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The primary somatosensory cortex (S1) of mammals is critically important

in the perception of touch and related sensorimotor behaviors. In 2015,

the Blue Brain Project (BBP) developed a groundbreaking rat S1 microcircuit

simulation with over 31,000 neurons with 207 morpho-electrical neuron

types, and 37 million synapses, incorporating anatomical and physiological

information from a wide range of experimental studies. We have implemented

this highly detailed and complex S1 model in NetPyNE, using the data available

in the Neocortical Microcircuit Collaboration Portal. NetPyNE provides a

Python high-level interface to NEURON and allows defining complicated

multiscale models using an intuitive declarative standardized language. It

also facilitates running parallel simulations, automates the optimization

and exploration of parameters using supercomputers, and provides a wide

range of built-in analysis functions. This will make the S1 model more

accessible and simpler to scale, modify and extend in order to explore

research questions or interconnect to other existing models. Despite some

implementation differences, the NetPyNE model preserved the original cell

morphologies, electrophysiological responses and spatial distribution for all

207 cell types; and the connectivity properties of all 1941 pathways, including

synaptic dynamics and short-term plasticity (STP). The NetPyNE S1 simulations

produced reasonable physiological firing rates and activity patterns across

all populations. When STP was included, the network generated a 1 Hz

oscillation comparable to the original model in vitro-like state. By then

reducing the extracellular calcium concentration, the model reproduced

the original S1 in vivo-like states with asynchronous activity. These results

validate the original study using a new modeling tool. Simulated local field

potentials (LFPs) exhibited realistic oscillatory patterns and features, including
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distance- and frequency-dependent attenuation. The model was extended

by adding thalamic circuits, including 6 distinct thalamic populations with

intrathalamic, thalamocortical (TC) and corticothalamic connectivity derived

from experimental data. The thalamic model reproduced single known cell

and circuit-level dynamics, including burst and tonic firing modes and

oscillatory patterns, providing a more realistic input to cortex and enabling

study of TC interactions. Overall, our work provides a widely accessible, data-

driven and biophysically-detailed model of the somatosensory TC circuits

that can be employed as a community tool for researchers to study neural

dynamics, function and disease.

KEYWORDS

somatosensory cortex, thalamocortical circuits, large-scale model, biophysical,
cortical, multiscale

Introduction

The primary somatosensory cortex (S1) of mammals is
critically important in the perception of touch and works closely
with other sensory and motor cortical regions in permitting
coordinated activity with tasks involving grasp (Bosman et al.,
2011; Petrof et al., 2015; Barthas and Kwan, 2017). Moreover,
the communication of these cortical areas with the thalamus is
crucial for maintaining functions, such as sleep and wakefulness,
considering that the thalamocortical (TC) circuit is essential
for cerebral rhythmic activity (O’Reilly et al., 2021). A greater
understanding of S1 cortical circuits will help us gain insights
into neural coding and be of assistance in determining how
disease states such as schizophrenia, epilepsy and Parkinson’s
disease lead to sensory deficits or uncoordinated movement
(Vázquez et al., 2013; Petrof et al., 2015; Azarfar et al., 2018;
Peña-Rangel et al., 2021).

There exists an impressive, highly detailed model of rat S1
developed by the Blue Brain Project (BBP) (Markram et al.,
2015), incorporating anatomical and physiological information
from a wide range of experimental studies. This groundbreaking
model includes over 31,000 neurons of 55 layer-specific
morphological and 207 morpho-electrical neuron subtypes,
and 37 million synapses capturing layer- and cell type-specific
connectivity patterns and synaptic dynamics. Simulation results
matched in vitro and in vivo experimental findings, and the
model has been used over the years to reproduce additional
experimental results and generate predictions of the dynamics
and function of cortical microcircuits (Reimann et al., 2015,
2017a,b; Gal et al., 2017; Hagen et al., 2018; Amsalem et al.,
2020). Although the BBP S1 model is state-of-the-art, certain
constraints limit its reproducibility and use by the community,
as well as its extension or modification to connect to other
regions or update model features. The size and complexity of any
model of this scope is daunting. Due to its scale and complexity,

the original model must be run and analyzed on large High
Performance Computing platforms (HPCs), which are not
available to many users. Although the model is simulated using
NEURON (Carnevale and Hines, 2006; Migliore et al., 2006)
a widely used platform within the computational neuroscience
community, it also requires other custom libraries specifically
designed to facilitate this workflow. These libraries are used to
build, manage simulations and analyze the model. However,
not all of these libraries and workflows are publicly available
(Markram et al., 2015), making it somewhat difficult to modify
the code, and scale or simplify the model for simulation
on smaller computers, overall reducing its accessibility and
reproducibility (McDougal et al., 2016).

Here we implemented the original BBP S1 model in
NetPyNE (Dura-Bernal et al., 2019) in order to make
it more accessible and simpler to scale, modify and
extend. NetPyNE is a python package that provides
a high-level interface to the NEURON simulator, and
allows the definition of complex multiscale models
using an intuitive declarative standardized language.
NetPyNE translates these specifications into a NEURON
model, facilitates running parallel simulations, automates
the optimization and exploration of parameters using
supercomputers, and provides a wide range of built-in
analysis functions.

Conversion to NetPyNE also makes it easier to connect
to previous models developed within the platform, such as
our primary motor cortex model (Sivagnanam et al., 2020;
Dura-Bernal et al., 2022b), and models implemented in other
tools (e.g., NEST) by exporting to the NeuroML or SONATA
standard formats. In prior work, we ported a classic model
of generic sensory cortical circuits (Potjans and Diesmann,
2014) to our NetPyNE platform (Romaro et al., 2021) in order
to make it both more scalable and facilitate modification of
cell models and network parameters. The original model used
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integrate-and-fire neurons and we replaced these with more
complex multi-compartment neuron models.

Although we have primarily focused on simplifying the
network description, we have also made the model more
complex, and more complete, by adding the associated
somatosensory thalamic circuits and bidirectional connectivity
with cortex to allow interplay of these two highly coordinated
areas (Meyer et al., 2010). The deepening of knowledge about the
cortico-thalamo-cortical loop (Shepherd and Yamawaki, 2021)
should contribute to investigations on rhythmic dysfunctions,
such as epilepsy and schizophrenia. But in contrast to cortical
microcircuitry, few detailed models exist for the thalamus (Hill
and Tononi, 2005; Izhikevich and Edelman, 2008; Murray and
Anticevic, 2017; Iavarone et al., 2019).

In this study we present a NetPyNE implementation of
the BBP S1 model, capturing most of the original single-cell
physiology and morphology, synaptic mechanisms, connectivity
and basic simulation results. With the addition of detailed
thalamic circuits, we extend the results to show synchronous
activity across cortical and thalamic populations, and open the
door to new investigations on corticothalamic dynamics. The
model is able to port readily across machines and can utilize
a fast and efficient implementation on CPUs and GPUs using
CoreNEURON. This extension allows the original BBP S1 model
to be readily available to be used by the wider community to
study a wide range of research questions.

Materials and methods

Individual neuron models

Cell reconstructions were based on the compartmental
model Hodgkin-Huxley formalism, with membrane properties
represented as components of an electric circuit, and ionic
channels modeled as variable conductances. To port the
somatosensory microcircuit model in NetPyNE (Dura-Bernal
et al., 2019), we recreated the single neuron models using cell
files from the Neocortical Microcircuit Collaboration (NMCP)1

(Ramaswamy et al., 2015). The full dataset comprises 207
morpho-electrical (me) cell types, with 5 examples for each,
totaling 1,035 cell models, each stored with morphology file,
descriptions of ion channels, and a NEURON HOC template to
instantiate the cell, which can be imported directly to NetPyNE
(Figure 1). Neuron morphologies from the BBP S1 model
(specifically, L1_DLAC, L4_DBC, L23_PC, and L6_TPC_L4)
imported into NetPyNE were visualized using the NetPyNE GUI
(Figure 1A). The full name of the 207 cell types as well as the
corresponding acronym can be found in Supplementary Table 1
in the Supplementary material.

1 https://bbp.epfl.ch/nmc-portal

Benchmark testing validated physiological responses
(Figures 1B–E) at 3 current clamp amplitudes (120%, 130%,
and 140% of threshold; only 120% shown). Slight differences
were observed in the cell types with a stochastic version of the
K+ channel mechanism (StochKv; Figure 1D) where we used
a deterministic version of the channel from OpenSourceBrain
(Gleeson et al., 2019). The StochKv NMODL (.mod) mechanism
required additional code outside of NetPyNE in order to
update its state, and the inclusion of stochastic variables in
each section of the cells significantly increased the simulation
time. In order to understand the effect of StochKv on cell
response, we applied a current clamp (0.1 nA, 2s) to the
soma of each of the 1,035 cells, and used the Electrophys
Feature Extraction Library (eFEL)2 to compare BBP and
NetPyNE mean firing rate (Figure 1F) and time to first spike
(Figure 1G) for those with and without the StochKv channel.
As expected, the variability for cells with the StochKv channel
in the original model was pronounced. Although present in
54/207 me-types, the StochKv channels are only in 3.63% of
all cells. Within each m-type (morphology-type) those with
StochKv also correspond to a minority of e-types (electrical)
types; for example, only 32% of L4_DBC cells have e-type
bIR (with StochKv channels). Given the small proportion
of cells with StochKv channels (3.63%), the NetPyNE mean
firing rates per m-type population closely matched those
of the original BBP model (Figure 1J). Furthermore, the
deterministic version of StochKv preserved irregular cell spiking
patterns (CVBBP = 0.25 ± 0.16; CVNetPyNE = 0.16 ± 0.13;
where CV is the inter spike interval coefficient of variation;
see Supplementary Figure 1) as well as the neural firing rate
(FRBBP = 30.24 ± 24.33, FRNetPyNE = 28.67 ± 21.20) in the
current-clamp simulation with amplitude 0.1 nA during 2 s.
For stimulation amplitude 0.8 nA, the CV (BBP = 0.14 ± 0.17;
NetPyNE = 0.15 ± 0.30) and FR (BBP = 115.58 ± 70.20,
NetPyNE = 110.15 ± 66.58) were similar in both model
implementations (Supplementary Figure 1).

The NetPyNE implementation perfectly reproduced
the original neuronal intrinsic dynamics since all model
parameters were directly imported from the original HOC
files, the same NMDOL files were used (except StochKv),
and the underlying simulation engine was NEURON in both
cases (see Figures 1B–E). To validate this, we simulated
somatodendritic backpropagating action potentials (Figure 1H)
and dendrosomatic postsynaptic potentials (Figure 1I) in
an example L5_TTPC cell. Results were identical in the
NetPyNE implementation and the original BBP cell models.
To model dendrosomatic postsynaptic potentials (PSPs), we
added excitatory connections with 5 and 10 synapses, and
an inhibitory connection with 20 synapses, to the L5_TTPC
neuron. Additionally, we provided the same three subthreshold

2 https://github.com/BlueBrain/eFEL
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FIGURE 1

Reproduction and validation of BBP S1 cell types in NetPyNE. (A) 3D reconstructions of 4 pairs of m-type example neurons visualized using the
NetPyNE graphical user interface: inhibitory cells L1_DLAC and L4_DBC (red), and excitatory cells L23_PC and L6_TPC_L4 (blue). (B–E) Somatic
membrane potential of the neurons in (A) under current clamp with amplitude 120% of the neuron firing threshold. NetPyNE results (red)
compared to the original BBP model results (blue). For L4_DBC_bIR cells (D) we used a deterministic version of the BBP stochastic potassium
channel (StochKv) resulting in divergent results; using same deterministic channel in BBP (BBPdet, blue dotted line) restores the match to
NetPyNE results. (F,G) Comparison of BBP and NetPyNE firing rate and time to first spike in response to current-clamp with amplitude 0.1 nA
during 2 s for each cell type. Only some cell types with the StochKv show differences. (H) Backpropagating action potential in a L5_TTPC cell.
(I) Post synaptic potentials (PSPs) of one dendritic connection with 5 excitatory (blue circles), 10 excitatory (red squares), and 20 inhibitory (cyan
diamonds) synapses. (J) Comparison BBP and NetPyNE mean firing rate for all m-type populations. Due to the small number of cells with
StochKv (3.6%), NetPyNE population firing rates closely match those of BBP.

inputs within a short time interval, to demonstrate temporal
integration of PSPs (Figure 1I).

Distribution and connectivity of
cortical populations

Rather than instantiating the connectivity from a list of
individual synapses based on anatomical overlap of neuronal
arbors (Reimann et al., 2015), we created our S1 port using
probability rules for both neuron distribution and connections.
The network consisted of 31,346 cells in a cylindrical volume
2,082 µm height and radius of 210 µm as in the original
model (Figure 2). Each population was randomly distributed
within its specific layer (L1, L2/3, L4, L5, or L6). The number
of cells in each one of 207 me-types was taken from the
NMCP (Ramaswamy et al., 2015) the minicolumn data available
was not used to distribute cells. A 2D representation of the
cell distribution within the cylindrical volume is shown in
Figure 2A, with layer thicknesses (in µm) for L1, L23, L4, L5,

and L6 set to 165, 502, 190, 525, and 700, respectively. We used
the S1 connectome (Gal et al., 2017) from NMCP, following
the approach in Reimann et al. (2017b): 7 stochastic instances
of a model microcircuit based on averaged measurements of
neuron densities were used to calculate distance-dependent
probabilities of connection. In each microcircuit instance, we
calculated the connection probability for each pair of neurons
based on the 2D somatic distance (horizontal XZ-plane) for
each of the 1,941 pathways. To estimate the distance-dependent
probability, we calculated the probability in evenly spaced
intervals starting at 25 ± 25 µm, in 50 µm intervals, up to
375 ± 25 µm. Next, we calculated the mean probability across
the 7 microcircuits in evenly spaced intervals and used the
mean values to fit the connection probability rules. We evaluated
multiple functions for each pathway and selected the one that
provided the best fit to the data. Figures 2B–D shows how
this approach was used to calculate the connection probability
of 3 example projections: data from the 7 microcircuit
instances (mcs; cyan circles) was averaged across microcircuits
(green diamonds) and fitted to either a single exponential
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FIGURE 2

Reproduction and validation of BBP S1 neuron distribution and connectivity in NetPyNE. (A) 2D representation of the location of 31,346 cells in a
cylinder with 2,082 µm height and 210 µm radius, with each subtype (different colors) randomly distributed within its layer (L1, L2/3, L4, L5, or
L6). (B–D) Probability of connection as a function of neuron pairwise 2D distance for three example pathways, each with a different best fit
function: a single exponential (B, red line), exponential with a linear saturation rule (C, red line), and single gaussian fit (D, black dashed line).
Cyan circles represent data from 7 microcircuit instances, and green diamonds represent the mean across the 7 instances. (E,F) Comparison of
the number of connections between NetPyNE and BBP for each of the 1,941 pathways (E) and 4 projection types (p-types) (F). (G) Postsynaptic
potential (PSP) generated by connection between L23_PC neurons (Table 1, #18) simulated in NetPyNE; mean PSP trace (black line) across 20
PSP random instances (gray lines).

(Figure 2B, red line); an exponential with a linear saturation
rule (Figure 2C); or a single gaussian (Figure 2D, dashed line).
Because the original S1 model shows high variability in the
number of synapses per connection, we calculated the mean
values for each pathway and used it as a parameter in our
model. The result is a representative reconstruction of the
S1 column connectivity in NetPyNE, with approximately 27.6
million excitatory synapses and 9.6 million inhibitory synapses.

Using the fitted connectivity rules, we reconstructed an
entire S1 column in NetPyNE and compared the two versions
using the mean number of connections. To avoid overfitting,
we generated 7 different instances using different connectivity
seeds for both the NetPyNE and BBP models. The number of
connections was similar in both models for each of the 1,941
pathways (Figure 2E) and for each of the four projection types
(p-type) (EE, EI, IE, II) (Figure 2F).

Synaptic physiology

The original BBP S1 model included detailed synaptic
properties (conductances, post-synaptic potentials (PSP),
latencies, rise and decay times, failures, release probabilities,
etc.) recapitulating published experimental data. Short-term
dynamics were used to classify synapses into the following
types (s-types): inhibitory facilitating (I1), inhibitory depressing
(I2), inhibitory pseudo-linear (I3), excitatory facilitating (E1),
excitatory depressing (E2), and excitatory pseudo-linear (E3).
A set of rules were then derived from experimental data to
assign an s-type to each broad class of connections. Based
on the NMCP data, there were 29 classes of connections as
determined by the combination of pre- and post-synaptic
me-types. The synaptic properties, s-type and p-type for each
class of connections are summarized in Table 1.
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TABLE 1 Synaptic properties, s-type, p-type, and rules for each class of connections implemented in NetPyNE.

# BBP id s-Type p-Type gsyn (nS) τ decay (ms) U D (ms) F (ms) Pre- and post-syn cell
type rules

0 0 I1 II 0.83± 0.55 10.40± 6.10 0.16± 0.100 45± 21 376± 253 L6:L6_(DBC-LBC-NBC-
SBC)

1 3 I1 IE 0.91± 0.61 10.40± 6.10 0.16± 0.100 45± 21 376± 253 SBC_cAC:Exc or
L6_(NBC-LBC):L6_BPC

2 13 I1 IE 0.75± 0.32 10.40± 6.10 0.41± 0.212 162± 69 690± 5 L6_MC:L6_IPC

3 1 I2 II 0.83± 0.55 8.30± 2.20 0.25± 0.130 706± 405 21± 9 L1:Excitatory or
Inhibitory:Inhibitory

4 4 I2 IE 0.91± 0.61 8.30± 2.20 0.25± 0.130 706± 405 21± 9 SBC_dNAC:Excitatory

5 8 I2 IE 0.75± 0.32 8.30± 2.20 0.25± 0.130 706± 405 21± 9 BTC-DBC-BP:Excitatory

6 9 I2 IE 0.75± 0.32 8.30± 2.20 0.30± 0.080 1,250± 520 2± 4 MC:Excitatory

7 10 I2 IE 0.91± 0.61 8.30± 2.20 0.14± 0.050 875± 285 22± 5 LBC-NBC_(bAC cAC bNAC
dNAC):Excitatory

8 12 I2 IE 2.97± 0.95 8.30± 2.20 0.25± 0.130 706± 405 21± 9 Chc:Excitatory

9 5 I3 IE 0.91± 0.61 6.44± 1.70 0.32± 0.140 144± 80 62± 31 SBC_bNAC or
LBC-NBC_(cNAC dSTUT
cSTUT bSTUT):Excitatory

10 11 I3 IE 0.83± 0.55 36.55± 0.71 0.25± 0.130 706± 405 21± 9 NGC:Excitatory

11 114 E1 EI 0.43± 0.28 1.74± 0.18 0.02± 0.001 194± 10 507± 20 Exc:(BP_cAC DBC_cAC
BTC_cAC)

12 115 E1 EI 0.72± 0.50 1.74± 0.18 0.02± 0.001 194± 10 507± 20 Exc:(NBC-LBC)_(cAC cIR
bAC bIR cNAC)

13 132 E1 EI 0.72± 0.50 1.74± 0.18 0.01± 0.001 242± 15 563± 32 L6_TPC_L:L6_(DBC-LBC-
NBC-SBC)

14 133 E1 EI 0.11± 0.08 1.74± 0.18 0.09± 0.120 138± 211 670± 830 Excitatory:MC

15 116 E2 EE 0.72± 0.50 1.74± 0.18 0.50± 0.020 671± 17 17± 5 Excitatory:Excitatory

16 117 E2 EI 0.43± 0.28 1.74± 0.18 0.50± 0.020 671± 17 17± 5 Excitatory:[L1-BP_(cNAC
bNAC)-DBC_bAC-
BTC_(bAC cNAC
bIR)]

17 118 E2 EI 0.72± 0.50 1.74± 0.18 0.50± 0.020 671± 17 17± 5 Excitatory:SBC-ChC

18 119 E2 EE 0.68± 0.46 1.74± 0.18 0.46± 0.260 671± 17 17± 5 L23_PC:L23_PC

19 120 E2 EE 0.68± 0.46 1.74± 0.18 0.86± 0.049 671± 17 17± 5 L4_Excitatory:L4_Excitatory

20 121 E2 EE 0.19± 0.12 1.74± 0.18 0.79± 0.040 671± 17 17± 5 L4_SS:L23_PC

21 122 E2 EE 0.80± 0.53 1.74± 0.18 0.39± 0.030 671± 17 17± 5 L5_STPC:L5_STPC

22 123 E2 EE 1.50± 1.05 1.74± 0.18 0.50± 0.020 671± 17 17± 5 L5_TTPC:L5_TTPC

23 127 E2 EE 0.80± 0.53 1.74± 0.18 0.39± 0.134 780± 54 51± 36 L6_IPC:L6_IPC

24 131 E2 EI 0.72± 0.50 1.74± 0.18 0.58± 0.070 240± 43 71± 47 L6_IPC:L6_(DBC-LBC-
NBC-SBC)

25 134 E2 EI 0.72± 0.50 1.74± 0.18 0.72± 0.065 227± 38 14± 12 Exc:(NBC-LBC)_(bSTUT
dNAC bNAC cSTUT)

26 126 E3 EE 0.80± 0.53 1.74± 0.18 0.21± 0.032 460± 53 230± 69 L6_TPC_L:L6_TPC_L

27 128 E3 EE 0.80± 0.53 1.74± 0.18 0.27± 0.033 559± 238 200± 92 L6_IPC:L6_BPC

28 129 E3 EE 0.80± 0.53 1.74± 0.18 0.22± 0.053 535± 134 116± 81 L6_IPC:L6_TPC_L

s-type, type of short-term dynamics; p-type, type of projection; gsyn , peak conductance (ms); τdecay , decay time (ms); U, neurotransmitter release probability; D, time constant for recovery
from depression (ms); F, time constant for recovery from facilitation (ms). Values indicate mean± standard deviation.

The dual-exponential conductance model with rise time
(τrise) 0.2 ms was used for all synapses. Moreover, synaptic
properties included the kinetic parameters: peak conductance
(gsyn; in nS) and decay time (τdecay; in ms); and dynamic
parameters: neurotransmitter release probability (U), time

constant for recovery from depression (D; in ms) and time
constant for recovery from facilitation (F; in ms). The NetPyNE
implementation reproduces the original PSP amplitudes from
Markram et al. (2015). An example of PSPs for a connection
between L23_PC neurons (Table 1, #18) simulated in NetPyNE
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is shown in Figure 2G. The mean PSP peak amplitude across 20
PSPs (with different randomization seeds) was 1.0 mV, which
matches the value obtained in Markram et al. (2015). We
also included a compact description of the rules to determine
what connections belong to each class, based on the pre- and
postsynaptic cell types (Table 1). For clarity, we rearranged the
classes of connections by s-types in the sequence I1, I2, I3,
E1, E2, and E3 (from 0 to 28), and included the original BBP
class label for reference. The parameters D and F correspond to
the synapses with short term plasticity (STP), which could be
optionally added to recurrent S1 connections, and connections
from thalamus to S1.

The s-types for each class of connections and for each of the
1,941 pathways are color-coded and illustrated in Figure 3A.
Since pathways depend on m-types but connection classes
depend on me-types (each m-type includes multiple me-types),
it is possible to have multiple s-types for the same pathway; in
those cases we simply labeled it as either I2 or E2. To implement
the dynamics of each s-type in NetPyNE we used a deterministic
version of the dual-exponential synaptic model (Fuhrmann
et al., 2002; Hennig, 2013). Example simulations of the PSP for
the different s-types are shown in Figure 3B. For each example,
we ran 20 simulations with 5 different post-synaptic cells of
the same me-type and 4 random synaptic distributions. Pre-
and post-synaptic neurons of specific me-types were selected to
illustrate each of the six s-types (see Figure 3).

Extending the model to include
thalamic populations and connectivity

We extended the model to include somatosensory thalamic
populations with cell type-specific dynamics, intra-thalamic
connectivity and bidirectional projections with cortex. In
the original model, thalamic inputs were modeled as spike
generators that only provided feedforward inputs to S1. Our
somatosensory thalamus model is composed of the excitatory
ventral posterolateral (VPL), ventral posteromedial (VPM) and
the posteromedial (POm) nuclei, and the inhibitory reticular
nucleus (RTN). We used single compartment cell models with
dynamics tuned to reproduce previous studies on the interaction
between the thalamic relay and reticular cells (Destexhe et al.,
1996a), but adjusted to work in large-scale networks (Moreira
et al., 2021). The thalamic circuit architecture consisted of six
stacked populations as a rough approximation of the thalamic
anatomical layout (Figure 4A). The top three were inhibitory
populations comprising the outer, middle and inner sectors
of the RTN, and spanning a height of 78, 78, and 156 µm,
respectively. Below these were the three excitatory populations,
VPL, VPM, and POm, with heights of 156, 156, and 312
µm, respectively. The horizontal dimensions (XZ-plane) for all
populations were 420 µm × 420 µm. Cells were randomly
distributed across each nuclei with the number of cells in each

population based on cellular density obtained from the Cell
Atlas for the Mouse Brain3 (Erö et al., 2018). Although POm
was larger than VPL and VPM, we reduced its cell density by
50%, resulting in approximately the same population size. This
lower density accounts for the proportion of coexisting, but
functionally isolated, M1-projecting TC cells present in POm
with no projections to S1 (Guo et al., 2020).

The intrathalamic connectivity was based on data of axonal
and dendritic footprints for each nucleus. The VPL and VPM
are considered first-order nuclei (FO), which means they
receive afferent information from peripheral sensory organs
(not modeled here) and are interconnected with cortex (Sugitani
et al., 1990; Ma, 1991; Luczyńska et al., 2003) and RTN (Lam
and Sherman, 2011) in a topological fashion. On the other
hand, POm is considered a higher-order (HO) nucleus, so input
arrives mainly from the cortex, in this case, from S1 L5 and L6
(Ohno et al., 2012; O’Reilly et al., 2021). The connectivity pattern
of HO nuclei has not been properly characterized, but literature
reports a decreased level of organization of HO nuclei inputs to
RTN (Lam and Sherman, 2011), as it sends projections to S1.

We therefore adopted three connectivity strategies. In
the first, neurons from FO nuclei projected to RTN with a
column-like topological organization. We implemented this
by combining a probability of connection that decreased
exponentially with the horizontal distance between the pre-
and post-synaptic cells with a decay constant proportional to
the footprint radius, and which was truncated to 0 outside of
the footprint radius (this denotes the maximum distance of
connection in the XZ-plane). The following footprint diameters
were derived from experimental data (or estimated in the case
of no literature reports) for the different axonal footprints
of each thalamic projection: RTN→VPL and RTN→VPM:
64.33 µm (Lam and Sherman, 2007); VPL→RTN: 97.67 µm;
and VPM→RTN: 103.57 µm (Lam and Sherman, 2011).
The second strategy applies to RTN→RTN connectivity and
implements a sector-specific distance-dependent connectivity.
More specifically, within each RTN sector, the probability of
connection decayed exponentially and was truncated to 0 based
on a footprint radius of 264.63 µm (Lam et al., 2006). In
strategies one and two, the maximum distance in the Y-plane
was set to 10% of the footprint radius, following the disc-
like morphology from the axonal projections of the relay cells
and the dendritic trees of reticular cells (Murray Sherman and
Guillery, 2001; Lam et al., 2006). The third strategy was a
divergence rule, with the number of projections from and to HO
nuclei having a fixed value and being distributed without spatial
constraints. This divergence value was adjusted so that the HO
dynamics resembled that of the FO nuclei. This allowed us to
replicate a column-like topological organization in FO nuclei
using single-compartment cells (Lam and Sherman, 2007), and

3 https://bbp.epfl.ch/nexus/cell-atlas/
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FIGURE 3

Matrix of s-types for each of the 1,941 pathways and simulated PSPs examples for each s-type in NetPyNE. (A) Color-coded s-types for each
class of connections (top) and for each of the 1,941 pathways (bottom). Note that for pathways with multiple s-types only either I2 or E2 is
shown. (B) Example simulations of post-synaptic potentials to illustrate each of the six s-types. Each example shows the results of 20
simulations with five different post-synaptic cells (different colors) of the same me-type, and 4 random synaptic distributions. Inhibitory s-types
were simulated using pathway L23_SBC:L23_PC, which included different s-types depending on pre-synaptic e-type: I1 for e-type cAC, I2 for
e-type dNAC, and I3 for e-type bNAC (as shown in Table 1). Excitatory s-types E1 and E2 were simulated using pathway L23_PC:L23_LBC,
e-types cAC, and dNAC, respectively; and s-type E3 was simulated using pathway L6_TPC_L4:L6_TPC_L4.

distribute the HO connections to behave in a functionally
similar fashion (Figure 4B).

All excitatory thalamic nuclei were indirectly interconnected
through their RTN projections, which was divided into three
sectors, in line with reports of preferred innervation zones
by each of the thalamic nuclei (Lam and Sherman, 2011).
Synapses within RTN were mediated by GABAa, those from
RTN to the excitatory nuclei by a combination of GABAa
and GABAb with equal weight, and those from the excitatory
nuclei to RTN and cortex by AMPA (Destexhe et al., 1996a).
The probability and weight of connections were the targets of
parameter optimization. The matrix with the convergence of
intra-thalamic connections is shown in Figure 4E.

Feedback corticothalamic connectivity originated from S1
m-types L5_TTPC2 and L6_TPC_L4 (O’Reilly et al., 2021).

Similar to the topological rules described above, we
implemented connectivity with convergence of 30 (i.e.,
number of pre-synaptic cells projecting to each post-synaptic
cell), but only if the horizontal distance between the pre- and
post-synaptic neurons was lower than 50.0 µm (Figure 4).

TC connectivity from VPL, POm and VPM to S1 was
implemented using convergence values estimated from previous
studies (Meyer et al., 2010; Figure 4C). Convergence values for
each of the 55 m-types were calculated based on the weighted
average of the populations in each layer. The convergence
values for inhibitory populations were multiplied by a scaling
factor derived from the original mode (∼0.595). This thalamic
convergence factor for inhibitory cells was estimated by dividing
the IE ratio of VPM thalamic innervation (83/775 = 0.107) by the
average IE population ratio (4,779/26,567 = 0.18). The resulting
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FIGURE 4

NetPyNE model of somatosensory thalamic populations and connectivity extending the original S1 model. (A) Distribution of neurons across the
six different thalamic populations, roughly mimicking the thalamus anatomy (x and y axes in µm). (B) Schematic of bidirectional connectivity
between thalamic regions and cortex. Bidirectional connections between S1/RTN and first order (FO) regions VPL and VPM are topological,
whereas those with high order (HO) region POm are non-topological and implemented using divergence rules. (C) Convergence connectivity
between thalamic regions and S1 (D) RTN cells have sector-specific distance-dependent connectivity (E) convergence connectivity matrix
across all thalamic populations.

S1 column received approximately 4.95 M synapses from VPM,
4.95 M from VPL, and 3.1 M from POm. This is consistent
with values that can be derived from experimental studies
(Meyer et al., 2010), with 4.27 M synapses from VPM and, and
2.66 M from POm. We approximated TC synaptic physiology
using the parameters of model #25 in Table 1, and using 9
synapses per connection, following the Markram et al. (2015)
characterization of TC synapses as excitatory depressing (E2).

Background inputs

Each cell in the S1 circuit received 10 synaptic inputs from
Poisson-distributed spike generators (NetStims) to represent the
global effect of spontaneous synapses, background, and other
noise sources from non-modeled brain regions projecting to
S1. These stimuli were randomly distributed remove across
all sections. The quantal synaptic conductance was calculated
based on the average quantal conductance for excitatory and
inhibitory synapses. We tuned the excitatory and inhibitory
stimuli rates using grid search parameter exploration to obtain
average excitatory firing rates of ∼1 Hz and physiological firing
rates for most S1 populations.

Model building

We used the NetPyNE modeling tool (Dura-Bernal
et al., 2019) to build, manage simulations, and analyze
results of the S1 and thalamic circuit model. NetPyNE
employs NEURON (Carnevale and Hines, 2006; Migliore

et al., 2006; Lytton et al., 2016) as backend simulation
engine, with either the standard or CoreNEURON libraries
(Kumbhar et al., 2019). The high-level Python-based declarative
language provided by NetPyNE facilitated the development
of this highly complex and extensive circuit model. This
language enabled us to easily import existing morphological
and biophysical parameters of different cell types, and
define complex connectivity and stimulation rules. We used
NetPyNE to explore and optimize the model parameters
through automated submission and managing of simulations
on supercomputers. We also employed NetPyNE’s built-in
analysis functions to plot 2D representations of cell locations,
connectivity matrices, voltage traces, raster plots, local field
potentials (LFPs), 3D synapses representations, and firing rate
statistics. NetPyNE can also be used to export the model into the
NeuroML (Gleeson et al., 2010) and SONATA (Dai et al., 2020)
standard formats.

Model parameters are based on experimental data and the
original model (Markram et al., 2015). Nonetheless, parameter
optimization was necessary to ensure the model reproduces
experimental measures such as population firing rates and
PSP. The parameters optimized for the S1 TC circuit were
the background rate for excitatory and inhibitory connections.
For the intrathalamic projections, we optimized connection
weight (range 0–2 mV), connection probability (range 0–1),
y-axis connection radius (1%, 2%, 5%, or 10%) and connectivity
divergence of the HO populations (5, 10, 20, or 40 cells). For the
TC and corticothalamic projections we optimized connection
weight (range 0–2 mV) and connection probability (range 0–1).
More details about model parameter optimization/exploration
are described in section 2 of the Supplementary material.

Frontiers in Neuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-884245 September 22, 2022 Time: 6:33 # 10

Borges et al. 10.3389/fninf.2022.884245

Simulation of local field potentials

We simulated LFP extracellular recordings using the “line
source approximation” (Buzsáki et al., 2012; Łęski et al., 2013;
Parasuram et al., 2016), which is based on the sum of the
transmembrane currents generated by each segment of each
neuron, divided by the distance between the segment and the
electrode. This method assumes that the electric conductivity
(sigma = 0.3 mS/mm) and permittivity of the extracellular
medium are constant everywhere and do not depend on
frequency. LFP calculation, analysis and visualization was
performed using NetPyNE.

Given the computational cost and memory requirements
of simulating the full S1 model with morphologically-detailed
neurons while recording LFPs, we calculated transmembrane
currents only for the most central cells within an 84 µm (20%
of 420 µm) diameter cylinder. This means that only 4.4%
of the neurons were simulated in full detail, i.e., using full
morphological reconstructions and with all synapses from the
full model. The dynamics of the remaining cells (∼96% S1 and
thalamus) were simulated using spike generators (VecStims in
NEURON) using the spiking activity previously recorded in full
simulations. That is, the inputs and activity of the 4% of fully
detailed neurons from which the LFPs were calculated were
identical to those of the full network simulations (when 100%
of the neurons are simulated in detail).

Results

Reproduction of cell morphologies,
physiological responses, spatial
distribution and connectivity

Cells imported into NePyNE using the files from
The Neocortical Microcircuit Collaboration NMCP
(Ramaswamy et al., 2015), reproduced the morphological
and electrophysiological characteristics of the original model
(Figure 1): Mean firing rate and time to the first spike after
a current clamp stimulation were fitted for all the 1,035 cell
types. Firing dynamic differences were observed in cells with
the stochastic K channel (StochKv), but their firing irregularity
was partly preserved (Supplementary Figure 1) and, given
their low proportion (3.63%), the average firing rates of all
m-type populations closely matched those in the original
model (Figure 1H).

We were able to recreate the general characteristics across
the 7 BBP S1 microcircuit instances: the 31,346 cells were
distributed randomly by layer, and probabilistic connections
were generated for each of the 1,941 pathways (Figure 2).
Here, we replaced the original connectivity method, based
on the overlap between axonal and dendritic fields, with

one based on connection probability based on cell type,
layer, inter-cell distance, and dendritic pattern of post-synaptic
locations. This network parameterization allowed us to rescale
the microcolumn and generate different instances by changing
the random number generator seed. Our probabilistic rules
best reproduced the original number of connections using a
Gaussian fit in most projection pathways (1,303 of 1,941) and
an exponential fit plus a linear saturation in the remaining 638
cases (Figure 2).

Extension to include detailed thalamic
circuits

We extended the model to include the somatosensory
thalamic populations with projections to S1: RTN, POm, VPL,
and VPM. The number of thalamic cells was adapted to fit
a cylindrical column with the same radius as the S1 column.
This facilitated the inclusion of topological connectivity rules
between the two regions. We reproduced the firing dynamics
of the different thalamic cell types using a single compartment
neuron model (Moreira et al., 2021). The connections from
TC cells to S1 were based on convergence rules derived
from experimental data (Meyer et al., 2010), and synaptic
physiological mechanisms were generalized from the BBP VPM
projections to S1 layers 4 and 5 (Markram et al., 2015). Feedback
connections originated from S1 cell types L5_TTPC2 and
L6_TPC_L4 and targeted VPL and VPM following a topological
organization, and POm in a following a non-topological broader
distribution (Figure 4). The parameters of the thalamic circuit
were adjusted to reproduce a stable self-sustained activity
with rhythmic bursting and spindle oscillations (Destexhe and
Contreras, 2011), as well as a shift in dynamics following
localized excitatory input in the relay cells (Bonjean et al., 2012;
Moreira et al., 2021).

Cortical and thalamic circuits
independent response to background
inputs (no thalamocortical
connections)

We first evaluated the response to background inputs of
the S1 cortical circuit and the thalamus circuit independently,
i.e., without any connections between cortex and thalamus.
When driven with background inputs, the S1 model generated
spontaneous activity with most populations (48 out of 55)
firing within physiological rates (Figure 5). To achieve this,
excitatory and inhibitory background inputs were tuned via
grid search parameter optimization (see section Materials and
methods). Figure 5 illustrates the S1 spontaneous activity
results, including a spiking raster plot of all 31,346 cortical
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FIGURE 5

NetPyNE S1 and thalamus circuit response to background inputs (spontaneous activity). (A) Spiking raster plot of the 31,346 cells in the S1
column during 1 s (the first second was omitted to allow the network to reach a steady state). (B) Example voltage traces for each of the 207
me-types grouped by rows into their respective 55 m-types (same time period as raster plot). (C) Spiking raster plot of the 7,266 thalamic
neurons during 1 s showing intrinsic oscillations. (D) Example voltage traces for each of the 6 thalamic populations. (E) Mean firing rates of each
of the 55 m-types for NEURON (red) vs. CoreNEURON (blue). (F) Comparison of the time required to create the network and run the simulation
on a 40-core Google Cloud virtual machine using NEURON (red) or CoreNEURON (blue).

cells, examples of voltage traces for each of the 207 me-
type population, and the average firing rates for each
of the 55 m-type populations. The thalamic populations,
disconnected from S1 and driven by background inputs,
exhibited stable self-sustained activity with rhythmic bursting
at theta ∼6 Hz (Kim and McCormick, 1998; Figures 5C,D).
These oscillations, which were most prominent in the RTNi
and POm populations, emerged despite the lack of rhythmicity
in the background inputs. The thalamic circuit oscillatory

dynamics are consistent with the recurrent interactions between
thalamic relay and reticular neurons described in previous
studies (Destexhe et al., 1996a).

Simulations were run using NetPyNE and NEURON on a
Google Cloud virtual machine with 40 cores. We compared
the S1 results using the standard NEURON simulation engine
vs. CoreNEURON, a state-of-the-art solver optimized for large
scale parallel simulations on both CPUs and GPUs (Kumbhar
et al., 2019). Both simulation engines produced very similar
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firing rates for each population (Figure 5E), with excitatory and
L1-L3 inhibitory cells showing overall lower firing rates than L4-
L6 inhibitory cells. The overall average firing rate across the 2
simulated seconds was 0.95 Hz in both cases (NEURON: 59,779
spikes; CoreNEURON: 59,749 spikes). This demonstrates the
consistency of results obtained from both simulation engines,
making CoreNEURON a viable alternative to study the S1
network. CoreNEURON was 2.4x faster to create the network
and 2.2x faster to run the simulation (Figure 5F).

Somatosensory cortex circuit response
to background inputs with short term
plasticity (no thalamocortical
connections)

We simulated the response of the S1 cortical circuit to
background inputs but including short term plasticity (STP)
in its local synaptic connections (Figure 6A). Adding STP
resulted in the emergence of synchronous bursting within the
S1 cortical column at approximately 1 Hz frequency (compare
S1 raster in Figures 5A, 6A). The spontaneous synchronous
bursts first appeared in L5, and then spread to all S1 cells
within 100 ms. Figure 6B shows an amplified raster plot of
L4-L6 with 70 ms of activity at the time when spontaneous
synchronous bursts started. Figure 6C shows example voltage
traces of cortical and thalamic neurons, illustrating the spike
synchrony of S1 and the thalamic bursts. These results are
comparable to the simulations presented in Figures 11B,C of the
original publication (Markram et al., 2015).

Somatosensory cortex and thalamic
circuit response with bidirectional
thalamic connectivity and cortical
short term plasticity

We then simulated the full circuit with bidirectional
connections between S1 and thalamus and STP in the thalamus
to S1 connections (Figure 7A). The full cortico-thalamo-cortical
circuit exhibited overall increased activity with S1 oscillations
around 6 Hz frequency, and strong thalamic oscillatory activity
at the same frequency. Oscillations were now synchronized
across all S1 and thalamic populations. Figure 7B shows
the voltage traces of several cortical and thalamic neurons,
illustrating the spike synchrony of S1 and thalamic populations.
Finally, in Figure 7C we compare the mean firing rate for all
S1 and thalamic populations with (red bars) and without (blue
bars) bidirectional TC connectivity. All 55 model populations
now exhibited physiological firing rates. Adding bidirectional
TC connectivity resulted in a modest increase of the overall
mean firing rate, from 4.96 to 5.29 Hz, with more pronounced

increases in the average firing rates of L1 and L2/3 inhibitory
populations. These results do not have a direct correspondence
to any in the original BBP publication, since the original
model did not include thalamic populations bidirectionally
connected to cortex.

Somatosensory cortex and thalamic
circuit response after reducing the
extracellular calcium concentration to
reproduce asynchronous in vivo-like
state

Experimental evidence shows that extracellular calcium
concentration ([Ca2+]o) in vivo is lower than in vitro, and, as
a consequence, PSP amplitudes are also lower (Borst, 2010).
Markram et al. (2015) divided the dependency of PSPs on
[Ca2+]o into three classes for specific connection types: steep,
intermediate, and shallow. Here, the PSP amplitudes were set
to have steep dependence for connections between PC-PC
and PC-distal targeting cell types (DBC, BTC, MC, BP) and
a shallow dependence for connections between PC-proximal
targeting (LBCs, NBCs, SBCs, ChC). An intermediate level of
dependence was assumed for other connections. To simulate
reduced [Ca2+]o in the NetPyNE implementation we decreased
the cao parameter from 2.0 to 1.2 in all cells, and modified
the use parameter of synaptic transmission (U) adding a
factor to multiply its value from 0.25 to 0.75. This resulted
in a transition from synchrony (in vitro-like, Figures 6, 7)
to asynchrony (in vivo-like, Figure 8) network states, as in
Markram et al. (2015). The increased asynchrony happened
both for the S1-TH disconnected (Figure 8A) and the S1-
TH connected (Figure 8B) cases. Decreasing extracellular
calcium concentration resulted in decreased firing rates for most
populations (compare Figures 7C, 8C). In both the in vitro and
in vivo conditions, cortical firing rates were generally slightly
higher for the S1-TH connected case. However, bidirectional
thalamic connectivity (S1-TH connected) resulted in increased
thalamic population firing rates in vitro, whereas under in vivo
conditions (low [Ca2+]o), it lowered thalamic firing rates and
decreased synchrony.

Local field potentials recorded from
the in vivo-like somatosensory cortex
circuit

We simulated extracellular LFP recordings at multiple
depths and horizontal distances in the S1 cortical column
during the in vivo-like state (Figure 9). The LFP calculation
was based on the transmembrane currents across all segments
of neurons. To reduce the computational cost of the calculation,
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FIGURE 6

NetPyNE S1 circuit response to background inputs with short-term plasticity (STP). (A) Spiking raster plot of S1 with STP. S1 and thalamus were
not interconnected; only intracortical connections were included. (B) Amplified spiking raster plot (A) showing the 70 ms around the time when
synchronous bursts first occur in L5 (black) and then propagate to L6 (red) and L4 (blue). (C) Example traces from (A) showing spike synchrony
across cortical populations. Rasters in A show 2.5 s after steady state was reached.

FIGURE 7

NetPyNE S1 and thalamic circuit response with bidirectional thalamic connectivity and cortical STP. (A) Spiking raster plot of the fully connected
circuit model, including bidirectional connections between S1 and thalamus (shows 2.5 s of simulation after steady state was reached).
Oscillations at ∼6 Hz were now synchronized across all S1 and thalamic populations. (B) Example traces from (A) during 800 ms showing spike
synchrony across cortical and thalamic populations. (C) Comparison of mean firing rates of each of the 55 S1 and 6 thalamic m-types with
(S1-TH connected) and without (S1-TH disconnected) bidirectional thalamocortical connectivity (compare rasters in panel A and Figure 6A,
respectively).
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FIGURE 8

NetPyNE S1 and thalamic circuit response with low extracellular calcium (in vivo-like asynchronous states). (A) Spiking raster plot of
spontaneous activity with only intracortical and intrathalamic connections (S1-TH disconnected). (B) Spiking raster plot of the fully connected
circuit model, including bidirectional connections between S1 and thalamus (S1-TH connected). (C) Comparison of mean firing rates of each of
the 55 S1 and 6 thalamic m-types without (S1-TH disconnected) and with (S1-TH connected) bidirectional thalamocortical connectivity.

we included only the 1,376 morphologically detailed neurons
(4.4% of the total neurons) within a central cylinder of
84 µm diameter (Figures 9A,B). The remaining 29,970 S1
and 7,266 thalamic neurons were simulated using artificial
spike generators (VecStims) to ensure the dynamics of the
detailed neurons were identical as in the full scale simulation
(Figure 9D). The simulated morphologically-detailed neurons
therefore included the same 2,702,107 synapses with STP as
those in the full in vivo simulation. We inserted recording
electrodes at 4 different cortical depths (500, 1000, 1500 and
2000 um) and 2 radial (x-z plane) distances (0 and 297 µm)
from the cylinder center (Figure 9C). Recorded LFP amplitudes
were in the order 1–1,000 µV consistent with the experimental
literature (Reimann et al., 2013; Hagen et al., 2018; Figures
9E,F). The amplitudes of LFPs recorded further away from
the cylinder were attenuated ∼10 to 20x compared to those
closer to the cylinder center, for example, the peak amplitudes
for electrodes 1 and 5 were 401 and 24 µV, respectively. This
is consistent with LFP amplitude being inversely proportional
to the squared distance between electrode and current

sources. When compared to the in vitro recorded LFPs (see
Supplementary Figures 2, 3), which exhibited stronger slow
frequency oscillations, the attenuation measured at the distant
electrodes was only 5x. This is consistent with the observed
frequency-dependent attenuation phenomenon, where high
frequency signals are attenuated more than low frequency
oscillations (Buzsáki et al., 2012; Reimann et al., 2013). The LFP
power spectral densities generally depict an inverse relationship
between power and frequency, which is typically described
in animal LFP recordings. Overall, these preliminary results
demonstrate the model can be used to simulate and capture
several physiological features of extracellular LFPs.

Discussion

We provide here the first large-scale S1 model that
is accessible to the wider community, building on the
details of the prior state-of-the-art BBP S1 model. The
model closely reproduced the original cell morphologies
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FIGURE 9

Local field potentials (LFPs) recorded from the in vivo-like S1 circuit. (A,B) Lateral and top-down 2D representation of the location of 1,376
morphological cells within a cylinder with 2,082 µm height and 84 µm radius. Morphologically-detailed neurons are shown in red (L1, L4, and
L6) and blue (L23 and L5); whereas the 29,970 simplified cells (spike generators) are shown in orange (L1, L4, and L6) and cyan (L23 and L5)
circles. (C) 3D representation of the morphologically-detailed neurons with the location of all synapses (red dots), and the location of the 8 LFP
recording electrodes at 4 different depths and 2 radial distances (color triangles). (D) Spiking raster plot of the morphologically-detailed neurons
used to calculate the LFP. (E) LFP signals recorded at the 4 electrodes in the center of the cylinder (colors correspond to triangles in panel C).
Electrodes numbered 0, 1, 2, and 3 correspond with cortical depths (y) 500, 1,000, 1,500, and 2,000 µm, respectively. (F) Same as E, but for the
LFPs recorded at a radial distance of 297 µm; electrodes 4–7. (G–J) Power spectral densities (PSDs) for electrodes 0, 3, 4, and 7 calculated over
a 10-s simulation (initial transient period was not included). PSDs exhibit an inverse relationship between power and frequency.

and electrophysiological responses for the 207 morpho-
electrical (me) cell types, with 5 examples for each, totaling
1,035 cell models (Figure 1); the spatial distribution of
these cells across layers; and the connectivity properties
of the 1,941 pathways, including synaptic dynamics and
short-term plasticity (Figures 2, 3). After tuning, the
simulations produced reasonable dynamics with rates and
activity patterns corresponding to in vivo measures of cortical
activity (Figures 5, 6). There was no direct comparison to
the full network dynamics of the original BBP model since
original simulation data was not available. However, firing
rates and overall 1 Hz underlying oscillation when using STP
was comparable to that seen in the original model version
paper (Markram et al., 2015; Figure 11). We also extended
the model by adding thalamic circuits, including 6 distinct
thalamic populations that reproduced cell and circuit-level
dynamics, and with intrathalamic, TC and corticothalamic
connectivity derived from experimental data (Figure 4). The
addition of the thalamic circuit resulted in distinct activity
patterns and synchronous activity across cortical and thalamic
populations (Figure 7). Finally, we decreased the extracellular
calcium concentration ([Ca2+]o) to simulate in vivo-like
states with asynchronous activity (Figure 8). LFPs recorded

at multiple cortical depths and horizontal distances exhibited
realistic oscillatory patterns and power spectra, including the
experimentally observed distance- and frequency-dependent
attenuation (Figure 9).

The S1 model now joins other NetPyNE cortical
simulations: generic cortical circuits (Romaro et al., 2021),
auditory and motor TC circuits (Sivagnanam et al., 2020;
Dura-Bernal et al., 2022a,b), as well as simulations of thalamus
(Moreira et al., 2021), dorsal horn of spinal cord (Sekiguchi
et al., 2021), Parkinson’s disease (Ranieri et al., 2021) and
schizophrenia (Metzner et al., 2020). These large cortical
simulations can be extremely computer-intensive, which is a
major motivation for NetPyNE’s facilities that allow one to
readily simplify the network by swapping in integrate-and-fire
or small-compartmental cell models, or by down-scaling to
more manageable sizes. CoreNEURON is a state-of-the-art
solver optimized for large scale parallel simulations, now
included as part of the official NEURON package. The
optimization on CPUs and the ability to run across GPUs in
CoreNEURON is another key NetPyNE feature enhancing
runnability. In the present case, the original S1 model is
largely inaccessible, despite the cooperation of its designers,
since it requires specialized tools, workflows, and training.
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Nonetheless, most of the data required to replicate it is available
via the NMCP, which we ourselves used to implement the
NetPyNE version.

We were able to get substantial speedup (> 2x) for both
model setup and run using CoreNEURON despite only using
CPUs with no GPU at this time. We note that using CPU
cycles/timestep would provide a more direct measure than the
total simulation time, which may be affected by other factors
such as background processes (Girardi-Schappo et al., 2017).
Nonetheless, the speedup obtained is consistent with the 2–7x
speedups recently reported when using CoreNEURON on CPUs
to simulate large-scale models (Kumbhar et al., 2019; Awile et al.,
2022). For example, the NetPyNE-based motor cortex model
exhibited a speedup of 3.5x on Google Cloud. When using
GPUs, speedups of up to 40x were reported. The differences
in firing activity seen with NEURON vs. CoreNEURON are
expected due to vectorization of the compute kernels in
CoreNEURON and potential differences due to different solvers
when using NMODL with sympy. Further differences are to be
expected once this is extended to GPUs (Jézéquel et al., 2015;
Kumbhar et al., 2019).

We made 2 significant changes in our port to NetPyNE.
First, we did not replicate the stochastic K channels that appear
in 3.6% of the neurons, making our port somewhat simpler than
the original. This channel required writing custom code and
made simulations slower, but it could be added to the model in
a future iteration. Second, we have not utilized the original cell-
to-cell connection mappings that were obtained by BBP from
direct microscopic observations of overlap between pre-synaptic
axonal fields and post-synaptic dendritic fields (so-called Peter’s
principle). In the original BBP S1 model, the use of cell-to-cell
connections necessarily limited the simulation to use precisely
the original model’s cell morphologies, cell positions and scales.
It also required storing and loading large files of connection
data. We therefore replaced this connection framework with one
based on connection probability based on cell type (including
layer), inter-cell distance, and dendritic pattern of post-synaptic
locations. Although saving somewhat on space, there is a time-
space tradeoff since this requires further calculations on start-
up. Despite these limitations, we had excellent agreement with
both cell model matching and connection density matching.

Our implementation also incorporates a novel model of
thalamic circuitry that recapitulates multiple experimental
findings at the single neuron and circuit levels. Thalamic
and reticular cell models were adjusted to reproduce the
reported resting membrane potential, approximately –60 and
–80 mV, respectively (Jahnsen and Llinás, 1984; Destexhe
et al., 1996b; Sherman and Guillery, 2009). In the networks,
TC cells fired at low frequencies (2–4 Hz), while reticular
cells fired at higher rates (6–14 Hz), consistent with values
previously reported in the literature (Kim and McCormick,
1998). Thalamic simulations also showed rhythmic rebound

bursting when hyperpolarized and regular spiking activity at
depolarized potentials (Destexhe and Contreras, 2011). The
thalamic network exhibited synchronous activity within and
across several populations, as well as synchronous firing with
cortical populations, particularly in the in vitro condition. These
synchronous patterns likely emerged as a consequence of the
implemented intrathalamic and TC connectivity, including the
topological organization based on axonal footprints (Lam et al.,
2006; Lam and Sherman, 2007, 2011). Taken together, these
results make the thalamic circuit a valuable extension to the S1
model, by providing a more realistic input source to the cortical
circuit and enabling the study of TC interactions.

Recording the intracellular potential of multiple neurons
in vivo requires an elaborate set up and is generally challenging.
Extracellular recordings are more accessible and therefore
more commonly used in experimental studies. Extracellular
potentials are generated by transmembrane currents resulting
from neuronal activity. Evidence suggests the main contributor
to extracellular signals are synaptic currents (Buzsáki et al.,
2012; Reimann et al., 2013). Computational modeling coupled
with recordings of field activity in animals can provide
insights into the cooperative behavior of neurons and increase
our understanding of how these processes contribute to the
extracellular signal (Buzsáki et al., 2012; Reimann et al.,
2013). The simulated LFPs exhibited a similar range of
amplitudes as those recorded experimentally, and reproduced
several features of LFPs, including the distance-dependent and
frequency-dependent attenuation. This opens the door to future
validation of the model by comparing LFPs to those recorded
experimentally under different conditions, and to future studies
of the biophysical sources of LFPs and the exact contribution of
different network populations (Hagen et al., 2018).

To place our model in the context of recent literature, we
follow the classification proposed by a recent review of data-
driven models structural connectivity at the microcircuit level
(Shimoura et al., 2021). Our model can be classified as using
conductance-based, morphologically-detailed neurons, with a
network size of 38,612 neurons, synaptic plasticity and network
spatiality (e.g., distance-based connectivity). Our NetPyNE
implementation, together with the original BBP implementation
(Markram et al., 2015), constitute the only conductance-based,
morphologically-detailed models of S1. These contrast with
previous models of S1 (Huang et al., 2022) or of generic
sensory cortex (Potjans and Diesmann, 2014) that employ
simpler neuron models (leaky integrate and fire point neurons).
Models with detailed conductance-based and morphologically-
detailed neurons have been developed for other cortical regions,
including V1 (Arkhipov et al., 2018; Billeh et al., 2020), M1
(Dura-Bernal et al., 2022b), A1 (Dura-Bernal et al., 2022a),
and CA1 (Bezaire et al., 2016; Ecker et al., 2020). Our
model is also unique in incorporating thalamic neurons and
TC bidirectional topological connectivity. Previous TC circuit
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models included less biophysically-detailed neuron models and
simpler connectivity (Izhikevich and Edelman, 2008), or focused
on single cell (Iavarone et al., 2019) or small circuit models
(Destexhe et al., 1996a). An impressively detailed model of
the thalamoreticular microcircuit has recently been developed,
although this is limited to the VPL and RTN somatosensory
thalamus regions (Iavarone et al., 2022).

As outlined above, the level of biophysical, morphological
and connectivity detail in the model is very high compared
to most existing models. Although this makes it harder to
simulate and tune, it also enables exploration of a unique
set of scientific questions that simpler models cannot address,
or at least not with the same level of realism. Here we
included two results that require and justify the level of
detail of the model. First, we simulated a network state with
lower extracellular calcium concentration that more closely
resembles the in vivo conditions (Figure 8). Secondly, we
calculated realistic LFPs, which critically depend on the sum of
transmembrane currents along detailed neuronal morphologies
(Figure 9). We also describe the methodology for future model
parameter explorations, and provide a basic code set up example
to explore the effects of inhibitory GABAergic connections
on network dynamics. Examples of parameter explorations
in NetPyNE-based biophysically detailed circuit models can
be found in our related publications on motor and auditory
cortex models (Sivagnanam et al., 2020; Dura-Bernal et al.,
2022a,b), including an exploration of the effects of long-range
and neuromodulatory inputs.

Consequently, our port of the S1 model provides a
quantitative framework that can be used in several ways. First,
it can be used to perform in silico experiments to explore
sensory processing under the assumption of various coding
paradigms or brain disease, including the representation of
whisker motion (Bosman et al., 2011; Huang et al., 2022),
maximization of sensory dynamic range (Gautam et al., 2015),
response to unexpected sensory inputs (Amsalem et al., 2020)
schizophrenia (Metzner et al., 2020) and Parkinson’s disease
(Ranieri et al., 2021). Second, drug effects can be directly tested
in the simulation (Neymotin et al., 2016)—this is an advantage
of a multiscale model with scales from molecule to network,
which is not available in simpler models that elide these details.
Third, the model constitutes a unified multiscale framework for
organizing our knowledge of S1 which serves as a dynamical
database to which new physiological, transcriptomic, proteomic,
and anatomical data can be added. This framework can then be
utilized as a community tool for researchers in the field to test
hypotheses and guide the design of new experiments.
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