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Optimization of the 16S rRNA sequencing
analysis pipeline for studying in vitro
communities of gut commensals

Arianna I. Celis,1,2,3 Andrés Aranda-Dı́az,1 Rebecca Culver,4 Katherine Xue,2,3 David Relman,2,3,5 Handuo Shi,1,3,*

and Kerwyn Casey Huang1,3,5,6,*

SUMMARY

While microbial communities inhabit a wide variety of complex natural environ-
ments, in vitro culturing enables highly controlled conditions and high-
throughput interrogation for generating mechanistic insights. In vitro assemblies
of gut commensals have recently been introduced as models for the intestinal mi-
crobiota, which plays fundamental roles in host health. However, a protocol for
16S rRNA sequencing and analysis of in vitro samples that optimizes financial
cost, time/effort, and accuracy/reproducibility has yet to be established. Here,
we systematically identify protocol elements that have significant impact, intro-
duce bias, and/or can be simplified. Our results indicate that community diversity
and composition are generally unaffected by substantial protocol streamlining.
Additionally, we demonstrate that a strictly aerobic halophile is an effective
spike-in for estimating absolute abundances in communities of anaerobic gut
commensals. This time- and money-saving protocol should accelerate discovery
by increasing 16S rRNA data reliability and comparability and through the incor-
poration of absolute abundance estimates.

INTRODUCTION

The gut microbiota plays critical roles in many aspects of health and disease (Manor et al., 2020; Zheng

et al., 2020). Sequencing and the development of associated computational analysis tools (Callahan

et al., 2016) have enabled quantification of the relative abundance of both culturable and unculturable spe-

cies within communities of interest, as well as distinctions between community composition in healthy and

diseased states (Mayer et al., 2014; Shreiner et al., 2015; Sonnenburg and Backhed, 2016). However, mech-

anistic insights that lead to predictions about the microbiota response to perturbations and interventions

remain elusive. While various animal models have increased our understanding of host-microbe interac-

tions (Becker et al., 2011; Faith et al., 2011; Mark Welch et al., 2017; Reyes et al., 2013; Rezzonico et al.,

2011; Turnbaugh et al., 2009), recent studies have employed a complementary approach: multispecies mi-

crobial communities assembled in vitro to study function under highly controlled conditions and in high

throughput (Aranda-Dı́az et al., 2022; Cheng et al., 2021). Such in vitro communities can be highly diverse,

stable, and reproducible, and 16S rRNA gene (hereafter referred to to as ‘‘16S rRNA’’) and metagenomic

sequencing of these communities have been used successfully to predict the response of gut commensals

to antibiotics (Aranda-Dı́az et al., 2022), uncover strain-nutrient interactions (Cheng et al., 2021), and rein-

force or disprove ecological hypotheses (Chang et al., 2021; Goldford et al., 2018; Sanchez et al., 2021).

While these successes attest to the power of surveying community function in this manner, a protocol

for preparing such in vitro samples for sequencing that optimizes cost, time/effort, and accuracy/reproduc-

ibility has yet to be comprehensively established.

Typical library preparation steps include (1) genomic DNA (gDNA) extraction, (2) gDNA normalization, (3)

16S rRNA gene amplification by PCR, (4) PCR-product clean-up and quantification, and (5) normalization of

PCR products and pooling (Figure 1A). Each of these steps involves choices that could affect sequencing

outcomes, and also imposes costs in terms of money and time. After a library is sequenced and sequence

files are demultiplexed, data analysis pipelines involve (1) learning of error rates and sample inference to

identify amplicon sequence variants (ASVs, a proxy for species) and (2) phylogeny assignment using a
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taxonomy reference database (Figure 1B). The dependence of relative abundance quantification within

in vitro communities on analysis parameters and database selection has yet to be established.

Previous studies aimed at identifying how library preparation methodology affects the biological interpre-

tation of 16S rRNA sequencing data reported that choice of DNA extraction kit (Ariefdjohan et al., 2010;

Claassen et al., 2013; Costea et al., 2017; Kennedy et al., 2014), PCR amplification parameters (e.g. enzyme

choice, gDNA input concentration, and number of PCR cycles) (Gohl et al., 2016), and reference database

when annotating ASVs (Balvociute and Huson, 2017) can all be sources of variability. As these studies

focused on stool samples or mock communities with relatively low diversity, we sought to determine a sim-

ple, efficient 16S rRNA sample preparation and data analysis protocol appropriate for complex in vitro

communities of gut commensals. We systematically investigated each step of a common protocol and

determined those with a significant impact that introduce bias, and/or can be omitted. Mimicking previous

studies that used a spike-in control to measure the absolute abundance of each ASV (Rao et al., 2021), we

also established a straightforward absolute abundance quantification protocol appropriate for anaerobi-

cally grown in vitro communities of gut commensals using the halophilic, strictly aerobic Proteobacterium

Halomonas elongata. Our results indicate that most conclusions based on sequencing of in vitro commu-

nities are not sensitive to alteration of many steps of the library preparation and analysis protocol. Thus, we

propose a simplified protocol with reducedmonetary cost and experimental effort (Table 1) that still results

in highly accurate and reproducible results (Figure 1C).

A

B

C

Figure 1. Schematic of 16S rRNA sequencing protocol optimization

(A) Typical protocol for preparation of 16S rRNA gene libraries for sequencing.

(B) Analysis pipeline using DADA2 (Callahan et al., 2016).

(C) Optimized protocol reduces monetary cost and time/effort while retaining accuracy and reproducibility and adding absolute abundance quantification.
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RESULTS

Efficiency of DNA extraction is approximately constant across commercial kits

Previous studies have shown that the choice of DNA extraction kit for sample preparation from human stool

is a source of variability in 16S rRNA andmetagenomic sequencing (Ariefdjohan et al., 2010; Claassen et al.,

2013; Costea et al., 2017; Kennedy et al., 2014). However, it is unclear howmuch of this variability arises from

specific properties of stool as opposed to the intrinsic microbial constituents of the community under

study. To address this question, we made use of 57 in vitro communities passaged in complex media

that are highly diverse and stable (Aranda-Dı́az et al., 2022), along with 21 stool samples, either dry or re-

suspended in PBS and with a �100-fold range in biomass input, for comparison. The in vitro communities

were derived from feces of humanizedmice, hence are composed of human gut commensals, and preserve

most of themajor families with relative abundances similar to the correspondingmouse feces (Aranda-Dı́az

et al., 2022). We evaluated the effectiveness of three DNA extraction kits (Ultra-CleanMicrobial (UC), Blood

and Tissue (BT), and PowerSoil (PS)) based on gDNA yield, subsequent PCR yield, and community compo-

sition; these kits were selected based on their common usage for a range of microbiome-related

applications.

Across in vitro communities with a range of compositions, gDNA yield was reasonably correlated (R=0.5–

0.7) between pairs of kits (Figure 2A), although the UC kit typically resulted in gDNA concentrations�2-fold

higher than the BT and PS kits (Figure 2B). Higher gDNA yield did not translate to higher yield from PCR

amplification of 16S rRNA (STAR Methods), presumably because the number of PCR cycles was sufficient

to saturate the reaction, but the UC kit produced consistent PCR yields across all tested sample types

and exhibited the lowest levels of amplification from negative controls (PBS or no input) (Figure 2C).

After sequencing, we used DADA2 (Callahan et al., 2016) to quantify the relative abundance of ASVs in all

stool and in vitro community samples. For stool samples, the kits led to similar representation of most major

taxonomic families (R > 0.8), except for the Lachnospiraceae and Ruminococcaceae families, whose relative

abundances were lower by �10%–15% (a �50% relative decrease) and by �6% (a �30% relative decrease),

respectively, in samples extracted with the PS kit compared with the BT and UC kits, and the Enterococca-

ceae, whose extremely low abundance in these samples led to substantial variability between kits

Table 1. Time and monetary cost breakdown for standard and optimized 16S rRNA sample preparation protocols

Step Option

Standard protocol Optimized protocol

Hours per 96

samplesa
Cost per 96

samples

Hours per 96

samplesa
Cost per 96

samples

DNA extraction Ultra-Clean 1 $282 1 $282

Blood and Tissue 1 $350 1 $350

PowerSoil 2 $575 2 $575

DNA quantificationb 0.25 $117 n.n.

DNA normalization into PCR 0.5 $0 n.n.

Polymerase for PCR Platinum II 3 $348

5PRIMEc 3 $65

AccuStart 3 $172 3 $57d

PCR clean-up 0.5 $180 0.5 $7

PCR-product quantificationb 0.25 $117 n.n

Individual sample PCR pool 0.5 $0 0.125 $0

Total Ultra-Clean w/AccuStart 6 $868 4.6 $346

Blood and Tissue w/AccuStart 6 $936 4.6 $414

PowerSoil w/AccuStart 7 $1,161 5.6 $639

aTime calculations assume the use of a semi-automatic 96-well pipetting system.
bDNA/PCR-product quantification estimates include colorimetric assay reagents and fluorescence 96-well microplates, and assume two replicates per sample.

n.n.: not necessary based on the results in this study.
c5PRIME polymerase has been discontinued, hence AccuStart becomes the best choice for polymerase based on cost.
dFor 25-mL PCRs.
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(Figure 2D). While to our knowledge no other study has compared these specific kits to each other, lower

Lachnospiraceae abundance in stool samples extracted using the PS kit compared to other DNA extraction

kits has been previously documented (Kennedy et al., 2014). The families for which we observed significant

A

B C

D E

Figure 2. Different extraction kits yield similar gDNA yield, PCR yield, and community composition

(A) Efficiency of gDNA extraction was constant across the three kits tested for all sample types. A linear fit to the data is shown as a blue line with a 95% CI in

gray. Controls are PBS with no biomaterial input. Resuspended stool refers to 30 mg of dry stool resuspended in 10–100 mL of PBS.

(B) The Ultra-Clean (UC) kit resulted in higher gDNA yield than the PowerSoil (PS) and Blood&Tissue (BT) kits, especially for stool samples. Shown are

averages (n = 10 controls, 57 liquid cultures, 14 resuspended stool, 7 dry stool) and error bars represent 1 SD. Significant differences between kits are

denoted by asterisks (p < 0.05, ANOVA and HSD test).

(C) The UC kit resulted in more consistent PCR-product yield across sample types and lower amplification from control samples than the PS and BT kits.

Shown are averages (n = 10 controls, 57 liquid cultures, 14 resuspended stool, 7 dry stool) and error bars represent 1 SD.

(D and E) Relative abundance was similar across kits for all families (r > 0.8), except for Enterococcaceae, Ruminococcaceae, and Lachnospiraceae in stool

samples (D) and Ruminococcaceae in in vitro community samples (E). Each sample is depicted by a circle and dashed lines connect the same sample across

kits. Cases in which median relative abundance was significantly different between kits are denoted by asterisks (p < 0.05, ANOVA and HSD test).
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differences across kits are all Gram-positive. To determine whether Gram-positive taxa generally exhibited

variability across kits, we analyzed the relative abundance of genera within the Lachnospiraceae, Rumino-

cocaceae, and Enterococcaceae that were present in R5 samples and at R1% relative abundance. A few

genera exhibited significant differences: Blautia and Dorea (Lachnospiraceae) were overrepresented in

samples extracted using the UC kit compared to the BT and PS kits, Ruminococcus_1 (Ruminococcaceae)

and Lachnoclostridium (Lachnospiraceae) were overrepresented in samples extracted using the BT kit

compared to the PS kit, and Fusicatenibacter (Lachnospiraceae) was underrepresented in samples ex-

tracted with the PS kit compared to the UC and BT kits (Figure S1A). Nonetheless, most genera were simi-

larly represented among all three kits. These results suggest that the kit dependence of gDNA extraction

efficiency from stool samples is genus-specific, especially in the Lachnospiraceae and Ruminococcaceae

families, and that differences are not generalizable across all Gram-positive taxa.

For the in vitro community samples, the only significant difference between kits was in the abundance of the

Ruminococcaceae family. Compared with stool samples, these changes were lower in magnitude; Rumino-

coccaceae relative abundance was generally higher by�1%–2% (a�15%–30% relative increase) in samples

extracted using the UC kit compared with the BT and PS kits (Figure 2E). At the genus level, Blautia (Lach-

nospiraceae) was overrepresented in samples extracted using the UC kit compared to the BT and PS kits,

and Tyzzerella (Lachnospiraceae) was overrepresented in samples extracted with the UC kit compared to

the PS kit; all other genera were similarly represented across all kits (Figure S1B).

Taken together, these data suggest that the UC kit is slightly preferable for in vitro community sample

preparation in terms of gDNA yield and PCR yield consistency, with the added advantage that it currently

costs�$1100 for 384 samples, which is at present $250 and $1,150 cheaper than the BT and PS kits, respec-

tively. In addition, the elevated relative abundance of the Ruminococcaceae family while levels of all other

families were maintained in both in vitro community and stool samples extracted using the UC kit as

compared to the BT and PS kits suggests that the UC kit is more efficient at extracting gDNA from Rumi-

nococcaceae cells, independent of sample type.

PCR-product yield and community composition are largely unaffected by gDNA input or PCR

reaction volume

The concentration of gDNA available for PCR amplification can vary across samples due to the total input

biomass and the efficiency of gDNA extraction. As a result, some protocols include a normalization step

(Figure 1A) to ensure that gDNA input is approximately constant across all samples. Because such normal-

ization is time-consuming, especially for in vitro community experiments that contain hundreds to thou-

sands of samples, we explored whether the total amount of input gDNA would affect in vitro community

composition by serial diluting the input gDNA from three samples before performing 16S rRNA amplifica-

tion and sequencing. For all three gDNA samples, the yield after PCR amplification was similar across a 729-

fold range of dilution (Figure 3A), suggesting that a protocol with 35 PCR cycles is sufficient for most

samples.

Despite the insensitivity of PCR yield after clean-up to gDNA input concentration, PCR overcycling or

biases such as jackpotting could in principle impact the relative abundance of particular taxa. Nonetheless,

the composition of all three communities was broadly conserved throughout dilutions up to 27-fold (Fig-

ure 3B), suggesting that overcycling was not a concern. Across samples, relative abundances of the Enter-

ococcaceae, Ruminococcaceae, and Lachnospiraceae families ranged from 0.2% to 2%, 3% to 5%, and 17%

to 25%, respectively, and remained essentially constant for a particular sample across gDNA dilutions up to

27-fold (Figure 3C). When gDNA was dilutedR81-fold, the relative abundances of these families increased

to 0.5%–3%, 5%–6%, and 20%–30%. In the two samples in which the relative abundance of the Verrucomi-

crobiaceae family was >0.1%, Verrucomicrobiaceae abundance shifted slightly from �50% to 44% for dilu-

tions R81-fold (Figure 3C).

In our 16S rRNA protocol (STARMethods), each PCR reaction of 75 mL contains 3 mL of extracted gDNA at a

typical concentration of �1–10 ng/mL. The average molecular weight of a deoxynucleotide monophos-

phate is �300 g/mol and thus a typical five Mbp bacterial genome weighs �5 3 10�15 g, hence 3–30 ng

of gDNA corresponds to �106–107 genomes. For a taxon such as the Ruminococcaceae family that is pre-

sent at �4% relative abundance, a 729-fold dilution reduces the number of genome copies to �50–500.

Thus, the systematic changes in Ruminococcaceae abundance with lower gDNA input are unlikely to be
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explained by stochastic jackpot events due to low genome copy numbers. Instead, the PCR likely has a

slight bias that favors Ruminococcaceae ASVs; lowering gDNA input 729-fold requires an additional

�9.5 PCR cycles to reach the same DNA yield, so the observed �25% bias in Ruminococcaceae abundance

would be explained by a slight amplification bias of 2%–3% per cycle (and the amplification bias for other

taxa must be even smaller). However, for ASVs near the limit of detection (0.1%), an 81-fold dilution would

result in <10 genome copies in the input gDNA, and thus a high probability of introducing noise into abun-

dance quantification due to jackpotting. The concentration of gDNA extracted from our in vitro commu-

nities varied by only �10-fold, indicating that the bias introduced by not normalizing gDNA input is likely

A D E

B

C

Figure 3. Concentration of gDNA input does not affect PCR yield or community composition

(A) PCR-product yield remained essentially constant across a wide range of dilutions of gDNA input for the three in vitro community samples tested.

(B and C) Community composition at the family level was conserved up to a 27-fold dilution of gDNA input. For dilutionsR81-fold (outside the typical range

of gDNA input concentrations), the relative abundance of the Ruminococcaceae, Verrucomicrobiaceae, and Lachnospiraceae families exhibited changes of

10%–30%, while the relative abundance of the Enterococcaceae family exhibited larger changes in samples 1 and 2, likely due to its low relative abundance

(<0.5%) (C). Verrucomicrobiaceae family members were not detected in Sample 1.

(D and E) Across 84 samples, the relative abundance of all ASVs (D) and number of ASVs detected (E) were similar between 75-mL and 25-mL PCR volumes.

Individual dots are data points, and dashed lines are x = y. r-values are Pearson’s correlation coefficients, and p-values are from two-tailed Student’s t-tests.
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<10% or even lower but could bemore substantial for certain families like the Ruminococcaceae across sets

of samples with a broader variation in gDNA.

In sum, the amount of gDNA available for PCR amplification does not affect PCR-product yield, but may

affect the resulting relative abundance of certain taxa for samples with very low gDNA concentration. While

these differences are important to note, the changes in relative abundance induced by systematic PCR

amplification bias are small for the range of cell densities and gDNA concentrations typically obtained

from in vitro communities and are much smaller than the intrinsic relative abundance differences across

samples (Figure 3B). Therefore, normalization of gDNA prior to PCR can be omitted in most experiments

involving in vitro communities. Considering the cost of DNA quantification reagents and materials, omit-

ting this step saves �$120 and �0.5–1 h of sample preparation time per 96-well plate (Table 1), as well

as avoiding additional steps that could introduce contamination.

Because a 75-mL reaction yieldsmore than sufficient DNA for subsequent pooling and sequencing (Figure 3A),

we askedwhether reducing the PCR reaction volumewould enable saving on reagents without sacrificing data

quality.Weperformed75-mLand25-mLPCR reactions foreachof 84 samplesandcomparedsequencing results.

Despite the variation in community diversity and composition across samples, reducing reaction volumes from

75 mL to 25 mL generally preserved community composition (Figure 3D). The largest outliers were a Collinsella

aerofaciensASV in a community derived from the stool of a healthy human (0.035 relative abundance in the 25-

mL reaction, notdetected in the75-mL reaction) andaClostridiumcitroniaeASV in an in vitro communityderived

from a humanized mouse after antibiotic treatment (0.012 relative abundance in the 75-mL reaction, not de-

tected in the 25-mL reaction). Nonetheless, when comparing these two ASVs across all samples, the relative

abundance of these two ASVs across all samples was not significantly different between 75-mL and 25-mL reac-

tions (p = 0.06 forC. aerofaciens and p = 0.84 for C. citroniae, two-sided Student’s t test). The number of ASVs

detectedwasalsohighly similar between75-mLand25-mL reactions (Figure3E); the largestdifferencewas in two

communities derived fromhumanizedmice fed apolysaccharide-deficient diet for which the 25-mL reactionde-

tected ninemore ASVs than the 75-mL reaction in each case. Across all samples, ASVs that were unique to one

reaction volume were not biased toward either volume and were present at low relative abundance (0.0028G

0.0033,meanGSD). Thus, reducingPCRvolumes to 25mL can further saveon thecostof reagentswithout intro-

ducing systematic biases or sacrificing 16S data quality.

Different DNA polymerases result in similar amplification across taxa

Another factor that could introduce biases during 16S rRNA sample preparation is the choice of DNA po-

lymerase for amplification, which can be dictated by price, availability, or historical practices of a lab. To

quantify potential biases, we amplified the 16S rRNA gene of gDNA extracted from 13 in vitro community

samples with Platinum II Hot-Start PCR Master Mix (PL), 5PRIME HotMaster Mix (5P), and AccuStart II PCR

Super-Mix (AS), three commonly used polymerases for 16S rRNA sample preparation, and compared the

relative abundances of all ASVs after sequencing. The resulting relative abundances were highly correlated

between pairs of DNA polymerases (Figure 4A). The coefficient of variation (SD/mean) for ASV relative

abundance between replicate samples was negatively correlated with relative abundance and was consid-

erably higher for ASVs with relative abundances <0.1% compared with >0.1% (�0.2 versus >0.5, Figure 4B).

These variations were largely comparable across DNA polymerases (Figure 4B), indicating that the choice

of DNA polymerase does not impact the resulting community composition.

Although community compositionwas largely insensitive to the choice of polymerase, it was possible that each

DNA polymerase systematically favors the amplification of certain taxonomic groups. To test this hypothesis,

we compared the relative abundances of five families, all of which were present at high relative abundance in

many of our in vitro communities and hence biases would be more apparent. To minimize the effects of statis-

tical fluctuations, we only included samples for which the relative abundance of each of the five families was

>1%.Compared to resultsusingPL, 5P systematically underestimated the relative abundanceof theEnterobac-

teriaceae family and overestimated that of Enterococcaceae, while AS slightly underestimated the relative

abundance of Verrucomicrobiaceae and overestimated that of Lachnospiraceae (Figure 4C). While these var-

iations were statistically significant across samples, the fractional changes in relative abundance were small

(<20%) and were typically smaller than the intrinsic differences across samples (Figure 4D).

Thus, the choice of DNA polymerase can be a source of variability for a few families but typically does not

affect conclusions based on community composition.
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Normalization of PCR product input when pooling can be omitted to reduce preparation time

without compromising read distribution

When assembling a pooled library for sequencing, it is often customary to quantify the PCR product con-

centration and normalize the amount of DNA from all samples that will make up the library. This step is

expensive (costs of DNA quantification reagents, PCR-product clean-up kits, and microplates for fluores-

cence-based assays sum to >$300 per 96 samples) and time consuming (amplified and cleaned DNA

from each PCR sample must be manually manipulated and pooled), especially for in vitro community ex-

periments whose potential for high throughput means that they typically involve hundreds to thousands

of samples. Because we observed variability in the average DNA yield from PCR reactions of only �30%

(Figure 2C), we hypothesized that omitting this normalization step would not adversely affect the resulting

distribution of reads across samples.

To test this hypothesis, we prepared one library with normalization and two libraries without normalization,

in which rather than normalizing input DNA to 200 ng/sample, we simply used 10 mL of PCR product from

each sample without PCR clean-up (yielding �200 ng of DNA given an average PCR product of 20 G

8 ng/mL) to construct the pooled library. Although these libraries were prepared from different samples

and sample types, the distributions of read number per sample from the two non-normalized libraries

were similar to that of the normalized library (Figure 5).

Thus, under conditions in which the PCR was saturated, normalization of input PCR product can be omitted

from pooled library construction protocol without compromising results.

Similar sequencers at different facilities produce equivalent community compositions

As the number of sequencing facilities expands to accommodate increasing demand, research groups may

find it beneficial to employ multiple such facilities, raising the question of whether differential handling or

A

B C
D

Figure 4. Community composition is not affected by choice of DNA polymerase during amplification

(A) Pair-wise correlations of ASV relative abundances quantified after amplification of the same sample with different DNA polymerases indicated that all

three enzymes result in similar community compositions (correlation coefficients and p-values were computed using F-tests). A linear fit to the data is shown

as a blue line and the 95% CI is shown in gray.

(B) ASV relative abundance coefficient of variation (CV, SD/mean) in two experiments was similar across DNA polymerase enzymes regardless of relative

abundance. Dashed line is the theoretical limit of CV due to sample size.

(C) Different polymerase enzymes can systematically affect the fold-change in the relative abundance of certain families relative to a separate run with PL, but

in most cases only by <20%. Each sample is depicted by a circle and error bars represent 1 SD. p-values are shown for cases in which the fold-change was

statistically significant (t-test).

(D) Variations in community composition between DNA polymerase enzymes were small compared to the intrinsic differences in community composition

across samples. n = 1 replicate per community.
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variation in equipment affects the distribution of reads per sample and the resulting composition of com-

munities. To address this question, we sent aliquots of a pooled library prepared from 192 undefined and

192 defined in vitro communities to two facilities for comparison: the Genome Analysis Core at Mayo Clinic

and the Chan Zuckerberg BioHub. Illumina MiSeq sequencers were used at both facilities.

Figure 5. The distribution of reads per sample obtained from non-normalized libraries is highly similar to that of a

normalized library

Regardless of whether normalization of PCR-product yield was performed prior to pooling, sequencing resulted in normal

distributions of read counts centered on �104 reads, indicating that normalization is not necessary.

ll
OPEN ACCESS

iScience 25, 103907, April 15, 2022 9

iScience
Article



The distributions of reads per sample were almost identical (Figure S2), and the number of reads per sam-

ple was highly correlated (R=0.99) between the two facilities (Figure 6A). ASV relative abundance across all

samples was also highly correlated between facilities (R=0.99 G 0.001, Figure 6B), indicating that

A

B

Figure 6. Read count and community composition are almost identical for sequencing of the same samples at

different facilities

(A) The reads per sample for sequencing of the same pool of samples were highly correlated (n = 368) between the Mayo

Clinic and BioHub facilities. A linear fit to the data is shown as a blue line and the 95% CI is shown in gray. Correlation

coefficients were computed using F-tests.

(B) ASV relative abundance was highly correlated between sequencing runs at the two facilities. The scatter plot shows ASV

relative abundance for one representative sample. A linear fit to the data is shown as a blue line and the 95%CI is shown in gray.

Inset: thedistributionofcorrelationcoefficientsofASV relativeabundance fromsequencingat the two facilities acrossall samples.
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community composition was extremely similar between facilities. Indeed, the ASVs that were present only

in the Mayo Clinic run or only in the BioHub run accounted for only 0.015G 0.03% and 0.007G 0.02% of the

communities, respectively. These data indicate that 16S rRNA results generated by the same type of

sequencer are likely to be highly comparable across facilities.

Pooling samples during DADA2 analysis can increase the number of detected ASVs, at the

expense of compute time and potential inclusion of contaminants

Previous studies have analyzed differences between OTU-level and ASV-level bioinformatic workflows for

16S rRNA analysis (Prodan et al., 2020). Here, we chose to focus on DADA2 based on its documented sensi-

tivity and its broad use in the field. There are three methods that can be applied when performing sample

inference with DADA2 (Callahan). Briefly, sequences from all samples can be analyzed (1) separately before

being combined into a final sequence table using the ‘‘no pool’’ option (pool = FALSE, the default option),

(2) together using the ‘‘true pool’’ option (pool = TRUE), or (3) separately but using information from all sam-

ples that is shared using the ‘‘pseudopool’’ option (pool = pseudo) (for a more detailed explanation, see

(Callahan)). The ‘‘true pool’’ option increases sensitivity, allowing for detection of more ASVs as may be

preferable when exploring new and complex communities, but it is computationally expensive and may

report false positives such as contaminants that are prevalent at very low frequencies (Callahan).

To explore how these sample inference options affect analyses of in vitro communities, we analyzed the 16S

rRNA sequencing data from the 192 undefined in vitro communities generated by the two facilities

described in the previous section. Sample inference with DADA2 was performed on the same sequencing

files using one of the three pooling options. The ‘‘true pool’’ option identified 4-fold more ASVs (�780) and

required a computing time that was �5–8 times longer (�4.5 h for 768 samples with 104 reads on average

per sample) than either the ‘‘pseudopool’’ (�1 h, �150 ASVs) or the ‘‘no pool’’ (�0.6 h, �140 ASVs) options

(Figure 7A).

Approximately 25% of the ASVs uniquely identified by the ‘‘true pool’’ option had a taxonomic assignment

to the Escherichia or Enterococcus genera, with very low and highly variable abundances of 0.06 G 0.05%

and 0.02 G 0.02%, respectively. All other ASVs mapped to 41 distinct genera at average abundances of

<0.01 G 0.01% (Figure 7B). For the ‘‘pseudopool’’ option, �50% of the uniquely identified ASVs mapped

to the Escherichia genus, at the slightly higher but still low abundance of 0.2 G 0.09% compared with the

‘‘true pool’’ option. All other unique ASVs mapped to six other genera at average abundance <0.05%

(Figure 7C).

The uneven taxonomic distribution of the ASVs included through pooling suggests that they may be con-

taminants; regardless, they collectively account for only 0.8% G 0.1% or 0.1% G 0.1% of total abundance

across communities for the ‘‘true pool’’ and ‘‘pseudopool’’ options, respectively. Consequently, the com-

munity compositions obtained with the three pooling options were almost identical even at the genus level

(Figures 7D and S3).

Based on these results, we propose that the ‘‘no pool’’ option during sample inference with DADA2 is pref-

erable for analyses of in vitro communities due to its low computing time and comprehensive community

composition determination without the potential introduction of noise, with the caveat that the limit of

detection is higher.

Sequencing depth affects ASV detection sensitivity in DADA2

To account for natural variations in read count across samples (Figure 5A), sequencing data are often rare-

fied so that all samples have the same number of ASV reads (Jha et al., 2018). To determine whether rare-

faction fully compensates for differences in sequencing depth, we analyzed 73 samples in two ways: (1) we

directly processed the fastq files through DADA2, then rarefied the resulting ASV reads to 10,000 for each

sample (Figure 8A, left); or (2) all fastq files were first downsampled to 20,000 reads per sample, processed

with DADA2, and then rarefied again to obtain 10,000 ASV reads (Figure 8A, right). The downsampling pro-

cess mimics a sequencing run with lower sequencing depth than the original data, which have median read

count �100,000.

The relative abundance of all ASVs in the 73 samples was strongly correlated between the two analyses

(r = 0.92, p < 10�10, n = 16,060, two-sided Student’s t test, Figure 8B). There were only 28 instances in which
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an ASV was detected after downsampling but not in the original data (Figure 8B, left histogram). By

contrast, there were 920 instances in which an ASV was detected in the original data but not after down-

sampling (Figure 8B, bottom histogram). In some of these instances, the ASV relative abundance was

>0.1%, corresponding to at least �100 reads in the raw fastq file; these ASVs were distributed across

many major families. Because it is very unlikely (p � 2 3 10�10) that 5-fold downsampling would eliminate

all 100 reads corresponding to that of ASV, these data suggest that the sensitivity and accuracy of DADA2

can be dependent on sequencing depth.

Choice of database for taxonomic assignment of ASVs is unlikely to affect conclusions that

are based on overall community composition

Taxonomic assignment of ASVs detected via 16S rRNA sequencing can be performed using various data-

bases, with the most widely used databases in the gut microbiome field being SILVA and Greengenes. The

SILVA database contains taxonomic information for all three domains of life and is manually curated (Yilmaz

et al., 2014). The Greengenes database contains information from the bacterial and archeal domains and is

curated based on de novo tree inference (McDonald et al., 2012).

To determine how taxonomic assignment by the two databases impacts analyses of in vitro communities,

we examined the percentage of annotated ASVs and the relative abundance of the five major taxonomic

families in our dataset involving 192 undefined and 192 defined in vitro communities. The two databases

annotated a similar percentage of ASVs at the genus and family levels; Greengenes annotated a slightly

higher proportion at the species level (Figure 9A). The number of unique taxa assigned was also similar,

with each database outperforming the other for particular samples (Figure 9B). These differences may

emerge because the SILVA database undergoes frequent updates, while the last update performed on

A C

B

D

Figure 7. Pooling samples during DADA2 analysis of in vitro communities increases the number of detected ASVs but does not change the final

community composition

(A) All three pooling options yielded similar numbers of families and genera, but the ‘‘true pool’’ option yielded �4-fold more ASVs.

(B and C) Approximately 25% of the ASVs uniquely detected by the ‘‘true pool’’ option were assigned to the Escherichia/Shigella or the Enterococcus genera

(B) and �50% of the ASVs uniquely detected by the ‘‘pseudopool’’ option were assigned to the Escherichia/Shigella genus (C). Nonetheless, the relative

abundance of all uniquely detected ASVs was low. Error bars represent 1 SD.

(D) All three pooling options yielded almost identical community composition at the genus level, as demonstrated by a representative sample.
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the Greengenes database was in 2012. When examining overall community composition, the relative abun-

dance of almost all major taxonomic families was similar between the two databases, with the lone excep-

tion being the Lachnospiraceae family in undefined communities (Figure 9C). These results indicate that

while the two databases may annotate ASVs with different names, taxonomic assignments performed

with different databases are likely to be comparable at least at the family level and therefore the conclu-

sions drawn from analyzing changes in composition are unlikely to be affected.

H. elongata as a spike-in control enables accurate estimation of absolute abundance using

only a small fraction of the reads

A major limitation of 16S rRNA analyses is that results typically are relative abundances, even though the

absolute abundances of a given set of microbes may have important biological consequences. Methods

to quantify absolute abundance in stool samples have been developed, but they are not widely imple-

mented. These methods include bacterial cell counting via flow cytometry (with or without the inclusion

of propidium monoazide to exclude free-floating DNA), qPCR, and the use of external standards such as

synthetic chimeric DNA or cells from organisms that are not present in the samples to be analyzed (Galazzo

et al., 2020; Rao et al., 2021; Tkacz et al., 2018). Inspired by the multi-kingdom spike-in method (MK-Spike-

Seq) (Rao et al., 2021), in which a defined number of microbial cells from the bacteria, fungi, and archaeal

kingdoms are added to stool samples before performing amplicon sequencing, we sought to determine

whether a single external spike-in control could provide an accurate estimate of absolute abundance

across a wide range of in vitro communities. We selected H. elongata ATCC 33173 because it is halophilic

and strictly aerobic (Ventosa et al., 1998), and therefore unlikely to be present in human stool samples or

anaerobically grown in vitro communities.

16S rRNA sequencing of an axenic H. elongata culture demonstrated that there was no mismapping from

H. elongata to other species, and H. elongata was not present in any of our anaerobically grown in vitro

communities of gut commensals. ThereforeH. elongata was an appropriate candidate as a spike-in control

(Figure 10A). To test the range over which a spike-in would enable absolute abundance quantification, we

serially diluted a saturated H. elongata culture (STAR Methods), mixed it with an in vitro community at

various volumetric ratios, and performed gDNA extraction and 16S rRNA sequencing on the mixtures. Mix-

ing with H. elongata was performed prior to gDNA extraction to determine whether variation in extraction

efficiency would introduce substantial noise. The amount of spike-in H. elongata culture was linearly corre-

lated with its relative abundance as long as the spike-in ratio was >0.5% of the reads (Figure 10B). For spike-

in ratiosR1%, the coefficient of variation was <0.2 across replicates (Figure 10C). Thus, H. elongata spiked

in at 1% can serve as an effective external standard for quantifying the absolute abundance of ASVs in a

community.

A B

Figure 8. Sequencing depth affects DADA2 sensitivity

(A) Two analysis pipelines, with or without downsampling prior to DADA2 processing.

(B) Downsampling prior to DADA2 processing did not affect the overall abundance of most ASVs in the samples tested.

Individual dots are the relative abundance of an ASV in one sample, solid black line is x = y, dashed lines denote the limit

of detection after rarefying to 10,000 ASV reads. Blue and orange dots highlight instances in which an ASV was detected in

one analysis but not the other, including some cases in which the relative abundance was >0.1%. The histograms on the

left and bottom are the distributions of the blue and orange dots, respectively.
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The optical density (OD) of an in vitro community can be used as a proxy for total biomass to estimate the

absolute abundance of ASVs. We compared the performances of OD and a spike-in control with 10% (v/v)

H. elongata using 96 in vitro communities with a range of community compositions. The total amount of

gDNA estimated from the spike-in control was correlated with community final OD (r = 0.5, p = 10�6, F-

test) (Figure 10D), suggesting that OD is indeed a reasonable proxy for gDNA.

However, there was a large degree of variation between OD and spike-in metrics. We hypothesized that

this variation was due to different DNA-to-biomass ratios across species, such that OD was affected by

both total gDNA and the specific ASVs present in a community. To test this hypothesis, we focused on sam-

ples with OD between the 25th and 75th percentiles. Among these samples, OD and estimated total gDNA

were no longer correlated (r = 0.21, p = 0.16, two-sided Student’s t-test). However, samples with higher to-

tal gDNA also had higher abundance of an Escherichia fergusonii ASV (p < 10�14, two-sided Student’s t

A

B

C

Figure 9. Community richness and diversity is unaffected by ASV annotation differences between the SILVA and

Greengenes (Gg) reference databases

(A and B) The databases annotated similar percentages of ASVs (A) and yielded similar numbers of unique taxa (B) at the

family, genus, and species levels for undefined communities (complex communities derived from stool samples, left) and

defined communities (synthetic 14- or 15-member communities, right).

(C) Most major taxonomic families exhibited similar relative abundances regardless of annotation database. The only case

for which a significant difference was observed was the Lachnospiraceae family in undefined communities (*: p < 0.05,

ANOVA and HSD-test).
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test), suggesting that the OD metric was biased by community composition, for instance due to variable

16S rRNA copy number across species. Taken together, we conclude that a spike-in control during DNA

extraction and 16S rRNA sequencing of mixed communities allows for more accurate estimation of ASV ab-

solute abundance than OD, albeit with the cost of diverting a small fraction of reads from the species in the

community to the spike-in.

DISCUSSION

As the gut microbiome research field continues to expand, the ability to compare datasets across labs and

studies has become increasingly important. A typical pipeline for 16S rRNA gene sequencing sample prep-

aration and data analysis consists of multiple steps, each with various options that can potentially lead to

variable results. Determining whether and how each choice affects biological interpretations and using that

knowledge to establish efficient and reproducible protocols should prove valuable for comparing across

datasets.

Here, we presented a systematic streamlining of the steps in a typical 16S rRNA protocol that resulted in a

simple and efficient strategy appropriate for complex in vitro communities of gut commensals (Figure 1B).

Importantly, many steps could be omitted or simplified without affecting community composition,

enabling future studies to save time and money (Table 1). For example, the monetary savings of switching

A

C D

B

Figure 10. Halomonas elongata (H.e.) is an effective external standard for estimating the absolute abundance of

ASVs in in vitro communities

(A) Left: virtually all ASVs from sequencing of anH. elongata culture mapped toH. elongata. Right:H. elongata ASVs were

practically absent from all of the anaerobically grown in vitro communities tested. Shaded regions are G0.5% relative

abundance around the mean values.

(B) For volumetric ratios of H. elongata to in vitro culture >0.5%, the amount of spike-in was linearly correlated with its

resulting relative abundance. Gray data points are replicates (n = 8), orange dots and error bars are mean G 1 standard

deviation (SD), and the orange dashed line is a linear fit of the mean values that are >0.1%. The black dashed line denotes

the detection limit of relative abundance.

(C) H. elongata abundance normalized by its mean at each dilution ratio. Gray points are individual replicates (n = 8),

orange dots and error bars are mean G 1 SD, and the black dashed lines denote 20% variation from the mean. For

samples with spike-in ratios R1%, most replicates exhibited <20% variation.

(D) Optical density (OD) is a reasonable, but imperfect, proxy for in vitro culture biomass (normalized gDNA, estimated

using the H. elongata spike-in). Each circle represents an in vitro community sample.
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from the PowerSoil to the Ultra-Clean DNA extraction kit is�$300 per 96-well plate (currently�$575 versus

�$280) and the time expenditure decreases from 2 to 1 h per plate. By omitting the gDNA and PCR-product

normalization steps and performing PCR clean-up on the pooled library instead of the individual PCR prod-

ucts, the major cost of sample preparation drops from �$700 to �$290 per 96-well plate and the time

expense drops from �3 to �1.6 h per 96-well plate.

Because DNA extraction kits and DNA polymerase enzyme mixes are the two major costs of a typical stan-

dard 16S rRNA sample preparation protocol (Table 1), costs could be reduced by purchasing or purifying

the individual components to make ‘‘homemade’’ kits/mixes. Such a strategy could be economically

optimal in the long run if the number of samples to be processed is large enough, but would likely augment

sample preparation time and, especially for PCR, establishing which components work best together and

with what parameters would require substantial optimization. Fortunately, our data show that the cheapest

and most time-efficient commercial kit (Ultra-Clean) resulted in the highest gDNA yields (Figure 2B) and

most consistent PCR yields (Figure 2C), and normalization of gDNA or PCR-product yield did not signifi-

cantly improve the narrowness of the distribution of reads per sample (Figures 3 and 5). Data obtained us-

ing different DNA polymerases for amplification (Figure 4) or different sequencing facilities (Figure 6) were

largely comparable, so the most affordable and/or convenient choice can be used. Finally, we determined

during data analysis that the least computationally demanding sample inference pooling option in DADA2

is likely preferable for most in vitro communities (Figure 7), that detection of ASVs can depend on

sequencing depth (Figure 8), and that the choice of database used to annotate ASVs is unlikely to affect

biological interpretations regarding community composition (Figure 9). Taken together, implementing

this time- and money-saving protocol should accelerate future studies, particularly those involving high-

throughput in vitro community experiments.

Adding to the relative simplicity and reliability of this 16S rRNA sequencing protocol, we developed a

spike-in method for quantifying absolute abundance (Figure 10) that enables differentiation between

changes in relative abundance that are a true representation of fluctuations in the level of a species versus

those indirectly caused by expansion or contraction of other species. This step can be kept consistent be-

tween experiments using aliquots from one batch of spike-in cells that have been grown to the same state,

and we described a simple calibration for determining the appropriate level of spike-in to add to commu-

nities with varying biomass. We identified the bacterium H. elongata as a suitable spike-in choice for gut-

derived in vitro communities. Although other organisms might be more appropriate for other communities

(e.g. soil and marine), our method provides a proof-of-principal method that can be modified and then

similarly implemented. Using a culture-based spike-in rather than a standard based on DNA controls for

any global source of variations during DNA extraction. Although other factors such as variability in 16S

copy number and species-specific DNA extraction efficacy could confound estimates of absolute abun-

dance, our cell spike-in provides a reliable method for comparing the absolute abundance of a given spe-

cies across many samples. Taken together, the strategies we have described in this study should enhance

progress in the gut microbiome field by facilitating more efficient and informative studies of in vitro

communities.

Limitations of the study

We limited our analyses to the most commonly used commercial DNA kits and PCR enzymes and to data

obtained from MiSeq sequencers, with a primary focus on in vitro cultured bacterial communities. It is

possible that our conclusions may not generalize to all microbial communities, DNA extraction methods,

PCR enzymes, PCR reaction conditions, and/or to data obtained from all sequencers (particularly those that

yield greater sequencing depth). Nonetheless, our systematic investigation of a broad range of parameters

led to an optimized 16S rRNA sequencing protocol that is a robust, time- and cost-efficient method that can

be readily adopted. Our methods and analyses pipelines can also be easily adapted to study the effects of

other changes to the protocol.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Communication regarding this article should be directed to the lead contact, Kerwyn Casey Huang

(kchuang@stanford.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Sequencing data and code have been deposited at the Stanford Data Repository and are publicly available

as of the date of publication. DOIs are listed in the key resources table. Any additional information required

to reanalyze the data in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human fecal samples or in vitro gut bacterial community cultures were used to conduct analyses in this

study as specified in the text. The in vitro communities were derived from the feces of humanizedmice (Ara-

nda-Dı́az et al., 2022) and cultured anaerobically in Brain Heart Infusion (BHI, BD 211069) medium or

M9+10% BHI medium plus one of 23 carbon sources (Figure S3). Halomonas elongata cells were grown

aerobically with shaking at 30�C in ATCC medium 1097.

METHOD DETAILS

Baseline protocol for 16S library preparation

DNA from fecal samples or 50 mL of saturated bacterial cultures were extracted using an extraction kit such

as the DNeasy UltraClean 96 Microbial Kit (Qiagen, 10196-4). Three microliters of extracted gDNA were

used for PCR in 75-mL volumes containing Earth Microbiome Project-recommended 515F/806R primer

pairs (0.4 mM final concentration) and a polymerase such as that of the 5PRIME HotMasterMix (Quantabio,

2200410) to generate V4 region 16S rRNA amplicons. The following thermocycler conditions were used:

94�C for 3 min, 35 cycles of [94�C for 45 s, 50�C for 60 s, and 72�C for 90 s], then 72�C for 10 min. PCR prod-

ucts were individually cleaned up and quantified using the UltraClean 96 PCR Cleanup Kit (Qiagen,

12596-4) and the Quant-iT dsDNA High Sensitivity Assay kit (Invitrogen, Q33120) before 200 ng of PCR

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Quant-iT dsDNA High Sensitivity Assay kit Invitrogen Cat. #Q33120

DNeasy PowerSoil HTP 96-kit Qiagen Cat. #12955-4

DNeasy 96 Blood and Tissue Kit Qiagen Cat. #69581

DNeasy UltraClean 96 Microbial Kit Qiagen Cat. #10196-4

AccuStart II PCR SuperMix Quantabio Cat. #95137-100

PlatinumTM II HotStart PCR Master Mix ThermoFisher Cat. #14000013

5PRIME HotMasterMix Quantabio Cat. #2200410

Experimental models: Organisms/strains

Stool-derived in vitro communities This paper N/A

Deposited data

Stanford Digital Repository This paper https://doi.org/10.25740/ct503zg9433

Software and algorithms

Stanford Digital Repository This paper https://doi.org/10.25740/vh225xq6457
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product for each sample were manually pooled. Pooled libraries were then sequenced with 250- or 300-bp

paired-end reads on a MiSeq (Illumina).

DNA extraction

gDNA from�30 mg of human fecal samples (dry or resuspended in PBS) or 50 mL of bacterial cultures were

extracted using the DNeasy PowerSoil HTP 96-kit (Qiagen, 12955-4), the DNeasy UltraClean 96 Microbial

Kit (Qiagen, 10196-4), or the DNeasy 96 Blood and Tissue Kit (Qiagen, 69581) following the manufacturers’

protocols. All other aspects of the standard 16S rRNA sequencing library preparation protocol described in

the section above were then followed.

16S rRNA gene amplification

For testing the dependence on gDNA input concentration, the standard 16S rRNA library preparation pro-

tocol described above was followed with the following modifications: the extracted DNA was diluted 1- to

729-fold in 3-fold steps before 3 mL were used in the 75-mL PCRs. For testing the dependence on polymer-

ase enzymes, the AccuStart II PCR SuperMix (Quantabio, 95137-100) or the PlatinumTM II HotStart PCR

Master Mix (ThermoFisher, 14000013) were used instead of 5PRIME HotMasterMix. Thermocycler condi-

tions were held constant.

Library construction without normalization

gDNA was extracted from 50 mL of bacterial cultures or human gastrointestinal tract samples, and PCR was

performed using the standard 16S rRNA library preparation protocol described above. Ten microliters of

each PCR product were pooled without quantification or individual clean up in a 50-mL conical vial. The

pooled PCR product mix (�4-7 mL) was cleaned up and concentrated using the Macherey-Nagel Nucle-

oSpin� Gel and PCR Clean-up, Mini Kit (Fisher, 740609). Sequencing was performed as described in the

standard protocol above.

16S rRNA sequencing data analysis

Samples were demultiplexed with QIIME2 v. 2021.2 and subsequent processing was performed using

DADA2 (Callahan et al., 2016). truncLenF and truncLenR parameters were set to 240 and 180, respectively,

and the pooling option parameter was set to ‘‘pool=FALSE’’ unless otherwise indicated. All other param-

eters were set to the default. The taxonomies of the resulting ASVs were assigned using the assignTaxon-

omy function and the SILVA reference database as default or the GreenGenes database when testing the

dependence on database. Code for data analysis can be found at https://bitbucket.org/kchuanglab/

optimization16S/src/master/.

Spike-in for absolute abundance estimation

Halomonas elongata ATCC 33173 was grown aerobically overnight from a colony to saturation in ATCC

medium 1097 [80 g/L NaCl, 7.5 g/L casamino acids, 5.0 g/L peptone, 1.0 g/L yeast extract, 3.0 g/L sodium

citrate, 20 g/L MgSO4d7H2O, 0.5 g/L K2HPO4, 0.05 g/L Fe(NH4)2(SO4)2d6H2O, pH adjusted to 7.0] at 30�C
with shaking. The saturated H. elongata culture was mixed with in vitro communities at various volumetric

ratios prior to gDNA extraction. Ideally all comparisons between samples should use the same H. elongata

culture preparation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed in R studio and MATLAB (The MathWorks, Inc). Statistical significance was calculated

using ANOVA and HSD-tests or two-tailed Student’s t-tests, as specified in the text and in the figure leg-

ends. r-values are Pearson’s correlation coefficients. Values of n used for each analysis are specified in the

figure legends.
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