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SARS-CoV-2 is a recently discovered virus that poses an urgent threat to global health. *e disease caused by this virus is termed
COVID-19. Death tolls in different countries remain to rise, leading to continuous social distancing and lockdowns. Patients of
different ages are susceptible to severe disease, in particular those who have been admitted to an ICU. Machine learning (ML)
predictive models based on medical data patterns are an emerging topic in areas such as the prediction of liver diseases. Prediction
models that combine several variables or features to estimate the risk of people being infected or experiencing a poor outcome
from infection could assist medical staff in the treatment of patients, especially those that develop organ failure such as that of the
liver. In this paper, we propose a model called the detecting model for liver damage (DMLD) that predicts the risk of liver damage
in COVID-19 ICU patients.*e DMLDmodel applies machine learning algorithms in order to assess the risk of liver failure based
on patient data. To assess the DMLD model, collected data were preprocessed and used as input for several classifiers. SVM,
decision tree (DT), Näıve Bayes (NB), KNN, and ANN classifiers were tested for performance. SVM and DTperformed the best in
terms of predicting illness severity based on laboratory testing.

1. Introduction

*e COVID-19 pandemic was declared a health emergency
in 2020. Many people have died during the pandemic,
particularly in the early stages, due to a lack of under-
standing of the virus. COVID-19 has led to over 3.5 million
deaths worldwide [1–3]. Patients infected with COVID-19
may experience no symptoms or severe illness that can lead
to death [4]. *e virus continues to evolve, with concerning
mutants emerging all over the world [5]. *is is an alarming
situation and requires a better understanding of the disease
in order to save more lives. Critical cases of COVID-19 could
result in organ failure and death. Lung failure is the most
common complication, but other organs can also be affected
by the virus. In fact, multiorgan failure involving the lungs,
kidneys, liver, cardiovascular system, and gastrointestinal
tract (GIT) can also occur [6]. Additionally, people who

already suffer from liver diseases, such as cirrhosis, are at a
higher risk of decompensation and death during COVID-19
infection [7]. Organ failure is serious; therefore, managing
infection is of interest.

*e liver is a vital organ, and its failure could be fatal.
COVID-19 patients can have mild to severe symptoms and
may develop acute hepatic failure [6]. According to the
proposed mechanism, hepatic failure occurs due to multiple
factors. *ese include angiotensin-converting enzyme 2
(ACE2), a SARS-CoV-2 receptor found in multiple organs
including the liver, and cytokine storm, which occurs as a
result of inflammatory mediators, endothelial dysfunction,
coagulation abnormalities, and inflammatory cell infiltration
into the organs [6]. Direct cytotoxicity caused by active virus
replication in the liver could result in liver cell damage.
Furthermore, hypoxic liver damage is exacerbated by severe
lung failure and disease. Cardiac congestion as a result of
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SARS-CoV-2 disease-induced right-sided heart failure can
also result in liver damage. Furthermore, people with pre-
existing liver disease, as well as drug-induced liver injury,
experience exacerbation [8]. To avoid COVID-19 disease
complications, it is critical to detect liver damage early and
understand its extent.

*e exact molecular mechanism of the above-mentioned
hepatic injury is unknown. However, SARS-CoV-2 viral
RNA has been detected in liver tissue using qRT-PCR, in-
dicating that the virus can affect liver cells [9]. It is still
unclear where virus replication occurs in the liver, but an
intact virus was found in the cytoplasm of COVID-19 pa-
tients with abnormal liver function tests [10]. Viral receptors
have been found on the surface of host cells, which could
explain the viral tropism towards the specific tissue. SARS-
CoV-2 enters the cell via the virus’s S protein, which binds to
host cell receptors such as ACE2 and TMPRSS2 [11]. *e
expression of ACE2 and TMPRSS2 receptors is low but still
presents in the hepatic cells [12]. Moreover, it is a note-
worthy finding that the expression of ACE2 receptors is
increased in both humans and mice with liver fibrosis [13].
Interestingly, hypoxic cases were found to be associated with
increased expression of ACE2 receptors, which could ex-
plain the mechanism of ACE2 receptor upregulation in
COVID-19 patients due to lung damage [13].

A variety of factors in SARS-CoV-2 infection can result
in hypoxia-induced liver damage. Heart failure, lung failure,
and sepsis are the three most serious of these. *ese factors
account for 90% of all cases of hypoxic damage in COVID-
19 cases. Moreover, right-sided heart failure causes liver
congestion due to raised central venous pressure (CVP).
Hypoxia and liver congestion cause centrilobular necrosis
over time [14]. Many known hepatotoxic agents have been
used to treat COVID-19 disease. *ese drugs include cor-
ticosteroids and antivirals. Corticosteroids have been found
to cause steatosis, and hepatotoxicity is caused by antivirals
such as ritonavir and remdesivir [8].

Liver enzymes, which were found to be elevated in a
number of COVID-19 cases, can be used to detect liver
damage.Although the incidence of liver involvement has been
reported in several COVID-19 cases, the extent of the prev-
alence of hepatic damage remains unknown [15]. Elevated
liver enzymes, particularly alanine aminotransferase (ALT)
and aspartate aminotransferase (AST), have been reported in
14% to 53% of patients [16]. *ere is a strong correlation
between the severity of the disease and the extent of liver
involvement [16]. According to research, mild COVID-19
disease causes a mild elevation of liver enzymes, whereas
severe disease causes a significantly higher level of liver en-
zymes [16, 17]. In a study of 222 COVID-19 patients, 28.2%
had elevated liver enzymes. *e reason for this elevation,
however, was not specified, and it could have been preexisting
[18]. Furthermore, a study of 417 COVID-19 patients dis-
covered that 76.3% of the total sample had abnormal liver
function tests.During their hospital stay, 21.5% suffered a liver
injury. *eir levels of liver enzymes significantly increased
within twoweeks of hospitalization. According to the findings
of the study, patients with significantly elevated liver enzymes
are at a higher risk of developing severe disease [19, 20].

Machine learning (ML) is being introduced to medicine
and used as artificial intelligence (AI) to create predictive
models based on data patterns. Machine learning can also be
used to create a predictive model of liver involvement [21].
Machine learning (ML) is currently being used to predict the
possibility of fatty liver disease [22], the success of liver
transplants [23], andotherhepatic conditions.However, there
is stillnofirmagreementonwhichmachine learningalgorithm
is best to use as an illness-prediction method.*e outcome of
patients with raised liver enzymes admitted to the ICU with
COVID-19 disease should be predicted using machine
learning (ML), which could be useful in disease management.

Millions of people have died as a result of the SARS-
CoV-2 virus, and more people are becoming infected every
day. Elevated liver enzymes are linked to the severity of the
illness, which can be fatal. Early detection of disease warning
signs, on the other hand, can be beneficial. During COVID-
19 disease, elevated liver enzymes are seen, and their level is
related to the severity of the disease and the extent of liver
damage. *erefore, monitoring of liver enzymes in ICU
SARS-CoV-2 patients can be used to improve their health.
Moreover, with the progress of machine learning toward
improved screening methods for the severity of COVID-19
infection, the numbers of infected individuals have de-
creased significantly, motivating artificial intelligence (AI)
scientists and medical physicians to employ this subject
more thoroughly in the health sector. Algorithms in ma-
chine learning are developed to allow computers to learn.
ML algorithms can be used for classification problems,
which have been applied in the medical field to help in the
early diagnosis of several diseases. However, there are
specific difficulties with these computational methods, in-
cluding the feature-selection step in prediction models.
Other studies have used a different methodology for feature
selection, such as a pivot table in [24] and a P-value in [25].

In this paper, we propose amodel to predict liver damage
based on data patterns using supervised learning techniques.
*e model is named detecting model for liver damage
(DMLD), and it employs machine learning algorithms to
assist in the early detection of the risk of liver damage. It will
support healthcare professionals to diagnose the disease at
its early stages. Data from blood tests of COVID-19 patients
admitted to the ICU were collected, cleaned, and prepared to
be used as input for the model. Secondly, we designed the
DMLDmodel that prepares the data set in the preprocessing
phase by addressing the missing values and applying the
normalization approach. *en, the DMLD model identifies
the most relevant features in the feature-selection phase by
applying a filtering method. Consequently, five machine
learning classifiers were examined in order to find the best-
performing algorithms; which are support vector machine
(SVM), decision tree, Näıve Bayes (NB), K-nearest neigh-
bors (KNN), and artificial neural network (ANN). *ese
methods have certain drawbacks; for example, NB is simple
and suitable for large data sets. However, it assumes that
numeric properties have a normal distribution. Data
preparation is easier with the DT but is dependent on the
sequence of the characteristics. KNN, SVM, and ANN are
computationally expensive [26]. In our study, the
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performance of the DMLD model was evaluated on the
collected data set, and the results show that the accuracy,
precision, and recall of the SVM and DTclassifiers are better
than others. *erefore, we considered SVM and DT the
likely best algorithms for detecting the risk of liver damage.
Figure 1 illustrates the study framework.

*e rest of the paper is structured as follows. First, we
present the related work. *en, we explain the DMLD
prediction model in detail, describing the data set details and
the DMLD stages with the classification algorithms. *en,
we present the results and discuss the performance of the
DMLD model, including the measurement of classification
techniques. Finally, we provide the conclusions and identify
the future directions.

2. Related Work

Machine learning approaches have attracted the attention of
many researchers and have been applied in different dis-
ciplines such as medicine, the economy, and education.
Moreover, machine learning plays an essential role in the
medical field, contributing to various health sectors such as
the early diagnosis of disease and treatment. Liver disease is a
common health issue. *erefore, early diagnosis of the risk
factors will help medical physicians predict the development
of the disease [27].

Ayeldeen et al. [28] highlighted that the positive pre-
diction of different stages of liver fibrosis can be predicted by
biochemical markers. *e decision tree algorithm has been
considered to predict the risk of liver fibrosis, and the model
has been tested using a data set that includes laboratory tests
and fibrosis markers. Another study [29] compared the
performance of different algorithms (logistic regression,
KNN, ANN, and SVM) to assess liver disease detection.
Additionally, Sontakke et al. [30] utilized backpropagation
and SVM algorithms to predict liver disease. *ir-
unavukkarasu et al. [24] applied logistic regression, SVM,
and KNN for predicting liver disease based on the evaluation
of accuracy, sensitivity, and specificity (recall). Moreover,
Venkata Ramana et al. [31] studied the performance of
various machine learning algorithms using different metrics
(accuracy, precision, sensitivity, and specificity).

A support vector machine (SVM) is considered a
promising machine learning algorithm for classification
problems. In addition, there are many studies that apply the
SVM algorithm to text classification, face recognition, and
bioinformatics. *e performance of the SVM algorithm is
often good compared to other techniques [32–34]. Another
machine learning algorithm is the Näıve Bayes classifier,
which is a simple probabilistic classifier applying Bayes’
theorem. In addition, the Näıve Bayes classifier estimates the
means and variances of the variables for classification using a
small amount of training data [35]. Moreover, decision tree
(DT) and K-nearest neighbors (KNN) are supervised
learning algorithms considered suitable for addressing both
classification and regression problems [36–38]. Another
popular machine learning method is the artificial neural
networks (ANN) that are inspired by the neural networks of
the human brain [39].

Deep learning has exploded significantly in scientific
computing, with its techniques being utilized by a variety of
fields to solve complicated problems. To perform certain
tasks, all deep learning algorithms employ various forms of
neural networks. Neural networks are used in deep learning
to perform complex computations on massive amounts of
data. It is a form of machine learning that is based on the
human brain’s structure and function. *e performance of
classification is improved the most when the machine
learning algorithm is updated with a deep learning algo-
rithm. Over the last few years, there has been a lot of de-
velopment in the use of neural networks for feature
extraction in object identification problems. For example,
Zhang et al. created Deep-IRTarget, a unique backbone
network composed of a frequency feature extractor, a spatial
feature extractor, and a dual-domain feature resource al-
location model, to cope with challenges in feature extraction
[40]. Moreover, the deep learning algorithm is employed in
burnt area mapping with the use of Sentinel-12 data [41].
Zhang et al. present a Siamese self-attention (SSA) classi-
fication approach for multisensor burnt area mapping, and a
multisource data set is created at the object level for training
and testing. Zhang et al. implement a robust, multicamera,
multiplayer tracking framework. *ey used a deep learning
algorithm in their system to understand the impact of player
identification and the most distinguishing data [42]. Fur-
thermore, deep learning algorithms have been used to
identify COVID-19 using X-ray processing. For example,
several studies [43–45] present a rapid, robust, and practical
method for detecting COVID-19 from chest X-ray images.
According to experiments by Mahajan et al. [43], DenseNet
is the best classifier to utilize as a base network with SSD512,
especially for the problem of identifying COVID-19 infec-
tion in chest X-ray images. Mahajan et al. [44] developed a
model for detecting COVID-19 from chest X-ray images.
*ey used ResNet101 as the basic network and implemented
transposed convolution, prediction modules, and informa-
tion injection into the DSSD network. *e artificial intel-
ligence-based detection models can significantly contribute
to the attainment of massive and high-performing screening
programs in various medical sectors.

3. Proposed Method

*e main contribution of this study is the design of a
predictionmodel to detect the risk of liver damage, called the
detecting model for liver damage (DMLD).

3.1. Detecting Model for Liver Damage (DMLD). In this
study, we design a prediction model for adverse effects on

DMLD

RESULTS

Liver Damage
No Liver Damage
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Observation
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Figure 1: Study framework.
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liver functionality of COVID-19 ICU patients called
detecting model for liver damage (DMLD). *e method-
ology of this study involves five stages, which are data
collection, data preprocessing, feature selection, classifiers,
and evaluation and then result collection. Figure 2 illustrates
the system architecture of the DMLD prediction model.
Moreover, a detailed explanation of the DMLDmodel will be
presented in the following subsections.

3.1.1. Material. *e data set used in this research was ob-
tained from two main hospitals in the southern region of
Saudi Arabia (Asir Central Hospital (ACH) in Asir and King
Khalid Hospital in Najran). A total of 140 patients were
included in the data set. *e study was limited to patients
with positive COVID-19 infection who were admitted to the
intensive care unit (ICU). Ethical approval (REC No.: REC-
11-1O-2020) for this study was obtained from the Regional
Committee for Research Ethics, Directorate of Health Af-
fairs, Asir Region, Ministry of Health, Saudi Arabia, and
ethical approval (IRB Log Number: 2020-24E) for this study
was obtained from the Regional Committee for Research
Ethics, Directorate of Health Affairs Najran, Ministry of
Health, Saudi Arabia.

*e data set has recent laboratory results and missing
values are very minimal. *e laboratory results contain 20
numeric attributes as follows: creatinine, glucose, sodium,
potassium, calcium, phosphorus, magnesium, chloride, uric
acid, urea, total protein, TG, AST, ALT, cholesterol-VLDL,
cholesterol-LDL, cholesterol-HDL, and LDH. *e class
presented in this data set is binary, which refers to whether a
patient has damage in the liver functionality or not based on
abnormal liver enzymes. Prediction of liver damage is very
likely based on elevated liver enzymes, which are released
from the liver as a result of liver injury. SARS-CoV-2 has
been reported to cause infection of the liver via binding to
angiotensin-converting enzyme 2 (ACE2) on chol-
angiocytes, which are a population of liver cells [46]. *e
binding of SARS-CoV-2 to ACE2 will facilitate viral entry
into the liver, causing damage to liver cells (hepatocytes)
[46, 47]. Levels of ALT and AST in our data, which are
specific liver enzymes, were significantly increased indi-
cating liver injury. We identified liver damage based on
normal values of liver enzymes. Table 1 shows the liver
enzymes along with their normal and disturbing values. Any
patient with increased liver enzymes levels is considered at
risk of liver damage. In the study data set, the percentage of
possible liver damage is 50%. Table 2 shows the data set
attributes and the obtained results from the laboratory,
which were used to examine the DMLD prediction model.

3.1.2. Data Preprocessing. *e aim of the data preprocessing
phase is to clean the data set in order to use it as input for
classifier algorithms and then to provide more accurate
observation. One of the significant issues in the collected real
data is missing values. *ese missing values are very rare, at
4%; therefore, they were excluded from the data set. Another
important aspect of data preprocessing is normalization, in
which all attributes should have equal weight. In a simple

ward, a common scale or range can be used. A popular and
widely used normalization technique is min-max normali-
zation, which is applied in this study. *e min-max nor-
malization technique transforms and rescales the data
between the range [0, 1] by the following equation:

x′ �
x − minF

maxF − minF

, (1)

where minF and maxF are the minimum and the maximum
values of the feature F, respectively. *e original and the
normalized value of the attributes, F, are represented by x

and x′, respectively [48].

3.1.3. Features Selection. *e data collected from the blood
test will have plenty of different features with different in-
formation. *erefore, the feature-selection step is applied to
reduce the number of relevant features in the data set, and
consequently, the size of the problemwill be reduced, and we
can obtain a better prediction for the risk of liver damage. In
this research, the filter method has been followed in order to
rank the importance of k features in the data set based on the
relationship between the features and the target variable
[49]. In addition, the correlation between the selected fea-
tures was examined in order to understand the data set and
the relationship between the features.

3.1.4. Classifiers. In the DMLDmodel, fivemachine learning
classifiers have been used, which are support vector machine
(SVM), decision tree (DT), Näıve Bayes (NB), K-nearest
neighbors (KNN), and artificial neural network (ANN).
*ese classifiers were used to determine the risk of liver
damage and the selection of these classifiers is based on the
following characteristics.

Support vector machine (SVM): Support vector ma-
chines (SVM) are extensively used in medical appli-
cations. *e SVM algorithm with class labels of
unknown data is used to develop an effective model for
predicting disease. SVM is used [50] in both classifi-
cation and regression [51]. *e data points in the SVM
model are represented in space and divided into
groups, with all points with comparable qualities falling
into the same group.*e given data set is treated as a p-
dimensional vector in linear SVM, which can be split by
a maximum of p-1 planes termed hyperplanes. As
shown in Figure 3, these planes divide the data space or
define the boundaries between data groups for classi-
fication or regression issues. On the basis of the dis-
tance between the two classes it separates, the optimal
hyperplane can be chosen among a large number of
hyperplanes. *e maximum-margin hyperplane is the
plane with the largest margin between the two classes
[52, 53]. For n data points, the formula is

x1
�→

, y1), . . . , xn
�→

, yn),(( (2)

where x1 is a real vector and y1 is the class to which x1
belongs and is either 1 or −1. *e distance between the
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Table 1: Specific liver enzymes with reference ranges.

Liver enzymes Normal range Disturbed range Number of patients with disturbed range
AST 0–0–40 <40 109
ALT 0–37 <37 109

Table 2: Data set attributes.

Attribute no. Attribute Variable type Reference range
A1 Creatinine Real 0.5–1.3
A2 Glucose Real 70–110
A3 Sodium Real 135–153
A4 Potassium Real 3.5–5.3
A5 Calcium Real 8.8–10.2
A6 Phosphorus Real 2.7–5
A7 Magnesium Real 1.5–2.6
A8 Chloride Real 98–105
A9 Uric acid Real 3.4–7
A10 Urea Real 10–50
A11 Albumin Real 3.4–4.8
A12 Total protein Real 6.4–8.3
A13 Cholesterol – total Real 50–200
A14 TG Real 23–56
A15 ALT Real 0–37
A16 AST Real 0–41
A17 Cholesterol – VLDL Real 10–40
A18 Cholesterol – LDL Real 50–190
A 19 Cholesterol – HDL Real 30–70
A 20 LDH Real 135–225
Class Liver damage or not Binary 0 or 1

0� healthy liver
1� possible liver damage
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ICU Patients

Laboratory tests

Results Evaluation

Interoperations Measurement
Metrics

SVM – DT –
KNN-ANN
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Missing values
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Featsures
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Figure 2: System architecture of DMLD prediction model.
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Figure 3: Classification of data by support vector machine (SVM).
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two classes y � 1 and y � −1 can be maximized by
constructing a hyperplane, which is defined as follows:

w
→

· x
→

− b � 0, (3)

where w
→ is the normal vector and b/‖w

→
‖ is the hy-

perplane’s offset along w
→.

In an SVMmodel, tuning parameters help optimize the
classification results based on the specific data points
provided [54]. One of them may be the kernel, a
mathematical function that accepts data as input and
transforms it into the required format. *ese functions
return the inner combination between two points in a
sufficient space, which might be linear, nonlinear, ra-
dial base function (RBF), polynomial, or sigmoid.
Decision Tree (DT): *e decision tree classifier is
considered a supervised learning algorithm [36].
Compared with other supervised learning algorithms, a
decision tree algorithm can be used for dealing with
both classification and regression problems. *e overall
perspective of using a DT is to create a preparation
model that can predict class or assessment of target
factors by taking decision standards derived from
training data. *e decision tree classifier can be a fast
learner when constructing a decision/regression tree
utilizing acquired information as the splitting criterion,
and it prunes the tree by minimizing error pruning [37].
Näıve Bayes (NB): A Näıve Bayes classifier is a classical
probabilistic classifier dependent on performing Bayes’
theorem within a highly independent assumption [35].
*e fundamental probability model would be as de-
scriptive as the self-determining featuremodel.*e basic
assumption in the Näıve Bayes classifier is that the
presence of a specific feature of a class is unassociated
with the presence of other features [55]. Even if the
assumption is not accurate, the Näıve Bayes classifier
performs reasonably well. *e Näıve Bayes classifier has
another advantage, which is that it only requires a small
data set for the training stage in order to compute the
means and variances of the essential variables for
classification. For each label, only the variances of the
variables need to be computed, not the whole covariance
matrix, because unassociated variables are unspecified.
*e kernel of the Näıve Bayes operator can be formu-
lated on numerical attributes. *is is clearly achieved by
applying Bayes’ theorem and kernel density estimation.

P y � j|x0(  �
πj

fj x0( 


k
k�1 πk

fk x0( 
, (4)

where π is an estimate of the prior probability of class j,
and normally, π is the sample proportion falling into
the jth classification. fj is the predictable density at x0
depending on a kernel density fit, including only
perceptions from the jth class. *is is essentially similar
to discriminant analysis, only instead of assuming
normality, it estimates the probability density of the
classes utilizing a nonparametric method, Patrick.

K-Nearest Neighbors (KNN): In machine learning, KNN
is one of the most fundamental classification algorithms,
and it produces excellent results [36]. KNN is a non-
parametric, instance-based learning algorithm and can be
used to solve problems involving classification and re-
gression. In classification, KNN is used to determine
which class a new unlabeled item belongs to. In any case,
the KNNmakes a shot at the assumption that comparable
samples are close fits [38]. KNN sorts a sample into the
most decided class among K neighbors. K is usually odd
and is restricted by how the classification algorithms can
be adjusted [56]. *is will be achieved by computing the
distance between the data points that are nearest to the
samples by using methods such as Euclidean distance,
Manhattan distance, Hamming distance, or Minkowski
distance. In this study, the Euclidean distance metric was
used in the final model for calculating the distance be-
tween data points. Following the calculation of the dis-
tance, the K closest neighbors are chosen, and the
resultant class of the new object is determined using the
votes of the neighbors [51, 57].
Artificial neural network (ANN): *e functionality of an
artificial neural network (ANN) is similar to that of the
human brain [39]. It resembles a network of nodes known
as artificial neurons. All of these nodes communicate with
each other to transmit information. *e neurons in the
ANN can be represented by a state (0 or 1), and each node
might have a weight attached to it that determines its
relevance or strength in the system.*e ANN structure is
separated into layers withmany nodes; data flow from the
first layer (input layer) to the output layer after passing
through intermediary levels (hidden layers). Every layer
turns the data into relevant information before delivering
the target output [58]. *e processes of transfer and
activation are crucial in the functioning of neurons. *e
sum of all the weighted inputs is calculated using the
transfer function:

z � 
n

x�1
wixi + wbb, (5)

where b is the bias value, which in most cases is 1. Fur-
thermore, the activation function essentially flattens the
transfer function’s output into a specified range. *e acti-
vation function could be linear or nonlinear and can be
expressed simply as follows:

f(z) � z, (6)

Since no data restrictions are provided by the activation
function, the sigmoid function is employed [51], which is
written as follows:

a � σ(z) �
1

1 + e
−z. (7)

3.1.5. Evaluation. *e proposed model’s (DMLD) perfor-
mance was evaluated using the measurement performance
of several classification algorithms. Various evaluation
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methodologies, such as accuracy, precision, and recall, are
used. *e following is a list of their definition.

Accuracy: *e percentage of accurate and valid classi-
fications is known as the accuracy [59]. To calculate the
accuracy, the true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) values are required.

Accuracy �
TP + TN

TP + FP + TN + FN
. (8)

Precision: Positive predictive value is another term for
precision. It shows the percentage of positive outcomes
successfully predicted by classifier algorithms.

Precision �
TP

FP + TN
. (9)

Recall: Recall is also referred to as sensitivity or true
positive rate because it mostly displays the method’s positive
outcomes [60]. *e affectability evaluation determines the
patient’s ability to be identified by their liver condition.

Recall �
TP

TP + FN
, (10)

*e evaluation variables that are used in the performance
measurement, which is the confusion matrix, are deter-
mined as follows. True positive (TP): *e outcome of the
prediction properly identifies the presence of the risk of liver
damage in a patient. False positive (FP): *e outcome of the
prediction mistakenly identifies a patient as having the risk
of liver damage. True negative (TN): *e outcome of the
prediction properly rejects the possibility of a patient being
at risk of liver damage. False negative (FN): *e outcome of
the prediction mistakenly rejects the possibility of a patient
being at risk of liver damage.

Tenfold cross-validation is used to avoid the problems of
over- and underfitting [61].*en, the previous measurement
performance is used to evaluate the classification systems’
performance. Accuracy reflects how accurate our classifier is
in determining whether or not a patient is at risk of liver
damage. Precision also has been applied to measure the
classifier’s ability to make an accurate, positive prediction of
the risk of liver damage. Additionally, sensitivity or recall is
employed in our research to determine the percentage of
actual positive cases of risk of liver damage that the classifier
properly detects.

4. Results and Discussion

In this study, the DMLD model is proposed to contribute to
the prediction of the risk of liver damage using laboratory
blood tests. *e DMLD model was implemented and ex-
amined in the Python 3.8 programming language via An-
aconda Navigator [62]. In addition, different measurement
metrics (accuracy, precision, and recall) were considered to
assess the performance of the DMLD model. *is was
conducted using different machine learning classifiers to
predict the risk of liver damage. Tenfold cross-validation was
considered in order to validate the results.*e data set in this
study includes 140 COVID-19 ICU patients with 20 features,
as shown in Table 1. Normalization is used for scaling the

data because the data set variables (e.g., ALT, AST, and
LDH) have different ranges of values. For example, LDH for
a single patient is 499U/L, and ALTand ASTare 90U/L and
34U/L, respectively. *erefore, we applied different nor-
malization algorithms such as min-max and mean, but the
results did not show any difference. After applying the
feature-selection step in the DMLD model, the results
revealed that the three highest-scoring features were AST,
ALT, and LDH, as shown in Figure 4.*ese selected features
agreed with clinically reported features related to liver in-
jury. ALT and AST are specific liver enzymes, and hence,
they are considered markers for liver injury and failure
[63, 64]. Moreover, increased LDH levels have been reported
in patients with acute liver failure [65, 66]. Correlation
coefficients of selected features were applied to screen for
possible correlation. *e linear relationship among selected
features was defined as follows: positive correlation for
r� 0.01 to 1.0 (where 1.0 was considered strong). As illus-
trated in Figure 5, a heat map was used to present our results,
in which ALT and AST showed a significant positive cor-
relation with r� 0.96.*is correlation between ALTand AST
is not surprising, since they are already approved scientif-
ically as liver function markers. However, in agreement with
our selection of LDH as an important feature, the heat map
results interestingly revealed a very strong correlation be-
tween LDH and both specific liver enzymes ALT and AST,
with r� 0.94 and r� 0.97, respectively.

Figure 6 describes the performance of the different
classifiers used in the DMLDmodel, which are support vector
machine (SVM), DT, Näıve Bayes (NB), K-nearest neighbors
(KNN), and artificial neural network (ANN). In the validation
phase, the model was tested in two different methods, namely
train-test split and tenfold cross-validation. In the train-test
split approach, the data set was divided into two parts,
training and testing. *e DMLDmodel was trained with 80%
of the data set, and the remaining data were used for testing
the DMLD model, by which preliminary results were gained.
In addition, the tenfold cross-validation was applied in order
to avoid overfitting, as shown in Table 3 and Figure 6.

Table 3 and Figure 6 show that the accuracy of SVM is
0.87 and that of DT is 0.85, while for the Näıve Bayes, KNN,
and ANN, it is 0.71.*erefore, SVM and DTachieved higher
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Figure 4: Top selected features.
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accuracy than other classifiers (Naı̈ve Bayes, KNN, and
ANN). In addition, we tried to study the impact of different
layers on the ANN performance by measuring the accuracy
of the ANN algorithm, but the results showed no effect on
the algorithm performance, as presented in Table 4. Re-
garding precision, SVM achieved the highest score, with
0.95, and the score was 0.93 for DT. For Näıve Bayes, KNN,
and ANN classifiers, the precision values were found to be
0.5, 0.5, and 0.49, respectively. *e recall score of SVM was
the highest, at 0.95, and this score was 0.93 for DT. For Näıve
Bayes, KNN, and ANN classifiers, recall scores were 0.5, 0.5,
and 0.49, respectively.

*e performances of five classifiers in the DMLD model
have been examined. *erefore, from the above results, it
can be noted that SVM and DT are the most sufficient
classifiers in the DMLDmodel for predicting the risk of liver
damage in COVID-19 patients. In agreement with our study,
performances of the SVM [30] and DT [28] algorithms have
been utilized to predict liver disease. SVM has shown the
best performance. *is is perhaps due to its ability to classify
classes and generate a hyperplane that segregates classes after
data transformation. *erefore, early diagnosis of risk fac-
tors by machine learning models such as SVM could assist in
planning medical decisions and treatment.

5. Conclusions and Future Work

*eeffects of COVID-19 on the body are widespread.*e early
diagnosis of liver damage due to COVID-19 can contribute to
making medical decisions. *erefore, this study suggests that
the DMLDmodel can help in the prediction of the risk of liver
damage during SARS-CoV-2 infection. To evaluate the DMLD
model, data on COVID-19 and ICU patients were collected,
preprocessed, and then used as an input for different classifiers.
*e performances of SVM, DT, Näıve Bayes, KNN, and ANN
classifiers were evaluated. SVM and DT showed the best
performance for predicting the diagnosis of disease severity
based on laboratory tests. *erefore, this model could be ap-
plied for the prediction of other diseases. *e further study of
our work can be considered from two directions. Firstly, the
prediction of different risk levels of liver diseases could be
extended, as the current work is limited to the DMLD model.
Secondly, our data were limited to laboratory tests, and
therefore future work could consider CT scan images.
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Figure 6: Results of the classifier’s performance on the DMLD
model.

Table 3: Evaluation parameters of different classifiers in the DMLD
model.

Predictive models Accuracy Precision Recall
SVM 0.857 0.95 0.95
DT 0.85 0.93 0.93
NB 0.71 0.5 0.5
KNN 0.71 0.5 0.5
ANN 0.7 0.49 0.49

Table 4: *e impact of different layers on the ANN performance.

Number of layers Accuracy
1 0.7
3 0.7
4 0.7
5 0.7
10 0.7
15 0.7
20 0.7
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Figure 5: Heat map for checking the correlation between selected
features.
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bayes cost-sensitive,” IEEE Transactions on Knowledge and
Data Engineering, vol. 25, no. 10, pp. 2302–2313, 2013.

[36] A. S. Rahman, F. M. Javed Mehedi Shamrat, Z. Tasnim, J. Roy,
and S. A. Hossain, “A comparative study on liver disease
prediction using supervised machine learning algorithms,”
International Journal of Scientific & Technology Research,
vol. 8, pp. 419–422, 2019.

[37] F.-J. Yang, “An extended idea about decision trees,” in Pro-
ceedings of the 2019 International Conference on Computa-
tional Science and Computational Intelligence (CSCI),
pp. 349–354, IEEE, USA, December 2019.

[38] Z. Z. M. Ml-knn, “A lazy learning approach to multi-label
learning,” Pattern Recognition, vol. 40, no. 7, pp. 2038–2048,
2007.

[39] A. Mustafa and M. Ceylan, “Comparison of artificial neural
network and extreme learning machine in benign liver lesions
classification,” in Proceedings of the 2015 Medical Technologies
National Conference (TIPTEKNO), pp. 1–4, Bodrum, Turkey,
October 2015.

[40] R. Zhang, L. Xu, Z. Yu, Y. Shi, C. Mu, and M. Xu, “Deep-
irtarget: an automatic target detector in infrared imagery
using dual-domain feature extraction and allocation,” IEEE
Transactions on Multimedia, vol. 24, pp. 1735–1749, 2021.

[41] Q. Zhang, L. Ge, R. Zhang et al., “Deep-learning-based burned
area mapping using the synergy of sentinel-1&2 data,” Remote
Sensing of Environment, vol. 264, Article ID 112575, 2021.

[42] R. Zhang, L. Wu, Y. Yang, W. Wu, Y. Chen, and M. Xu,
“Multi-camera multi-player tracking with deep player iden-
tification in sports video,” Pattern Recognition, vol. 102,
Article ID 107260, 2020.

[43] S. Mahajan, A. Raina, X.-Z. Gao, and A. K. Pandit, “Covid-19
detection using hybrid deep learning model in chest x-rays
images,” Concurrency and Computation: Practice and Expe-
rience, vol. 34, no. 5, Article ID e6747, 2022.

[44] S. Mahajan, A. Raina, M. Abouhawwash, X.-Z. Gao, and
A. K. Pandit, “Covid-19 detection from chest x-ray images
using advanced deep learning techniques,” Computers, Ma-
terials & Continua, vol. 70, pp. 1541–1556, 2021.

[45] A. Raina, S. Mahajan, C. Vanipriya, A. Bhardwaj, and
A. K. Pandit, “Covid-19 detection: an approach using x-ray
images and deep learning techniques,” in Lecture Notes in
Networks and Systemsvol. 6, , pp. 7–16, Springer, 2021.

[46] X. Chai, L. Hu, and Y. Zhang, Specific Ace2 Expression in
Cholangiocytes May Cause Liver Damage after 2019-ncov
Infection, Berlin, Germany, 2020.

[47] P. Kumar, M. Sharma, A. Kulkarni, and P. N. Rao, “Patho-
genesis of liver injury in coronavirus disease 2019,” Journal of
Clinical and Experimental Hepatology, vol. 10, no. 6,
pp. 641-642, 2020.

[48] “What is data mining. “Data mining: concepts and tech-
niques”,” Morgan Kaufinann, vol. 10, pp. 559–569, 2006.

[49] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40, no. 1,
pp. 16–28, 2014.

[50] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and
B. Scholkopf, “Support vector machines,” IEEE Intelligent
Systems and ;eir Applications, vol. 13, no. 4, pp. 18–28,
1998.

[51] H. Kaur and V. Kumari, “Predictive modelling and analytics
for diabetes using a machine learning approach,” Applied
Computing and Informatics, vol. 16, 2020.

[52] R. A. McKinnon, D. A. Winkler, F. R. Burden,
P. l. A. Smith, M. J. Sorich, and J. O. Miners, “Comparison
of linear and nonlinear classification algorithms for the
prediction of drug and chemical metabolism by human
udp-glucurono syltransferase isoforms,” Journal of
Chemical Information and Computer Sciences, vol. 43,
no. 6, pp. 2019–2024, 2003.

[53] S. M. Mai and E. M. Hashem, “A study of support vector
machine algorithm for liver disease diagnosis,” American
Journal of Intelligent Systems, vol. 04, no. 9–14, 2014.

[54] S. Mahajan, A. Raina, X.-Z. Gao, and A. K. Pandit, “Plant
recognition using morphological feature extraction and
transfer learning over svm and adaboost,” Symmetry, vol. 13,
no. 2, 2021.

[55] S. Vijayarani and S. Dhayanand, “Liver disease prediction
using SVMandnaive bayes algorithms,” vol. 4, pp. 216–220,
2015.

[56] D. Bell, Y. Bi K, Greer, G. Guo, and H. Wang, Knn Model-
Based Approach in Classification, vol. 2888, pp. 986–996,
Springer, Berlin, Heidelberg, 2003.

[57] I. Gazalba and I. R. Nurul Gayatri, “Comparative analysis of
k-nearest neighbor and modified k-nearest neighbor algo-
rithm for data classification,” in Proceedings of the 2017 2nd
International conferences on Information Technology,
pp. 294–298, Information Systems and Electrical Engi-
neering (ICITISEE), Yogyakarta, Indonesia, November
2017.

[58] T. Kohonen, “An introduction to neural computing,” Neural
Networks, vol. 1, no. 1, pp. 3–16, 1988.

[59] S.WanhuaandZ.Peng, “Statistical inferenceonrecall, precision
and average precision under random selection,” in Proceedings
of the 9th International Conference on Fuzzy Systems and
Knowledge Discovery, pp. 1348–1352, IEEE, China, May 2012.

[60] M. Junker, R. Hoch, and A. Dengel, “On the evaluation of
document analysis components by recall, precision, and ac-
curacy,” in Proceedings of the Fifth International Conference
on Document Analysis and Recognition. ICDAR ’99 (Cat.
No.PR00318), pp. 713–716, IEEE, Banganlore, India, Sep-
tember 1999.

[61] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation
over hold-out validation on colossal datasets for quality
classification,” in Proceedings of the 2016 IEEE 6th Interna-
tional Conference on Advanced Computing (IACC), pp. 78–83,
IEEE, Bhimavaram, India, February 2016.

[62] Inc Anaconda, “Anaconda navigator,” 2021.
[63] K. Ram, N. Saini, and S. Ram, “Covid-19 associated variations

in liver function parameters: a retrospective study,” Post-
graduate Medical Journal, vol. 98, 2020.

[64] Y. Yang, Q. Lu, and M. Liu, Epidemiological and Clinical
Features of the 2019 Novel Coronavirus Outbreak in china”,
medrxiv, Berlin, Germany, 2020.

10 Journal of Healthcare Engineering



[65] K. Kotoh, M. Enjoji, M. Kato, M Kohjima, M Nakamuta,
and R Takayanagi, “A new parameter using serum lactate
dehydrogenase and alanine aminotransferase level is
useful for predicting the prognosis of patients at an early
stage of acute liver injury: a retrospective study,” Com-
parative Hepatology, vol. 7, no. 1, 2008.

[66] K. Kotoh, M. Kato, and M. Kohjima, “Lactate dehydrogenase
production in hepatocytes is increased at an early stage of
acute liver failure,” Experimental and ;erapeutic Medicine,
vol. 2, no. 2, pp. 195–199, 2011.

Journal of Healthcare Engineering 11


