Conclusion
The stochastically constrained variational principle δS = 0 for the action S given in (1.1) for
introducing Stratonovich stochasticity into Euler–Poincaré equations for continuum dynamics
has yielded stochastic incompressible flows that were found to preserve three important
properties of ideal incompressible Euler flows which arise from its invariance under relabelling
of Lagrangian coordinates. These three properties are: (i) the Kelvin circulation theorem in
equation (4.7), (ii) invariance of the flux of vorticity in (5.6) through any surface element following
the Stratonovich stochastic path xt in (4.3), and (iii) preservation of the linkage number for
the vorticity field lines (helicity) in theorem 5.4. The Kelvin circulation theorem is preserved
because the material fluid loops follow the Stratonovich stochastic paths, as do the field lines
of the vorticity, so all three results follow from the same interpretation. Likewise, the stochastic
conservation law for the potential vorticity Q, found in equation (5.24) for the Euler–Boussinesq
equations with Stratonovich noise, meant that Q was preserved along each Stratonovich stochastic
path. The same type of potential vorticity preservation along Stratonovich stochastic paths was
found again for the case of SQG in §5c(ii).

By contrast, the Itô representation of the stochastic equations involved a different stochastic
vector field dx̂t in (1.11) whose drift velocity contained the additional quadratic term that arises
in Itô calculus. This quadratic Itô drift velocity introduced terms that were not present in the
Stratonovich stochastic equations and could not be expressed as single Lie derivatives. As a result,
the Itô representation masked the preservation of ideal incompressible Euler flow properties and
conservation of potential vorticity which was found to hold in the Stratonovich case.

The Itô drift term turned out to contain an interesting Laplacian-like operator, �Lie, defined in
equation (3.4) by a sum over double Lie derivatives with respect to the POD vector fields, ξj(x),
j = 1, 2, . . . , K, as �Lie :=∑

j £ξj(x)(£ξj(x)·), which we called the Lie Laplacian operator, since £ξj(x)
denotes the Lie derivative with respect to the vector field ξj(x). This term is the generalization for
advected quantities q ∈ V, in an arbitrary vector space V, of the quadratic covariation drift term



18

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140963

...................................................

found already for scalar densities by Stratonovich [30]. The Lie Laplacian operator appearing, for
example, in the Itô representation of the stochastic fluid equations (3.2) is not a standard Laplacian
operator, although it reduces to the metric Laplacian when the independent vector fields ξj(x) for
stochastic spatial correlations are constant and j = 1, 2, 3. It would be interesting to know whether
(because of its relation to the metric Laplacian) the Lie Laplacian operator in the Itô representation
could have a regularizing effect on stochastic fluid equations which might otherwise be ill-posed,
as suggested in Flandoli et al. [17,18].
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