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Abstract
Signal transduction systems configured around a core phosphotransfer
step between a histidine kinase and a cognate response regulator protein
occur in organisms from all domains of life. These systems, termed
two-component systems, constitute the majority of multi-component
signaling pathways in Bacteria but are less prevalent in Archaea and
Eukarya. The core signaling domains are modular, allowing versatility in
configuration of components into single-step phosphotransfer and
multi-step phosphorelay pathways, the former being predominant in
bacteria and the latter in eukaryotes. Two-component systems regulate key
cellular regulatory processes that provide adaptive responses to
environmental stimuli and are of interest for the development of
antimicrobial therapeutics, biotechnology applications, and biosensor
engineering. In bacteria, two-component systems have been found to
mediate responses to an extremely broad array of extracellular and
intracellular chemical and physical stimuli, whereas in archaea and
eukaryotes, the use of two-component systems is more limited. This review
summarizes recent advances in exploring the repertoire of sensor histidine
kinases in the Archaea and Eukarya domains of life.
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Introduction
Protein phosphorylation is one of the most extensively used modi-
fications in signal transduction pathways in both prokaryotic and 
eukaryotic cells. Prominent families of enzymes that perform 
protein phosphorylation encompass serine/threonine kinases, 
tyrosine kinases, and histidine kinases (HKs). Although HKs  
dominate prokaryotic signaling pathways, they are less prevalent 
in eukaryotes1,2. A distinct class of mammalian HKs, specifically 
nucleoside diphosphate kinases, function together with associated 
phosphatases to catalyze reversible histidine phosphorylation 
of proteins, and the roles of such modifications in cellular  
regulation are beginning to be uncovered3–7. However, the large  
family of HKs that is prevalent in prokaryotes is absent from  
animals. Historically, a small number of eukaryotic HKs have 
been studied in plants, yeasts, filamentous fungi, and slime  
molds. Recent studies have expanded the characterization of 
HKs in other eukaryotic lineages and archaea, allowing a broader 
assessment of the types of signaling systems mediated by HKs 
and their phylogenetic distribution and evolution. HKs are  
central to regulatory systems that impact agriculture, the envi-
ronment, and both beneficial and pathogenic interactions of  
microbes with humans and other animals. Their great diversity,  
versatility, and broad distribution, as well as the specificity of 
HK communication with cognate downstream components, make  
them attractive targets for therapeutics8–12 and biotechnological 
interventions13–16 and also as building blocks for engineered  
biosensor systems17–21.

HKs occur primarily within pathways designated as “two- 
component systems” (TCSs)22,23 (Figure 1). TCSs correspond to 
cell signaling circuitries that permit organisms, either unicellular 

or multicellular, to sense and respond to a broad palette of  
environmental changes. From a mechanistic perspective, these 
transduction pathways rely on the sequential transfer of a  
phosphoryl group on conserved histidine or aspartate residues  
(or both) located in several families of proteins. In prokaryotes,  
TCSs are usually restricted to communication between two  
functional modules (that is, phosphoryl transfer between HKs 
and response regulators [RRs]) (Figure 1A). In canonical  
prokaryotic systems, the perception of a stimulus regulates the 
opposing autophosphorylation and phosphatase activities of 
the HK, which thus acts as a primary sensor. The phosphoryl 
group is transferred to a RR that effects the response. In many  
prokaryotic TCSs (~65%), the RR is a transcription factor that 
directly regulates the expression of a set of genes required for an 
adaptive response to the stimulus24,25.

In contrast, classic eukaryotic TCSs usually involve more  
complex multi-step phosphorelays26,27 but, as in prokaryotes, 
also begin by the perception of an input stimulus by a sensor 
HK, specifically a “hybrid” HK (Figure 1B). Signal perception  
modulates autophosphorylation of the HK on a conserved  
histidine residue prior to transfer to a conserved aspartate 
residue in a C-terminal domain of the HK. The phosphoryl  
group is then transmitted to a conserved histidine residue 
of a small shuttle protein of about 150 amino acid residues  
(histidine-containing phosphotransfer protein, HPt; Pfam28 
ID PF01627) and finally to a conserved aspartate residue of a  
protein belonging to the RR family. The phosphorylation state 
of this RR orchestrates subsequent molecular events underlying 
the response to the input signal, either by directly regulating  
transcription or by interfacing with other conventional eukaryotic 

Figure 1. Two-component system phosphotransfer schemes. (A) A typical phosphotransfer pathway, as is usually found in prokaryotes. 
The perception of a stimulus by extracytoplasmic domains of the histidine kinase (HK) regulates its activities. The HK autophosphorylates 
at a conserved histidine residue (H) using ATP bound to the catalytic ATPase domain (containing conserved motifs N, G1, F, and G2). The 
phosphoryl group (P) is transferred to a conserved aspartate residue (D) located within the cognate response regulator (RR). (B) An example 
of a multi-step phosphorelay, as often occurs in eukaryotes. The HK is termed “hybrid” because an additional aspartate-containing domain is 
fused to the ATPase domain. The phosphorelay involves multiple phosphoryl transfer steps. The first is an intramolecular transfer between the 
conserved histidine (H) and a conserved aspartate residue (D) located within the C terminus of the sensor HK. Subsequently, the phosphoryl 
group is transferred to a histidine-containing phosphotransfer protein and finally to a cognate RR. Conserved domains of the two-component 
system (TCS) proteins are shown in green, gold, and blue. Variable sensor domains of the HK and effector domains (Ef) of the RR that adapt 
the systems to a wide range of input stimuli and output responses are shown in gray.
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signaling strategies such as mitogen-activated protein kinase  
cascades or cAMP signaling that control the output response. 
As a result of specific evolutionary paths in which the various  
eukaryotic  lineages have engaged, the canonical TCS pathway 
described above appears to have degenerated in several clades in 
which these cell signaling systems have been described.

The canonical structure of HKs is composed of a set of variable 
and conserved domains29 (Figure 2) that couple the sensing of a 
wide range of chemical or physical stimuli to the phosphotrans-
fer pathway. Here, we review recent advances in the charac-
terization of HKs in archaea and eukaryotes with an emphasis 
on what they sense and what the main output processes that 
this prominent family of sensors regulates are. Some emerging  
trends dealing with their distribution among the various lineages 
and their evolution are also considered.

HKs in Archaea
TCSs are relatively rare in archaea and are not uniformly  
distributed across archaeal phyla30–32. The majority of archaeal 
TCSs have been identified in Euryarchaeota and Thaumar-
chaeota, but the possibility exists that greater distribution will be  
revealed as more archaeal genomes are sequenced. Several 
notable features differ between archaeal and bacterial TCSs32.  
Archaeal genomes typically contain fewer TCSs and typically 
have an HK-to-RR ratio greater than 1, suggesting that multiple 
HKs might feed into a single RR or that HKs might be paired 
with alternative downstream components. Unlike bacterial HKs 
that are mostly transmembrane proteins (estimated at 73 to 88%),  
62% of archaeal HKs lack identifiable transmembrane regions 
and are presumed to be cytoplasmic. Interestingly, previous  
analyses of bacterial and archaeal chemoreceptors have shown  
a similar bias for cytoplasmic sensing in archaea33. Correspond-
ingly, although extracellular Cache—calcium channels and 
chemotaxis receptors, also previously identified as PAS (period  
circadian protein-Aryl hydrocarbon receptor nuclear transloca-
tor protein-single-minded protein), PAS-like, PhoQ-DcuS-CitA 
(PDC), PDC-like, and PDC/PAS34–36 domains—are the most 

abundant sensor domains in bacterial HKs, intracellular PAS and 
GAF (cGMP-specific phosphodiesterases-adenylyl cyclases- 
FhlA) domains are predominant in archaeal HKs, and 72% of 
them contain one or more PAS or GAF domains (or both)32. In  
addition to Cache domains, less populated sensor domain  
families include MEDS (methanogen/methylotroph, DcmR  
sensory domain; Pfam ID PF14417), PocR (Pfam ID PF10114,  
HisKA_7TM (Pfam ID PF16927), and HisKA_4TM (Pfam ID 
PF16926), the latter being distinct to haloarchaea.

Other than chemotaxis37,38 and phototaxis39,40 systems, few  
archaeal TCS pathways have been characterized. Two recently 
studied systems, similar to conventional TCSs, are the LtrK/
LtrR TCS that mediates temperature-dependent gene regula-
tion in an Antarctic methanogen41 and a TCS comprised of 
HK FilI and RRs FilR1 and FilR2 that regulates transcription 
of methanogenesis genes in response to unknown stimuli in  
Methanosaeta harundinacea42. Two less conventional HKs, 
each containing multiple PAS and GAF domains, have recently  
been characterized from Methanosarcina acetivorans43,44. MsmS 
is a heme-based redox/dimethyl sulfide sensor, and RdmS is a  
thiol-based redox sensor; both regulate genes involved in  
methyl sulfide metabolism. Autophosphorylation of both HKs is 
redox-dependent, although neither contains a phosphorylatable 
histidine and MsmS phosphorylation has been shown to occur at 
tyrosine. Furthermore, the identified downstream regulators lack 
RR receiver (REC) domains, indicating that these HKs function in 
signaling systems distinct from TCSs.

The outputs of archaeal TCSs are currently as unexplored as 
the inputs. However, unlike archaeal HK sensor domains that  
belong to families common to bacterial counterparts such as  
PAS and GAF, albeit with different prevalence, archaeal RR  
effector domains do not correspond to the major families 
found in bacterial RRs32. Most notable is the low abundance of  
recognizable DNA-binding domains (6%). The fraction of 
archaeal RRs consisting solely of REC domains (39%) is 
almost double that observed in bacteria. Other major families  

Figure 2. Canonical structure of histidine kinases (HKs). HKs are composed of a set of variable and conserved domains. The first region 
corresponds to a highly variable, typically N-terminal sequence that determines which stimulus is perceived by the HK. This region is referred 
to as the “sensing domain”. The central “transmitter region” is composed of two conserved domains: a dimerization histidine phosphotransfer 
(DHp) domain (His kinase A, HisKA; Pfam ID PF00512, or other subfamily such as HisKA_2, HisKa_3) and a catalytic ATP-binding (CA) 
domain (histidine kinase-like ATPase catalytic, HATPase_c; Pfam ID PF02518). The DHp domain includes an H-box, usually containing 
the phosphorylatable histidine, and an X-box. The CA subdomain includes four distinct sequence motifs: the N-, G1-, F-, and G2-boxes. 
In contrast to prokaryotic HKs, most eukaryotic HKs contain an additional C-terminal RR receiver (REC) domain (Response_reg; Pfam ID 
PF00072) that includes a phosphorylatable aspartate residue. Thus, eukaryotic HKs are generally called “hybrid HKs”26.
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include dimerization histidine phosphotransfer (DHp) domains 
(that is, HisKA), PAS

n
, GAF, PAS-GAF, chemotaxis CheB, 

HalX (with a predicted helix-turn-helix, possibly DNA-binding), 
and various enzyme domains as well as several novel domain  
families.

HKs in Eukarya
Historically, plants were the first eukaryotic kingdom in which 
HKs were identified and functions of plant HKs have been  
informed primarily in the last decades by descriptions of TCSs 
in the model plant Arabidopsis thaliana45–48. Along with these  
pioneering works in plants, some groups of HKs were progres-
sively characterized in other eukaryotic lineages such as Amoe-
bozoa (mainly the slime mold Dictyostelium discoideum)49–52 and 
Fungi (mainly the yeasts Saccharomyces cerevisiae, Candida 
albicans, and Cryptococcus neoformans and the filamentous fungi 
Neurospora crassa and Aspergillus fumigatus)53,54. To date, what 
the biological roles in the remaining eukaryotic phyla are and what 
HKs sense are still largely obscure55. In the following section, we 
will briefly describe major groups of eukaryotic HKs, notably their 
structures, phylogenetic distribution, and their roles in hormone 
perception, stress adaptation, and developmental programs.

The first group of eukaryotic HKs characterized is now well docu-
mented to be dedicated to the perception of and response to the 
plant hormone (phytohormone) ethylene (Table 1)56. Ethylene 
is a gas that regulates many aspects of plant development such  
as seed germination, leaf senescence, and fruit ripening but 
also orchestrates plant defenses to pathogens (viruses, protists,  
bacteria, fungi, worms, and insects)57. From a structural point of 
view, it is important to highlight that ethylene sensing through 
HK ethylene receptors (ETRs) occurs by the interaction of the  
gaseous molecule with the ethylene-binding domain (EtBD) 
located at the N terminus of the receptors. The EtBD consists of 
three hydrophobic transmembrane helices (indicated by three 
asterisks in Table 1) containing seven conserved amino acids  
required for ethylene binding58. For a long time, typical ETRs 
were believed to be restricted to land plants and cyanobacteria59. 
Surprisingly, these considerations have now been called into  
question through the identification in recent years of genes 
encoding ETR homologs in many other eukaryotic lineages,  
including green and brown algae, free-living amoebae,  
photosynthetic diatoms, zooxanthellae that are symbiotically 
associated with coral reefs, early diverging fungi, filamentous 
marine protists (Labyrinthulomycetes), and even the unicellular 
model animal ancestor Capsaspora owczarzaki60–64. Interestingly, 
an EtDB coupled to a phytochrome domain has recently  
been identified in a cyanobacterial HK, integrating both light 
and ethylene responses65,66. These discoveries thus provide  
progressively strong arguments leading to the hypothesis that 
ethylene, more than strictly a plant hormone, would undoubtedly 
be one of the oldest molecules of intra- and inter-species  
communication that appeared on Earth, orchestrating not only 
developmental programs but also biotic interactions between many  
organisms67.

A second well-known eukaryotic HK group encompasses CHASE 
(cyclases/histidine kinases associated sensing extracellular)68,69 
domain-containing HKs (CHASE-HKs) (Table 1). To date, 

most of the members belonging to this group have been  
characterized in plants as cytokinin receptors62,70. Cytokinins 
correspond to another family of prominent phytohormones  
involved in many developmental processes in plants, includ-
ing cell division, embryogenesis, vascular tissue development, 
and root architecture71. The hormone is perceived by this type of  
transmembrane HK through the N-terminal region that com-
prises an extracellular loop70,72. More precisely, some crucial  
residues have been identified within the CHASE sequence to be 
essential for the binding of the hormones70,72,73. As initially pos-
tulated for ethylene, cytokinin signal transduction pathways  
were presumed to be found exclusively in plants74. However, 
these hormones have recently been the subject of very interest-
ing advances that suggest a broader occurrence in the tree of life, 
notably in eubacteria75 and eukaryotic microorganisms62. It has 
been experimentally shown that a bacterial CHASE-HK senses  
cytokinin, highlighting the importance of HK-cytokinin inter-
actions in inter-kingdom communication75. In addition, several 
genes encoding CHASE-HKs were unearthed in the past two 
years by browsing the genomes of various non-plant eukaryotic  
clades61–64. These include, for example, some early diverging 
fungi, brown algae, and diatoms. Although these latter homologs  
have not been functionally characterized to date, the phyloge-
netic distribution of CHASE-HKs within the various eukaryotic  
clades suggests an unexpected and broad involvement of  
cytokinins and their HK receptors in the regulation of various 
physiological processes of eukaryotic organisms and interspecies 
interactions62.

A third group of eukaryotic HKs involves transmembrane 
receptors that have been reported to be involved mostly in  
osmosensing47,49. The first members of this group were char-
acterized at the beginning of the 1990s in yeast (referred to as  
fungal group VI of HKs) and a few years later in plants (referred 
to as AHK1) (Table 1). In Saccharomyces cells, these receptors 
are known to allow the yeast to respond and adapt to osmotic and  
(to a lesser extent) oxidant stresses53,76. In Arabidopsis, the TCS 
controlled by AHK1 was reported to perceive water stress and to  
initiate histidine-to-aspartate phosphotransfer circuitry for 
seed desiccation and vegetative stress tolerances47,77–87. From a  
structural perspective, these fungal and plant osmosensors 
include two large hydrophobic transmembrane helices that border 
a roughly 300–amino acid extracellular loop predicted to fold  
mostly into large helices and small sheets, recently identified as 
a Cache domain36. Pioneering studies on this type of receptor  
demonstrated that expression of plant AHK1 genes can  
complement the lack of the unique and essential fungal group 
VI HK gene in yeast, indicating that plant and yeast putative  
osmosensors have common functional features and origins47,78. 
Interestingly, however, recent genome-wide analyses suggested 
that these structural and functional similarities rely on an evolu-
tionary convergence process rather than a common archetypal  
system inherited in both fungi and plants64.

Another well-known group of HK-type receptors widely found 
in many clades of the eukaryotic domain is phytochromes88,89.  
Phytochromes consist of photo-switchable red/far-red pho-
toreceptors that likely evolved in cyanobacteria prior to being  
transferred to some eukaryotic lineages90,91 (Table 1). In both 
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Table 1. Some important groups of eukaryotic histidine kinases (HKs), their known input signals, and their output responses.

HK group Structure Presence in 
eukaryotes Input signal Output response References

Ethylene 
receptors

Plants, Algae, 
Fungi, Amoebae, Ethylene

Plants: seed germination, 
leaf senescence, fruit 
ripening, defenses to 
pathogens

Ju et al., 201560 
Hérivaux et al., 201761 
Kabbara et al., 201964

CHASE-HK Plants, Algae, 
Fungi, Amoebae, Cytokinins

Plants: cell division, 
embryogenesis, vascular 
tissue development

Kaltenegger et al., 201874 
Hérivaux et al., 201761

AHK1/Fungal 
group VI Plants, Algae, Fungi Osmostress Oxidant 

stress

Plants: seed desiccation, 
vegetative stress tolerances 
Fungi: osmotic and oxidant 
adaptation

Defosse et al., 201553 
Nongpiur et al., 201987

Phytochromes Plants, Algae, 
Fungi, Amoebae, Red/far red light

Plants: phototropism 
Fungi: vegetative growth, 
sexual reproduction

Rensing et al., 201688 
Yu and Fischer, 201989

CKI1 Plants Cytokinins? Development of female 
gametophyte

Yuan et al., 201692 
Liu et al., 201793 
Yuan et al., 201894

CKI2/AHK5 Plants ?

Stress-induced stomatal 
closure, salt sensitivity, and 
resistance against microbial 
infection

Pham et al., 201295 
Mira-Rodado et al., 201296 
Bauer et al., 201397

Fungal group III Fungi, Amoebae Osmostress Fungi: oxidant adaptation, 
development, virulence

Defosse et al., 201553 
Hérivaux et al., 201654 
Kabbara et al., 2019

Fungal group X Fungi, Algae, 
Amoebae Oxidant stress ? Fungi: oxidant adaptation, 

development, virulence

Defosse et al., 201553 
Hérivaux et al., 201654 
Kabbara et al., 201964

KEY
: Dimerization histidine phosphotransfer domain    : Catalytic ATP-binding domain    : Receiver domain    : cGMP-specific 

phosphodiesterases-Adenylyl cyclases-FhlA domain    : Ethylene Binding Domain    : Cyclases/Histidine kinases Associated Sensing Extracellular     
: Transmembrane Region    : Calcium channels and Chemotaxis receptors domain    : Period circadian protein-Aryl hydrocarbon receptor nuclear 

translocator protein-Single-minded protein    : Phytochrome domain    : Histidine kinases-Adenylate cyclases-Methyl accepting proteins and 
Phosphatases    : Serine/Threonine kinase related domain

plants and fungi, they have been demonstrated to be involved 
in a wide range of physiological processes88,89. Importantly,  
phytochrome sequences from early diverging plants, as fungal 
phytochromes, display all conserved amino acid residues for 
HK activity. In contrast, phytochromes from higher plants  
commonly contain HK-like domains that instead display  
Ser/Thr kinase activity, suggesting a structural evolution of 
these receptors in flowering plants toward other non-TCS output 
domains98. Some recent genome-wide analyses—and, in some 
cases, functional characterization studies—demonstrated that  
phytochromes also occur in green and brown algae, diatoms, and 
amoebae63.

There are also other important groups of eukaryotic HKs that 
have been deeply studied in recent years. These include, for  
instance, two plant-specific groups: CKI1, which is involved 
in female gametophyte development92–94, and the CKI2/AHK5, 
which was recently shown to govern the stress-induced stomatal  
closure, salt sensitivity, and resistance against microbial infec-
tion in Arabidopsis95–97 (Table 1). Their precise input signals 
remain unknown. Finally, recent classification of HKs in fungi  

revealed that these sensing proteins could be categorized 
into 16 groups64; among these, groups III and X seem to play  
important roles in stress adaptation, morphogenesis, and  
virulence53,54 (Table 1).

Conclusions
Sequence information is available for a large number of HK  
sensor domains, enabling identification of abundantly populated 
fold families. A relatively small number of common sensor domains 
appear across all domains of life, although their abundance is 
strongly skewed in different organisms. Unfortunately, sequences 
and fold families often provide little information about ligands 
or physical stimuli (or both) detected by individual domains if  
experiences with bacterial HKs are generalizable.

Although studies of bacterial sensing have focused on a small 
number of structural folds such as Cache and four-helix  
bundle domains99, it is sobering to note that the largest class of  
bacterial HKs, the prototypical HKs with periplasmic sensing 
domains, contain 50 to 300 residue-sensing domains that bear no 
sequence similarity to domains of known folds or functions100.  
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Even when folds are identifiable, a similar fold can bind many 
different types of ligands and conversely the same ligand can 
be bound by domains of different folds in different proteins.  
Furthermore, even in extensively studied bacterial TCSs 
where a general stimulus such as cell wall stress is known, the 
exact molecule or physical parameter sensed by the HK often 
remains undetermined. Even for some extensively characterized  
Escherichia coli TCSs, where investigative tools include robust 
genetics and atomic-resolution three-dimensional structures, spe-
cific stimuli remain unidentified. The problem of identifying  
input stimuli becomes even more complex when multiple sen-
sor kinases or heterodimeric kinases (or both) are integrated into 
pathways such as the LadS/GacS/RetS/PA1611 system in which  
interactions among four HKs regulate biofilm formation in  
Pseudomonas aeruginosa101–103. In this system, the phosphorelay 
between HKs LadS and GacS is inhibited by RetS-GacS  
heterodimer formation which is further regulated by interactions  
between RetS and hybrid HK PA1611.

Remarkably, in plants, most TCSs are characterized with regard 
to the input stimuli and output responses. This is not true for  
TCSs of fungi and amoeba, and even less is known about TCSs 
of archaea. Although genomic analyses are a powerful tool 
for initial identification, experimental strategies will likely 
be required to drive discovery of system inputs. Recently, a  
previously uncharacterized Shewanella oneidensis HK was 
found to sense pH in a high-throughput screen of seven different  
S. oneidensis TCSs, using engineered RRs with S. oneidensis 

REC domains linked to a heterologous DNA-binding domain  
paired with a cognate reporter gene in E. coli16. To the extent 
that heterologous proteins are functional, synthetic biology  
approaches such as this promise to provide a powerful strategy  
for identification of sensory inputs.

Two-component signaling provides a versatile molecular 
mechanism for stimulus-response coupling, and TCS protein  
architecture potentially allows an almost limitless range of  
inputs and outputs. Indeed, enough of the more than 300,000 
TCSs28 have been characterized to conclude that bacteria use 
His-Asp phosphotransfer for almost all categories of signal  
transduction needs. This does not appear to occur in other  
domains of life where regulatory systems involving Ser/Thr and  
Tyr phosphorylation abound. Given the great diversity of sensing 
and responses in bacterial TCSs, it is curious that archaeal and 
eukaryotic TCSs appear to have been evolved for a narrower range 
of functions.

Abbreviations
Cache, calcium channels and chemotaxis receptors; CHASE,  
cyclases/histidine kinases associated sensing extracellular; 
EtBD, ethylene-binding domain; ETR, ethylene receptor; GAF,  
cGMP-specific phosphodiesterases-adenylyl cyclases-FhlA; HK, 
histidine kinase; PAS, period circadian protein-Aryl hydrocar-
bon receptor nuclear translocator protein-single-minded protein;  
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