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Abstract— Real-time cine cardiac MRI provides an ECG-free
free-breathing alternative to clinical gold-standard ECG-gated
breath-hold segmented cine MRI for evaluation of heart func-
tion. Real-time cine MRI data acquisition during free breathing
snapshot imaging enables imaging of patient cohorts that cannot
be imaged with segmented or breath-hold acquisitions, but
requires rapid imaging to achieve sufficient spatial-temporal
resolutions. However, at high acceleration rates, conventional
reconstruction techniques suffer from residual aliasing and
temporal blurring, including advanced methods such as com-
pressed sensing with radial trajectories. Recently, deep learning
(DL) reconstruction has emerged as a powerful tool in MRI.
However, its utility for free-breathing real-time cine MRI has
been limited, as database-learning of spatio-temporal corre-
lations with varying breathing and cardiac motion patterns
across subjects has been challenging. Zero-shot self-supervised
physics-guided deep learning (PG-DL) reconstruction has been
proposed to overcome such challenges of database training by
enabling subject-specific training. In this work, we adapt zero-
shot PG-DL for real-time cine MRI with a spatio-temporal
regularization. We compare our method to TGRAPPA, lo-
cally low-rank (LLR) regularized reconstruction and database-
trained PG-DL reconstruction, both for retrospectively and
prospectively accelerated datasets. Results on highly accelerated
real-time Cartesian cine MRI show that the proposed method
outperforms other reconstruction methods, both visibly in terms
of noise and aliasing, and quantitatively.

I. INTRODUCTION

Real-time cine cardiac MRI is a free-breathing and ECG-
free alternative to gold-standard ECG-gated and breath-
hold cine MRI for functional and volumetric assessment
of the heart to diagnose cardiovascular diseases [1]. ECG-
gated acquisitions require breath-hold imaging to minimize
respiratory motion artifacts, but it may fail in patients with
arrhythmias or difficulty breath-holding, and is not possible
during exercise stress [2]. On the other hand, real-time cine
MRI does not require ECG gating or breath-holding, which
appeals to a more general patient cohort [3]. However, to
achieve sufficient spatio-temporal resolutions, highly accel-
erated data acquisition is needed. This imposes significant
challenges for subsequent image reconstruction.

Previous approaches to real-time cine MRI utilize parallel
imaging in conjunction with Cartesian [4], [5] or non-
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Cartesian trajectories, especially radial imaging [6]. Subse-
quently, compressed sensing (CS) with radial sampling was
used to further improve spatio-temporal resolution [7]. Yet,
at very high acceleration rates, CS reconstruction may suffer
from residual aliasing artifacts and blurring [8]. Recently
physics-guided deep learning (PG-DL) reconstruction has
emerged as a powerful method for highly-accelerated MRI,
improving on parallel imaging and CS [9]–[12]. The utility
of DL reconstruction in real-time cine MRI has so far been
limited to data-driven image enhancement approaches that
learn a mapping between aliased and artifact-free images
[13], [14]. However, learning a spatio-temporally regularized
reconstruction for free-breathing real-time cine MRI has its
own challenges, particularly due to the varying breathing and
cardiac motion patterns between subjects, along with a lack
of fully-sampled reference data for highly-accelerated scans.

In this study, we propose to use subject-specific zero-
shot self-supervised PG-DL [15] without a training database
or ground-truth data to improve highly accelerated real-
time Cartesian cine MRI. The proposed PG-DL network
operates on the subject of interest using spatio-temporal
regularization. The proposed approach was compared with
TGRAPPA [4], locally-low-rank (LLR) regularized recon-
struction [16] and database-trained self-supervised PG-DL
[12] with both retrospectively and prospectively accelerated
datasets. Results show that the subject-specific zero-shot
PG-DL reconstruction substantially improves upon other
methods, showing excellent image quality compared to base-
line images while preserving temporal fidelity. Results on
retrospectively highly-accelerated real-time cine MRI show
that the proposed method improves on existing methods in
terms of PSNR (up to 35.98% gain) and SSIM (up to 39.29%
gain) when compared to standard acceleration. Additionally,
our approach establishes the feasibility of real-time Cartesian
cine MRI with 8-fold prospective acceleration that matches
the spatio-temporal resolution of breath-hold cine MRI.

II. METHODS

A. Physics-Guided Deep Learning MRI Reconstruction

Regularized MRI reconstruction is formulated as:

x̂ = argmin
x

||yΩ −EΩx||22 +R(x), (1)

where x is the image of interest, yΩ is the acquired multi-
channel k-space with Ω is the undersampling pattern, EΩ is
the multi-coil encoding operator and R(·) is the regularizer.
PG-DL methods typically solve Eq. 1 by algorithm unrolling
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that alternates between conventional data-fidelity (DF) with
acquired k-space and a proximal operator that is implicitly
implemented via neural networks. Among various techniques
to decouple the DF and regularizer terms [17], proximal
gradient descent alternates between:

z(i) = argmin
z

||x(i−1) − z||22 +Rz, (2)

x(i) = x(i−1) + µEH
Ω (yΩ −EΩx), (3)

where z is an auxiliary variable at the the ith iteration and
µ is penalty term. These networks are typically trained end-
to-end in a supervised manner using reference images [11].

B. Database-free Self-supervised PG-DL Reconstruction

Several unsupervised learning strategies have been pro-
posed to tackle the challenges associated with the end-to-
end supervised training of unrolled networks that require
reference data [18]. Among these, self-supervised learning
strategies have been utilized in various applications [12],
[19]–[21]. Nonetheless, these require a database for training,
which is hard to curate for real-time cine MRI due to
breathing pattern differences among subjects. Recently, zero-
shot self-supervised learning via data undersampling (ZS-
SSDU) has been proposed to enable database-free training
of PG-DL reconstructions [15]. ZS-SSDU splits the acquired
k-space locations, Ω, into three disjoint sets. First two sets
are similar to database-trained SSDU [12]: Ω used in the data
fidelity units of the unrolled network, Λ used to define self-
supervised loss. The third set Γ defines self-validation loss
to determine an early stopping criteria and avoid overfitting.
Using multi-mask data-augmentation strategy [22], the ZS-
SSDU training loss is given as:

min
θ

1

K

K∑
k=1

L(yΛk
,EΛk

(f(yΘk
,EΘk

;θ)), (4)

where θ denotes the network parameters, f(yΘk
,EΘk

;θ)
is the network output for input yΛk

and corresponding
forward operator EΛk

, and L(·, ·) is a loss function. This
is supplemented with a self-validation loss on Γ, which is
calculated at each epoch j from the current network weights
specified by θ(j) as follows:

L(yΓ,EΓ(f(yΩ\Γ,EΩ\Γ;θ
(j))). (5)

For single dataset training, the loss in Eq. 4 keeps decreasing.
The training is stopped once the self-validation loss in Eq.
5 starts increasing to avoid overfitting. A schematic of the
ZS-SSDU is depicted in Fig. 1.

III. EXPERIMENTS AND IMPLEMENTATION DETAILS

A. Imaging Experiments

Imaging was performed at 1.5T, first at lower resolution
with mild acceleration to investigate performance in a ret-
rospective acceleration setting, and then at high resolution
with high acceleration to establish translational feasibility.

Fig. 1: A schematic of zero-shot PG-DL reconstruction. Acquired
k-space locations (Ω) are split into three disjoint sets Θ, Λ and
Γ. Θ is used in data-fidelity (DF) units of the unrolled network,
Λ is used to define k-space self-supervised loss, and Γ is used
for k-space self-validation loss to determine a stopping criterion
for subject-specific learning. PG-DL network was unrolled for 10
iterations and a 3D ResNet was used as regularizer (R), with all 50
time-frames as input and 128 channels in hidden layers.

1) Retrospectively Accelerated Datasets: These were ac-
quired on 11 subjects using a bSSFP sequence at accel-
eration R = 4 with a Cartesian TGRAPPA sampling pat-
tern [4]. Relevant imaging parameters: FOV=360×270mm2,
resolution=2.25×2.93mm2, and slice-thickness=8mm (11
slices). These datasets were further retrospectively undersam-
pled to R = 7.2 by sampling every 8th line, while keeping
the closest ky line to central k-space for each time-frame.

2) Prospectively Accelerated High-Resolution Datasets:
These were acquired on 2 subjects using a Cartesian bSSFP
sequence with R = 8 acceleration using TGRAPPA sampling,
along with corresponding breath-hold cine MRI. Relevant
imaging parameters: slice-thickness=8mm (11 slices); real-
time: FOV=360×340mm2, resolution=1.5×1.5mm2, tem-
poral resolution=44ms; ECG-gated: FOV=360×360mm2,
resolution=1.4×1.4mm2, temporal resolution=42ms.

B. Implementation Details

Subject-specific regularization across time-frames was per-
formed using ZS-SSDU [15] using all cardiac cycles. A 3D
PG-DL network was unrolled for 10 iterations with a 3D
ResNet used for the regularizer where 50 time-frames in
its inputs and 128 channels in its hidden layers. Training
was performed with Adam optimizer with a learning rate of
4 · 10−4 and a mixed normalized ℓ1 − ℓ2 loss in k-space
[12]. R adjacent frames were used to generate calibration
data in a sliding-window manner [4], [5], on which coil
sensitivity maps were generated using ESPIRiT. 20% of Ω
was uniformly randomly selected for Γ [15] and K = 100
was used for disjoint training pairs.
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Comparisons were made to TGRAPPA [4], locally-low-
rank (LLR) regularized reconstruction [16] and database-
trained SSDU [12]. TGRAPPA was implemented using 5×4
kernels on calibration data generated from R adjacent frames
[4]. For LLR regularized reconstruction, 8× 8 patches were
used with a thresholding value of 0.1 times the ℓ∞ norm of
the zero-filled image. Additionally, for the lower resolution
datasets, database training with multi-mask SSDU [22] was
used for comparisons. This was trained on 7 subjects using
all available slices and 50 time-frames shifted by 20 frames
with a total of 365 kx-ky-t k-spaces over 100 epochs. It
used the same network architecture as in ZS-SSDU, and
testing was performed on 2 different subjects not used in
training. Database training could not be performed for the
high-resolution datasets due to the small number of training
samples. For lower resolution data, TGRAPPA at standard R
= 4 was used as baseline images for comparisons, and PSNR
and SSIM were calculated with respect to these images.
These were assessed using paired t-test with P < .05
considered significant.

IV. RESULTS

A. Retrospectively Accelerated Datasets

Fig. 2a shows reconstructed time-frames for R = 7.2
accelerated real-time dataset. TGRAPPA reconstruction at
R = 4 acquisition is depicted on the leftmost column for
baseline image quality. At R = 7.2, TGRAPPA shows
residual artifacts and noise amplification, whereas LLR-
regularized reconstruction shows spatio-temporal blurring.
Database-trained SSDU shows substantial residual aliasing
artifacts due to varying spatio-temporal correlations among
subjects in the database. The proposed database-free ZS-
SSDU improves all methods, closely matching the baseline R
= 4 image. Fig. 2b depicts the difference images to baseline
image at R = 4, where proposed methods only show noise-
like differences. Temporal signal intensity profiles are shown
in Fig. 2c, where database-trained SSDU and TGRAPPA
show visible aliasing, while LLR-regularized reconstruction
shows substantial temporal blurring. The proposed method
closely matches with the baseline profile.

Quantitative PSNR and SSIM metrics across all slices and
cardiac cycles for two subjects are in concordance with the
previous visual assessments: Database-trained SSDU has the
lowest PSNR and SSIM (21.58 ± 3.32 (dB), 54.49 ± 13.80
%), followed by TGRAPPA (22.56 ± 1.75, 73.50 ± 4.06 %)
and LLR-regularized reconstruction (28.14 ± 1.29, 81.44 ±
2.83 %). The proposed method outperforms all methods (all
pairwise t-tests: P < 10−4) with substantial gains in PSNR
and SSIM (33.71 ± 1.94, 89.76 ± 2.07 %).

B. Prospectively Accelerated High-Resolution Datasets

Fig. 3a shows a representative reconstructed time-frame
for a prospectively R = 8 accelerated real-time cine MRI
acquisition. ECG-gated breath-hold segmented cine MRI is
shown as baseline image quality on the leftmost column.
As in Section IV-A, TGRAPPA suffers from aliasing, noise
and signal void, and LLR-regularized reconstruction exhibits

Fig. 2: Representative real-time cine MRI results with retrospective
acceleration, along with TGRAPP at acquired R = 4 for visual
baseline. (a) SSDU with database training suffers from severe
aliasing artifacts, TGRAPPA shows residual aliasing and noise
amplification, whereas LLR regularization exhibits blurring and
signal void in the anterolateral segment. Proposed ZS-SSDU at R
= 7.2 substantially improves upon all methods, closely matching
acquisition acceleration R = 4 data. (b) Difference images, with R
= 4 TGRAPPA, align with these observations, where our proposed
ZS-SSDU only shows noise-like artifacts, while all other methods
show structural differences. (c) Temporal signal intensity profiles
across the blood–myocardium boundary (yellow dashed line) show
that proposed ZS-SSDU has similar temporal profiles compared to
R = 4 data, with similar cardiac and respiratory motion profiles.

blurring and signal voids. The proposed ZS-SSDU improves
upon all methods and shows excellent image quality com-
pared to breath-hold cine MRI. Fig. 3b shows temporal signal
intensity profiles, where our proposed ZS-SSDU for R=
8 free-breathing real-time cine MRI closely matches with
baseline profile of breath-hold segmented cine MRI. Note
since these came from different acquisitions, exact alignment
was not possible. Finally, we note database training of PG-
DL reconstruction was not performed due to the small
number of training subjects.

V. DISCUSSION

In this study, we proposed a subject-specific zero-shot
PG-DL reconstruction with spatio-temporal regularization,
which does not require a database to train, for highly-
accelerated free-breathing real-time cine cardiac MRI. The
main advantage of using ZS-SSDU is addressing robustness
and generalizability issues of database-trained models [23]
with regards to variations in subject-specific breathing and
cardiac motions. The proposed approach improved upon a
linear reconstruction, a conventional regularized reconstruc-
tion, and database-trained PG-DL reconstruction with better
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Fig. 3: Representative real-time cine MRI results for a prospectively
R = 8 accelerated high-resolution dataset. Breath-hold ECG-gated
segmented cine MRI from a separete scan is presented on the
leftmost column for visual baseline. (a) TGRAPPA shows aliasing
artifacts and LLR-regularized reconstruction shows signal void and
spatial blurring, while proposed ZS-SSDU shows excellent image
quality, closely matching to breath-hold segmented cine acquisition.
(b) Temporal signal intensity profiles show excellent match between
the proposed method and breath-hold cine, whereas other methods
fail to preserve temporal information.

image quality and reduced aliasing.
The database-trained SSDU in this study is trained on 365

k-spaces with shifted time kernels for data augmentation.
Even with the data augmentation, the results of database-
trained SSDU show residual aliasing indicating database
learning of spatiotemporal correlations is difficult. Moreover,
the results show that when subject-specific breathing patterns
and cardiac motion is presented, database training methods
have poor generalizability. Further studies with improved
spatio-temporal resolutions in a larger cohort are warranted.

VI. CONCLUSIONS

The proposed database-free PG-DL reconstruction en-
abled high-quality spatio-temporal regularization for highly-
accelerated real-time Cartesian cine cardiac MRI, learning
breathing and cardiac motions reliably without temporal
blurring. and improved upon existing techniques, including
database-trained PG-DL.

ACKNOWLEDGMENT

This work was partially supported by NIH R01HL153146,
R21EB028369, P41EB027061, NSF CCF-1651825.

REFERENCES

[1] M. Francone, S. Dymarkowski, M. Kalantzi, and J. Bogaert, “Real-
time cine MRI of ventricular septal motion: a novel approach to assess
ventricular coupling,” J Magn Reson Imaging, vol. 21, no. 3, pp. 305–
309, 2005.

[2] S. Schalla, C. Klein, et al., “Real-time MR image acquisition
during high-dose dobutamine hydrochloride stress for detecting left
ventricular wall-motion abnormalities in patients with coronary arterial
disease,” Radiology, vol. 224, no. 3, pp. 845–851, 2002.

[3] Y. Y. Li, S. Rashid, et al., “Temporospatial characterization of
ventricular wall motion with real-time cardiac MRI in health and
disease,” Sci Rep, vol. 12, no. 1, pp. 4070, 2022.

[4] F. A. Breuer, P. Kellman, M. A. Griswold, and P. M. Jakob,
“Dynamic autocalibrated parallel imaging using temporal GRAPPA
(TGRAPPA),” Magn Reson Med, vol. 53, no. 4, pp. 981–985, 2005.

[5] P. Kellman, F. H. Epstein, and E. R. McVeigh, “Adaptive sensitivity
encoding incorporating temporal filtering (TSENSE),” Magn Reson
Med, vol. 45, no. 5, pp. 846–852, 2001.

[6] N. Seiberlich, P. Ehses, J. Duerk, R. Gilkeson, and M. Griswold,
“Improved radial GRAPPA calibration for real-time free-breathing
cardiac imaging,” Magn Reson Med, vol. 65, pp. 492–505, 2011.

[7] L. Feng, L. Axel, et al., “XD-GRASP: golden-angle radial mri
with reconstruction of extra motion-state dimensions using compressed
sensing,” Magn Reson Med, vol. 75, no. 2, pp. 775–788, 2016.

[8] A. Hauptmann, S. Arridge, F. Lucka, V. Muthurangu, and J. A.
Steeden, “Real-time cardiovascular MR with spatio-temporal artifact
suppression using deep learning–proof of concept in congenital heart
disease,” Magn Rson Med, vol. 81, no. 2, pp. 1143–1156, 2019.

[9] K. Hammernik, T. Klatzer, et al., “Learning a variational network for
reconstruction of accelerated MRI data,” Magn Reson Med, vol. 79,
pp. 3055–3071, 2018.

[10] H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based
deep learning architecture for inverse problems,” IEEE Trans Med
Imaging, vol. 38, no. 2, pp. 394–405, 2018.

[11] F. Knoll, K. Hammernik, et al., “Deep-learning methods for parallel
magnetic resonance imaging reconstruction: A survey of the current
approaches, trends, and issues,” IEEE Sig Proc Mag, vol. 37, no. 1,
pp. 128–140, 2020.

[12] B. Yaman, S. A. H. Hosseini, et al., “Self-supervised learning of
physics-guided reconstruction neural networks without fully sampled
reference data,” Magn Reson Med, vol. 84, pp. 3172–3191, 2020.

[13] M. A. Morales, S. Assana, et al., “An inline deep learning based
free-breathing ECG-free cine for exercise cardiovascular magnetic
resonance,” J Cardiovasc Magn Reson, vol. 24, no. 1, pp. 1–14, 2022.

[14] A. Rehman, P. Kellman, et al., “Convolutional neural network
transformer (CNNT) for free-breathing real-time cine imaging,” Eur
Heart J Cardiovasc Imaging, vol. 23, pp. jeac141–001, 2022.

[15] B. Yaman, S. A. H. Hosseini, and M. Akcakaya, “Zero-shot self-
supervised learning for MRI reconstruction,” in International Confer-
ence on Learning Representations, 2022.

[16] X. Miao, S. G. Lingala, et al., “Accelerated cardiac cine MRI using
locally low rank and finite difference constraints,” Magn Reson
Imaging, vol. 34, no. 6, pp. 707–714, 2016.

[17] J. A. Fessler, “Optimization methods for magnetic resonance image
reconstruction: Key models and optimization algorithms,” IEEE Sig
Proc Mag, vol. 37, no. 1, pp. 33–40, 2020.
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