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A B S T R A C T

In-silico activity prediction was performed to predict new inhibitory activities of 2, 9-disubstituted 8-phenylthio/
phenylsulfinyl-9h-purine derivatives as anti-proliferative agents using QSAR technique. The anti-proliferative
agents were optimized using Density Functional Theory (DFT) method utilizing the B3LYP/6-31G* level of the-
ory. Genetic Function Algorithm (GFA) was used to build the QSAR models. Out of the models built, the best one
was selected and reported because of its fitness statistically with the following assessment parameters: R2

trng ¼
0.919035, R2

adj ¼ 0.893733, Q2
cv ¼ 0.866475, R2

test ¼ 0.636217, and LOF ¼ 0.215884. The selected model was
further subjected to other assessment such as VIF, Y-scrambling test, applicability domain and found to be sta-
tistically significant. The binding mode of some selected 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine
(ligands) in the active site of EGFR-tyrosine kinase (EGFR-TK) (receptor) was studied via Molecular docking.
Molecule 22 was identified to have the highest binding energy (-10.4 kcal/mol) among the other selected ligands
which it might be as a result of hydrogen interactions formed with MET793 (2.48599 Å, 2.04522 Å) & THR854
(3.76616 Å) amino acid residues and hydrophobic/other interactions with amino acid residues (LEU718, LEU844,
MET766, VAL726, ALA743, LYS745 and MET790) in the active site of EGFR-tyrosine kinase (EGFR-TK). The drug-
likeness of these selected anti-proliferative agents were predicted via the pharmacokinetics profile of the mole-
cules utilizing SWISS ADME. The anti-proliferative agents were found to be orally safe by not having more than 1
violation of the Lipinski's rule of five. This research proposed a way for designing potent anti-proliferative agents
against their target enzyme.
1. Introduction

Receptor tyrosine kinase (RTK) is a Protein kinase which plays an
essential role in signal transduction pathways [1]. Epidermal growth
factor receptor (EGFR) is a member of tyrosine kinase (TK) which belongs
to the ErbB family and regulates essential cellular roles, including
reproduction, survival, movement, and differentiation. Overexpression,
intensification, and modification of EGFR occur in a broad range of
human cancers and are connected with tumour progression and decrease
sensitivity to antitumor agents. Thus EGFR has been recognised as one of
the principal anticancer targets [2].

The most common and deadly type of all cancers around the globe is
lung cancer which accounts for 25% of the cancer deaths every year [3,
4]. Among the types of lung cancer with about 1.5 million patients and
less than 20% survival rate is non-small cell lung cancer (NSCLC) [5].
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Most lung cancer statistics include both small cell lung cancer (SCLC) and
NSCLC. In general, about 10%–15% of all lung cancers are SCLC. Ac-
cording to the American Cancer Society's estimates for lung cancer in the
United States for 2019, there were about 228,150 new cases of lung
cancer in which about 116,440 cases were in men and 111,710 cases
were in women. And the report on the death statistic was about 142,670.
Out of the figure mentioned, about 76,650 were in men and 66,020 were
in women [6].

To mitigate the problem of NSCLC, several medications were devel-
oped for several generations. The first generation (gefitinib and erlotinib)
was designed to treat EGFRL858R mutations [7, 8]. The second generation
was designed to treat EGFRT790M mutations examples were afatinib,
dacomtinib and neratinib. The second-generation inhibitors share com-
mon structural properties of quinazoline pharmacophore and acrylamide
structure [9]. While in the case of third generation, they were developed
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Table 1. General minimum required value for the assessment of QSAR model.

Symbol Name Recommended
Value

Reported Model

R2 Co-efficient of determination �0.6 0.919035

Q2 Cross-Validation Co-efficient �0.5 0.866475

R2- Q2 Difference between R2 and Q2 �0.3 0.05256

N(ext, test set) Minimum number of external
test set

�5 8

R2
ext. Co-efficient of determination of

external and test set
�0.5 0.636217

Table 2. The symbols, descriptions and classes of descriptors for the selected
model.

S/no Symbol Description Class

M.T. Ibrahim et al. Heliyon 6 (2020) e03158
to treat EGFRT790M/L790M double mutations example AZD9291 [10]. The
third-generation tyrosine kinase inhibitors (TKI), osimertinib and roci-
letinib of EGFR are highly active against T790M. Gradually, this
third-generation tyrosine kinase inhibitors developed resistance rapidly.
EGFR C797S mutation was reported to be a leading mechanism of
resistance to the third-generation inhibitors. The C797S mutation ap-
pears to be an ideal target for overcoming the acquired resistance to the
third-generation inhibitors. This summarizes the latest development on
the discovery of a fourth-generation EGFR TKI (EAI045s) [11].

3D-QSAR modelling is a molecular modelling method which quanti-
tatively correlates response variable (biological activities) and molecular
descriptors (physicochemical properties) of a molecule [12]. Also, the
3D-QSAR technique of computer-aided drug design plays a significant
role in predicting the biological activities of small molecules that have
not been synthesised [13]. Furthermore, 3D-QSAR modelling reduces the
number of compounds to be synthesized by helping in the selection of the
most promising candidates and thereby reducing a lengthy time and cost
in drug development. Many achievements of 3D-QSAR have attracted the
medicinal chemists to investigate the relationships of structural proper-
ties with biological activity [14].

Virtual screening is a molecular modelling method used to analyzed
large databases of compounds to identify potential hit candidates [15].
Molecular docking is another molecular modelling technique used to
explore the interaction between 3D structures of a ligand and a receptor
and how the ligand bind in the active site of the receptor tightly. Its also
contribute to the virtual screening of a library of compounds at the
pre-clinical stage of drug development [16].

The assessment of the absorption, distribution, metabolism and
excretion (ADME) in drug development involved earlier in the discovery
process, at a step when considered compounds are many due to restric-
tion in the access to the physical samples [17]. Predicting ADME prop-
erties and drug-likeness of a small molecule (drug) in hit-to-lead and
lead-optimization campaigns played an essential function in drug
research and development [18]. This work aims at carrying out in-silico
activity prediction on some anti-proliferative agents using QSAR tech-
nique, study the nature of interactions between the anti-proliferative
agents and EGFR-tyrosine kinase (EGFR-TK) via docking and also to
predict the ADME properties and drug-likeness of these anti-proliferative
agents.

2. Computational method

2.1. Dataset collection

Thirty [30] 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine
derivatives as anti-proliferative agents with their anti-proliferator
inhibitory activities (IC50) in nM against human lung carcinoma cell
line HCC827 were selected from the work of Hei et al [19]. The
anti-proliferator inhibitory activities (IC50) of all the dataset were then
converted to their corresponding negative logarithms (pIC50) using Eq.
(1) [20]. Table 3 presents the molecular formula, pIC50, Predicted pIC50
and residuals and docking scores for all the data set and the standard drug
(Gefitinib) used in this research.

pIC50 ¼ -log IC50 � 10�9 (1)
1 AATS7e Average Broto-Moreau autocorrelation - lag 7/weighted
by Sanderson electronegativities

2D

2 AATS8e Average Broto-Moreau autocorrelation - lag 8/weighted
by Sanderson electronegativities

2D

3 ATSC3e Centered Broto-Moreau autocorrelation - lag 3/weighted
by Sanderson electronegativities

2D

4 MATS7m Moran autocorrelation - lag 7/weighted by mass 2D

5 VR3_D Logarithmic Randic-like eigenvector-based index from Barysz
matrix/weighted by atomic number

3D
2.2. Structure generation and stable geometry calculations

In this research, after data collection, the next thing is the drawing of
the 2D-structures of the dataset. The 2D-structures of the dataset was
done using Chemdraw 12.0 software [21]. After 2D-structure generation
of the studied molecules, the 2D structures were automatically converted
to 3D by the Spartan 14 software prior to energy minimization. Energy
minimization was carried out to reduce constraint in the structures
2

before finding the most stable geometry of the studied molecules on
potential energy surface using the same software. DFT at B3LYP/6-311G*
level of theory was used in finding the most stable structures of all the
studied molecules on global minima on the potential energy surface
(PES) [22].

2.3. 1D, 2D and 3D descriptors generation, data pre-treatment and
daataset splitting

The calculation of the independent variables (descriptors) was done
using PaDEL descriptor tool kit. It calculates both 1D, 2D and 3D de-
scriptors [23].

The dataset was pre-treated manually to eliminate redundant and
constant descriptors. After pre-treating the data, Data division software
was further used in dividing the data into a training set and test set uti-
lizing Kennard-Stone algorithm [24]. The model building/training set
was used for the generation of the models while the validation/test set
was used for assessing the generated models [12].

2.4. Model development

Themodels were generated utilizing Genetic Function Approximation
(GFA) method with the actual pIC50 as the response variable and the
descriptors as independent variables. In the case of variable selection,
GFA selects the most highly correlated descriptors to develop so many
models which is one of the distinct characteristics of GFA.

2.5. Validation of the selected model

The most widely used assessment terms for QSAR models are the;
Square correlation coefficient of the training and test set (R2

training and R2

test), Adjusted R2 (R2
adj), and Cross-validation coefficient (Qcv

2 . The high
value of these parameters appear to be necessary but not enough [25].

Because of this, the inter-correlation between descriptors can be
detected using their variation inflation factors (VIF), to see whether these
descriptors are highly correlated with one another or not. If the
computed VIF values are up to 1 it means there is no inter-correlation
between the descriptors; if it falls between 1–5, the model can be
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accepted; and if it is higher than 10, the model cannot be accepted. It can
be calculated using the equation below:

VIF¼ 1
1� R2

(2)

where R2 is the correlation coefficient of the selected model [26].
The evaluation of significance and contribution of each descriptor to

the selected model is performed using the value of mean effect of each
descriptor. The mean effect is defined by equation below:

MFj ¼
Bj

Pi¼n
j¼1dijPm

j Bj
Pn

i dij
(3)

where MFj is the mean effect of a descriptor j in a model, βj is the coef-
ficient of the descriptor J in that model and dij is the value of the
descriptor in the data matrix for each molecule in the model building set,
m is the number of descriptor that appear in the model and n is the
number of molecules in the model building set [27].

To confirm the robustness of the reported model and that the model
was not obtained by chance correlation, Y-Scrambling test was
Figure 1. (A) XY (Scatter) Plot of the actual pIC50 against predicted pIC50 of training
the selected model.

Figure 2. XY (Scatter) Plot of actual pIC50 against the residua

3

performed. The test was done by reshuffling the actual activities and
keeping the descriptors unchanged to generate new QSAR models for
several trials. The new built QSAR models were anticipated to give low
Q2 and R2 value. The validation parameter for this test is cRp (cR2

p >0.5)
[28].

2.6. Applicability domain

A QSAR model is considered valid and void if it is subjected to the
applicability domain (AD) and found that the model can make a reliable
prediction of new activities of the training and test molecules. As such,
the reported model was subjected to AD to find out whether there are
influential or outliers molecules in the studied ones [29]. One of the
methods used in assessing the AD is leverage approach and is given as hi:

hi ¼ xi (X
T X)�K xi

T (i ¼ A,…, Z) (4)

where the training set matrix I is given by xi, n� k descriptor matrix of the
training set is represented by X and XT is the transpose matrix X used in
generating the model. The thresh-hold for the value of X is the warning
threshold (h*) which is presented in the equation below:
set (B) XY (Scatter) Plot of the actual pIC50 against predicted pIC50 of test set of

ls of both the test and training sets of the selected model.



Table 3. The Molecular formula, pIC50, Predicted pIC50, the residual values and
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h*¼ 3(xþ1)/q (5)
binding energy for the studied molecules.

S/No Molecular formula pIC50 Predicted pIC50 Residuals Binding energy
(kcal/mol)
where the number of chemicals of the model building set is given by q,
and the number of the descriptors in the model under evaluation is
represented by x.
1 C25H29N7S 6.537752 6.675639 -0.13789 -9.3

2 C25H27N7S 6.516413 6.369865 0.146548 -9.5

3 C26H29N7S 6.180522 6.347182 -0.16666 -9.4

4 C27H31N7S 7.29073 7.213299 0.077431 -9.9

5 C27H31N7OS 7.37059 7.429651 -0.05906 -9.1

6 C28H33N7OS 7.319664 7.329735 -0.01007 -9.1

7 C26H30N6O2S 7.353596 7.636959 -0.28336 -9.6

8 C27H33N7OS 6.302074 6.453033 -0.15096 -9.7

9 C29H35N7OS 7.531653 7.149655 0.381998 -9.6

10 C28H32N6O2S 6.854493 6.95115 -0.09666 -10.1

11y C26H29FN6O2S 7.289037 7.289037 0.065794 -9.3

12 C26H29FN6O2S 7.320572 6.295373 0.079107 -9.4

13 C25H29N7OS 6.668573 5.973654 0.3732 -9.2

14 C25H27N7OS 5.788399 6.109828 -0.18526 -9.8

15 C26H29N7OS 6.076601 7.001534 -0.03323 -9.5

16 C27H31N7OS 7.189096 7.365658 0.187562 -10.2

17y C27H31N7O2S 6.386581 6.386581 0.386269 -10.3

18y C28H33N7O2S 6.571379 6.571379 0.3376 -9.2

19 C26H30N6O3S 7.298432 7.298432 -0.06723 -9.4

20y C27H33N7O2S 5.876377 5.876377 -0.2037 -9.5

21 C29H35N7O2S 5.890219 5.890219 -0.2963 -9

22 C28H32N6O3S 6.069204 6.069204 0.003431 -10.4

23 C26H29FN6O3S 6.445269 6.445269 0.057485 -9.7

24y C26H29FN6O3S 6.257196 6.257196 0.066387 -9.7
2.7. Molecular docking

A Dell Latitude E6520 computer system, with the following specifi-
cation: Intel ® Core™ i7 Dual CPU, M330 @2.75 GHz 2.75GHz, 8GB of
RAMwas utilized to explore the nature of interactions between the active
site of EGFR-tyrosine kinase (EGFR-TK) and some selected anti-
proliferative agents (ligands) with the help of Pyrex virtual screening
software, Chimera, PyMOL and Discovery studio.

Before the docking analysis, ligands were prepared from the opti-
mized structures in 2.2 above saved in pdb file format using Spartan’14
[13]. The 3D structure of EGFR-tyrosine kinase (EGFR-TK) was down-
loaded from the protein data bank (with pdb ID: 4zau) [30] The enzyme
was prepared with help of Discovery Studio Visualizer for the docking
analysis. In the course of the preparation, hydrogen was added. Water
molecule, heteroatoms and co-ligands were eliminated from the crystal
structure saved in pdb file.

The docking of the ligands to the active site of EGFR-tyrosine kinase
(EGFR-TK) was achieved with the help of Pyrex software using Autodock
vina [12]. After successful docking protocol, re-formation of the com-
plexes (ligand-receptor) for further investigation was also achieved uti-
lizing Chimera software. Discovery studio visualizer and PyMOL were
used to investigate the interactions of the complexes.
25 C25H28N8S 5.053911 5.053911 0.092906 -9.1

26 C27H32N8S 6.286258 6.286258 -0.14532 -9.5

27y C27H32N8OS 6.301378 6.301378 0.300808 -9.7

28 C28H33N7OS 6.97265 6.97265 0.232312 -9.0

29y C27H32N8OS 5.628323 5.628323 0.590811 -9.9

30y C28H33N7O2S 6.363412 6.363412 -0.39023 -9.0

Gefitinib C22H24ClFN4O3 33.3 5.505041 -1.97251 -8.0

y ¼ Test set.
2.8. ADME properties and drug-likeness prediction

ADME properties and drug-likeness prediction of some selected anti-
proliferative agents among the data set was carried out using SwissADME
a free web tool used in evaluating ADME properties and drug-likeness of
small molecules [17]. The Lipinski's rule of five is useful at pre-clinical
stage of drug discovery which state that if any chemical violate more
than 2 of these criteria (Molecular weight ˂ 500, Number of hydrogen
bond donors �5, Number of hydrogen bond acceptors �10, Calculated
Log p� 5 and Polar surface area (PSA) ˂140 Å2), the chemical is said to be
impermeable or badly absorbed Guangzhe et la., (2019) [31].

3. Result and discussion

3.1. 3D-QSAR modeling

The model reported was found to have passed the minimum
requirement for the assessment of a reliable QSAR models with the
following assessment parameters: R2 of 0.919035, R2

adj of 0.893733, Qcv
2

of 0.866475, R2
test of 0.636217 and LOF of 0.215884 as reported by [32]

(Table 1).
Table 4. MF, VIF and correlation between descriptors of the selected model.

AATS7e AATS8e ATSC3e

AATS7e 1

AATS8e 0.585238 1

ATSC3e -0.07618 -0.45661 1

MATS7m -0.39681 0.419105 -0.28992

VR3_D 0.621244 0.675433 -0.30276

4

pIC50 ¼ - 12.417755021 (AATS7e) þ 5.879592939 (AATS8e) - 0.433185723
(ATSC3e) - 22.018131847 (MATS7m) þ 0.333566302 (VR3_D) þ
46.983337086

The details of the descriptors in the reported model were presented in
Table 2. The descriptors with negative coefficients (AATS7e, ATSC3e
and MATS7m) highlighted the negative correlation of these descriptors
to the anti-proliferator inhibitory activities of the anti-proliferative
agents. The lesser in the number of these descriptors in the structures
of anti-proliferative agents the more the action of anti-proliferative
agents against EGFR-tyrosine kinase (EGFR-TK). Looking at the de-
scriptors with positive co-efficient (AATS8e and VR3_D), it indicates
positive correlation the descriptors to the anti-proliferator inhibitory
MATS7m VR3_D VIF ME

7.726502 2.33884

8.27239 -1.09383

1.457493 -0.0027

1 5.410414 -0.05726

0.085265 1 2.190966 -0.18505



Table 5. Y-scrambling test.

Model R R2 Q2

Original 0.842447 0.709717 0.504914

Random 1 0.63572 0.40414 0.013407

Random 2 0.577014 0.332946 -0.05171

Random 3 0.440502 0.194042 -0.35335

Random 4 0.252932 0.063975 -0.53688

Random 5 0.631791 0.39916 -0.04994

Random 6 0.25435 0.064694 -0.46379

Random 7 0.279886 0.078336 -0.59263

Random 8 0.307425 0.09451 -0.59972

Random 9 0.424458 0.180165 -0.3578

Random 10 0.627664 0.393962 -0.14752

Average r: 0.443174

Average r2: 0.220593

Average Q2: -0.31399

cRp2: 0.603579

Table 6. The binding energy, Amino acid residues, Hydrogen bond (bond length
Å) of some selected ligands.

S/
N

Binding energy
(Kcal/mol)

Amino Acid Residues Hydrogen Bond (bond length Å)

22 -10.4 LEU718, LEU844, MET766,
VAL726
ALA743, LYS745 & MET790

MET793(2.49, 2.05 & THR854(3.77)

17 -10.3 LEU718, LEU844, MET766,
VAL726, LA743 LYS745 &
MET790

MET793(2.61, 2.16) & LYS745(2.88)

16 -10.2 LEU718, LEU844, MET766,
VAL726, ALA743, LYS745 &
MET790

MET793 (2.54, 2.13) LYS745 (2.82)
& ASP800 (3.78)

10 -10.1 ALA743, LYS745, MET790,
ARG841, VAL726 & LEU844

ARG841(2.75, 3.04) LYS745(2.48),
LEU788(3.58) & PHE723(3.50)
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activities of anti-proliferative agents that is the more you have these
types of descriptors the more the anti-proliferator inhibitory activities of
the anti-proliferative agents against EGFR-tyrosine kinase (EGFR-TK).

The XY (Scatter) plot of predicted activities of both the test and
training sets against the Actual pIC50 was shown in Figure 1A& 1B. It can
be seen from the two plots that the values were plotted around the
straight line which shows the significant of the selected model. Also the
R2 values from the plots agree with those of the training and test for the
internal and external assessment.

Also XY (Scatter) plot of Actual pIC50 against the residuals of both the
training and test was also shown (Figure 2.). The irregular appearance of
these residuals on either side of zero on the plot shows the non-existence
of methodological error in the selected model.

The Molecular formula, pIC50, Predicted pIC50, the residual values
and docking scores for all the studied molecules and the standard drug
Gefitinib were presented in Table 3. The low residual values (The dif-
ference between the actual and the predicted activities is termed resid-
ual) noted in the table and other validation assessments verified the
reliability of the reported model.

The Pearson's correlation matrix statistics of the descriptors in the
reported model was carried out (Table 4) and the descriptors were found
Figure 3. Williams Plot o

5

to have no correlation with one another. This shows the high quality pf
the physicochemical parameters (descriptors) utilized in generating the
reported model. To further confirm whether there is relationship or not
between the descriptors in the reported model, The VIF values of these
descriptors in the training set were computed and obtained to be less than
10 (Table 4) indicating the fitness of the reported model and the de-
scriptors were independent of one another. The MF value (Table 4) gives
the contribution of a descriptor in contrast to other descriptors in the best
model. The signs point the various direction of either increase or
decrease in the values of these descriptors which will improve the anti-
proliferator inhibitory activities of the studies molecules.

Table 5 shows the result of Y-scrambling test for ten [10] differently
generated random models. The newly randomly generated models were
found to have low R2 and Q2 values. This has proven the obtainability of
the reported model was actually not by chance and further confirm its
robustness.

The Williams plot presented in Figure 3 identified two [2] influential
compounds from which were all in the test set. It is very paramount to
decipher that these molecules with leverage value greater than the
threshold h*(h* ¼ 0.82) are not put into consideration when designing
new Anti-proliferative agents. These molecules might be structurally
different from those used to generate the reported model and, thus may
have different mechanism of action.
f the selected model.
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3.2. Molecular docking

The binding mode of some selected 2, 9-disubstituted 8-phenylthio/
phenylsulfinyl-9H-purine (ligands) in the active site of EGFR-tyrosine
kinase (EGFR-TK) (receptor) was studied via Molecular docking
(Table 6). From Table 6, molecule 22 was identified to have the highest
binding energy (-10.4 kcal/mol) among the other selected ligands which
is probably as a result of hydrogen interactions formed with MET793
(2.48599 Å, 2.04522 Å) & THR854 (3.76616 Å) amino acid residues in
the active site of EGFR-tyrosine kinase (EGFR-TK). Besides hydrogen
Figure 4. 2D structures of (A) Complex 22, (B) Complex 17, (C) Complex 16 a

6

bond, it also formed hydrophobic and other interactions with amino acid
residues (LEU718, LEU844, MET766, VAL726, ALA743, LYS745 and
MET790) of EGFR-tyrosine kinase (EGFR-TK). On the other hand,
molecule 17 with the binding energy of -10.3 kcal/mol formed similar
interaction with molecule 22 in the active site of EGFR-tyrosine kinase
(EGFR-TK). Looking at molecule 16 which is third in the ranking in terms
of binding energy (-10.2 kcal/mol). It formed hydrogen bond with
MET793, LYS745 and ASP800 amino acid residues in the active site of
EGFR-tyrosine kinase (EGFR-TK) with bond distance of 2.53982 Å,
2.1281 Å, 2.816 Å and 3.7817 Å respectively. Not only hydrogen bond
nd (D) Complex 10 with bond distances using Discovery studio visualizer.



Table 7a. ADME properties.

S/N MW HB donor HB acceptor WLOGP TPSA Lipinski
violations

22 532.66 1 7 5.05 113.61 1

17 517.65 1 6 3.94 107.62 1

16 501.65 1 5 4.71 98.39 1

10 516.66 1 6 5.16 102.63 1

Table 7b. Drug-likeness properties.

S/N GI absorption BBB permeant Pgp substrate Bioavailability
Score

22 High No Yes 0.55

17 High No Yes 0.55

16 High No Yes 0.55
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has it interacted with, but also interacted with LEU718, LEU844,
MET766, VAL726, ALA743, LYS745 & MET790 in the active site of
EGFR-tyrosine kinase (EGFR-TK) via hydrophobic. The last in the ranking
(ligand 10) also interact very well in the active site of the EGFR-tyrosine
kinase (EGFR-TK) with binding energy of -10.1 kcal/mol. Hydrogen bond
between the ligand and these amino acids ARG841 (2.75436 Å, 3.04097
Å) LYS745 (2.48106 Å), LEU788 (3.58374 Å) & PHE723 (3.49783 Å) of
the enzyme was observed. A part from the hydrogen bond it also interact
with these amino acid residues ALA743, LYS745, MET790, ARG841,
VAL726 & LEU844 in the active site of EGFR-tyrosine kinase (EGFR-TK)
through hydrophobic. The 3D and 2D structures of complex 22, 17, 16
and 10 are shown in Figures 4 and 5. In order to validate the docking
protocol and productivity, the co-crystalized ligand (AEE788) was also
docked to the binding site of EGFR-tyrosine kinase (EGFR-TK) with the
binding affinity of -9.3 kcal/mol and the RMSD value for both upper and
lower bounds were measured (0.0) which confirmed the docking pro-
tocol and productivity.
10 High No Yes 0.55
3.3. ADME and drug-likeness properties

The ADME and drug-likeness results of these selected 2, 9-disubsti-
tuted 8-phenylthio/phenylsulfinyl-9H-purine are shown in Tables 7a
and 7b. From the Table 7a it can be seen that none of the molecules
violate more than 1 of the criteria stated by Lipinski's rule of five, it
means there is a high tendency all of these molecules might be phar-
macologically active. In a null shell these molecules are said have good
absorption, low toxicity level, orally bioavailable and permeable. The
Bioavailability Radar gives an overview of the drug-likeness of a mole-
cule (Figure 6). The region painted pink indicates the range for each
Figure 5. 3D structures of (A) Complex 22, (B) Complex 1

7

properties. The Boiled-egg plot between WLOGP and TPSA to predict
gastrointestinal absorption and brain penetration of the selected mole-
cules was shown in Figure 7. It can be seen from the plot that none of the
molecules possess the BBB permeant but they are within the GI absorp-
tion region. The ADME and Drug-likeness properties for the remaining 26
compounds were presented in the Supplementary Table 1a and Supple-
mentary Table 1b. The remaining 26 compounds have good absorption
and low toxicity level. Also, they are orally bioavailable and permeable.
7, (C) Complex 16 and (D) Complex 10 using PyMOL.



Figure 6. The Bioavailability Radar of (A) Molecule 22 (B) Molecule 17 (C) Molecule 16 (D) Molecule 10 with the highest docking score.

Figure 7. The Boiled-egg plot of the selected molecules.
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4. Conclusion

GFA-MLR analysis was used to perform 3D-QSAR modeling to predict
new inhibitory activities of 2, 9-disubstituted 8-phenylthio/phenyl-
sulfinyl-9H-purine as anti-proliferative agents. DFT method at B3LYP/6-
31G* level of theory was utilized to ascertained the equilibrium struc-
tures of these Anti-proliferative agents. The reported model was selected
because of its fitness with the following assessment parameters: R2

trng ¼
8

0.919035, R2
adj ¼ 0.893733, Q2

cv ¼ 0.866475, R2
test ¼ 0.636217, and

LOF ¼ 0.215884. The predict power, reliability and robustness of the
reported model was confirmed by passing different validation techniques
such as Applicability domain, VIF and Y-scrambling test.

The Molecular docking result of some selected 2, 9-disubstituted 8-
phenylthio/phenylsulfinyl-9H-purine (ligands) in the active site of EGFR-
tyrosine kinase (EGFR-TK) (receptor) shows that molecule 22 has the
highest binding energy of -10.4 kcal/mol among co-ligands. The results
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of the 3D-QSAR modeling and molecular docking agrees with one
another in which the molecule with the lowest residual values has the
highest binding energy.

The ADME properties and drug-likeness of these selected ant-
proliferative agents were predicted via pharmacokinetic profile of
these molecules utilizing SWISS ADME. These molecules were found to
be orally bioavailable by not violating more than the minimum recom-
mended criteria set by the Lipinski's rule of five filters.
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