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Abstract: On a global research expedition, over 500 bacterial strains inhibitory towards 

pathogenic bacteria were isolated. Three hundred of the antibacterial strains were assigned 

to the Vibrionaceae family. The purpose of the present study was to investigate the 

phylogeny and bioactivity of five Vibrionaceae strains with pronounced antibacterial 

activity. These were identified as Vibrio coralliilyticus (two strains), V. neptunius 

(two strains), and Photobacterium halotolerans (one strain) on the basis of housekeeping 

gene sequences. The two related V. coralliilyticus and V. neptunius strains were isolated 

from distant oceanic regions. Chemotyping by LC-UV/MS underlined genetic relationships 

by showing highly similar metabolite profiles for each of the two V. coralliilyticus and 

V. neptunius strains, respectively, but a unique profile for P. halotolerans. Bioassay-guided 

fractionation identified two known antibiotics as being responsible for the antibacterial 

activity; andrimid (from V. coralliilyticus) and holomycin (from P. halotolerans). Despite 

the isolation of already known antibiotics, our findings show that marine Vibrionaceae are 

a resource of antibacterial compounds and may have potential for future natural 

product discovery.  
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1. Introduction  

Bioactive secondary metabolites are believed to play a key role in microbial interactions by 

mediating antagonistic activity and intercellular communication [1]. In addition, many microbial 

natural products have biotechnological potential as antibiotics, biosurfactants, antifungal, or anticancer 

agents [2]. Sequences of microbial genomes revealed that only a small fraction of the natural product 

diversity is known, highlighting the potential for finding novel bioactive compounds in environmental 

microorganisms [3]. The need for novel antimicrobials to combat increasing antibiotic resistances in 

pathogenic bacteria has stimulated the exploration of other than the traditional sources, such as 

terrestrial actinomycetes or fungi [4]. 

The marine environment harbors bacteria with antagonistic traits [5,6], and marine microorganisms 

are a potential source of novel antimicrobials [7]. Antagonistic marine bacteria have been isolated from 

surface [8] and deep waters [9], but the majority originated from biotic surfaces such as sponges [10], 

zooplankton and macroalgae [8,11], corals [12], and bryozoans [13]. Bioactive bacterial strains 

predominantly belong to Pseudoalteromonas spp. [14], the Roseobacter clade [15], and 

Actinobacteria [16]. A number of marine-derived antimicrobials have been characterized in greater 

detail, including halogenated [17] and sulfuric [18] compounds, depsipeptides [19] and lipopeptides [20], 

glycolipids [21], as well as high molecular weight structures such as amino acid oxidases [22]. 

Also the Vibrionaceae family, Gram-negative Gammaproteobacteria ubiquitous in marine and 

brackish environments [23], harbors strains with antagonistic activity [8]. The family comprises eight 

genera, with Vibrio and Photobacterium constituting the majority of species. To date, Vibrionaceae 

have primarily been investigated due to their pathogenic potential to humans and aquatic animals, but 

they also occur in commensal or symbiotic associations with eukaryotic organisms [23]. While the 

abundance of Vibrionaceae in nutrient-rich microenvironments such as chitinous zooplankton is 

potentially related to a superior nutrient utilization based on their metabolic versatility [24], 

antagonism of competing bacteria through production of antimicrobial compounds may also contribute 

to a selective advantage. Antimicrobials from Vibrio spp. can reduce the number of other microbial 

community members and influence microscale variations in competing bacterial populations [6]. 

Antibacterial activities have been described from V. alginolyticus [25], V. parahaemolyticus [26], 

V. anguillarum [27], and several unidentified Vibrio spp. [28,29]. However, the nature and frequency 

of antagonism among vibrios is still largely unknown, and only a few antibiotic Vibrio compounds 

have been structure elucidated to date [30,31]. 

The present study describes the analysis of bioactive Vibrionaceae strains collected during a global 

marine expedition [8]. The purpose was to (i) provide phylogenetic and chemical analyses of the 

strains with strongest antibacterial activity; (ii) characterize their bioactivity depending on culture 

conditions; and (iii) isolate and elucidate the structure of bioactive metabolites. We report the 
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identification of five Vibrionaceae strains with pronounced antibacterial activity, the use of 

chemotyping to support genetic identification, and the structures of two antibacterial compounds.  

2. Results and Discussion 

2.1. Selection of Strains with Pronounced Antibacterial Activity 

Three hundred and one Vibrionaceae strains were isolated during a global marine expedition 

(http://www.galathea3.dk/uk) based on their ability to antagonize the fish pathogen Vibrio anguillarum 

strain 90-11-287 [8]. After being stored at −80 °C for between six and 12 months, all strains were 

retested for antibacterial activity against V. anguillarum strain 90-11-287 and the human pathogen 

Staphylococcus aureus strain 8325 by spotting colony mass on pathogen-seeded agar [8]. Activity was 

assessed by the formation of clearing zones around spotted colony mass. From 301 strains, only 

138 retained antibacterial activity, being a small fraction compared to other antagonistic marine 

bacteria [32,33]. One hundred strains causing pronounced inhibition (diameter of clearing zones larger 

than 10 mm) were retested using the same set-up, resulting in a subselection of 39 strains with 

reproducible strong antibacterial activity when spotted on pathogen-seeded agar. This subselection was 

inoculated in liquid cultures and extracted with ethyl acetate to determine if antibacterial compounds 

were extractable with organic solvent. Activity was seen in ethyl acetate extracts from five strains, 

which were selected for further analyses. The five bioactive strains originated from different surface 

samples collected in distant oceanic regions (Figure 1).  

Figure 1. Site of isolation, source, and species identification of five bioactive marine 

Vibrionaceae. Strains were identified to the species level by sequence analysis of several 

housekeeping genes (see below).  
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2.2. Phylogenetic Identification and Chemotyping of Strains 

All strains investigated in the present study had previously been assigned to the Vibrionaceae 

family based on 16S rRNA gene similarities [8]. However, the 16S rRNA gene is highly conserved 

among the Vibrionaceae and is not well suited for identification to the species level [34]. Therefore, 

additional sequence analyses of three housekeeping genes (recA, rpoA, and toxR) were performed. 

These genes encode constitutively expressed proteins and are suitable for phylogenetic studies of 

Vibrionaceae [34,35]. On the basis of recA and rpoA sequence similarities, strains S2052 and S4053 

were identified as Vibrio coralliilyticus, S2394 and S4051 as Vibrio neptunius, and S2753 as 

Photobacterium halotolerans (Figure 1). The toxR gene was less suited for general species 

identification due to its high variability even in closely related vibrios, as well as comparatively few 

toxR sequence data available in public gene libraries [36]. However, multiple alignments and  

neighbor-joining analyses of toxR sequences provided the best phylogenetic resolution for determining 

the relationship between the five strains (Figure 2). The usefulness of toxR for species discrimination 

was consistent with previous reports [35]. LC-UV/MS metabolite profiles underlined the close 

relationship between V. coralliilyticus S2052/4053 and V. neptunius S2394/4051, respectively. The 

evolutionary distance of P. halotolerans S2753 to the other strains was reflected by a unique 

metabolite profile (Figure 2). All five strains were consistent in their metabolite production in separate 

cultivations over a one-year interval.  

Several metabolites were produced by all V. coralliilyticus and V. neptunius strains, for instance 

those related to the peaks at retention times Rt = 11.08 and 12.03 min (Figure 2). Although they are 

different species, V. coralliilyticus and V. neptunius are closely related vibrios with only 2–3% 

sequence variation in the recA and rpoA genes (data not shown), signifying why biosynthetic pathways 

are shared between the species. Based on their molecular formulas, UV, and MS characteristics [37], 

most of the metabolites produced by both species were assigned as smaller peptides (m/z 300–500), a 

class of molecules commonly produced by marine culturable bacteria [38,39]. Despite the presence of 

shared metabolites between V. coralliilyticus and V. neptunius, clearly distinguishable peaks were seen 

as well. For instance, the major peak at retention time Rt = 10.02 min (MW 479 Da) was only seen in the 

two V. coralliilyticus, and the peak at Rt = 10.11 min (MW 493 Da) only in the two V. neptunius strains.  

The metabolites produced by P. halotolerans S2753 comprised a series of larger peptides  

(m/z 500–900) [40]. The large peak at Rt = 1.70 min (MW 213 Da) displayed a unique UV spectrum 

characteristic of that of a highly conjugated system. However, this peak could not be ascribed to any 

known compound or compound class based on LC-UV/MS data alone.  

Several metabolites (Rt = 4.70, 7.41, 8.60, 9.60, and 10.50 min) were found in all five strains and 

assigned as poly-β-hydroxybutyric acid polymers (PHB) of varying lengths (repeating unit n = 86 Da). 

This was verified by NMR for some of the compounds (data not shown). PHB are common bacterial 

storage compounds accumulated when growing on an excess carbon source [41]. 
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Figure 2. Phylogenetic and chemical relationship between five bioactive Vibrionaceae 

based on neighbor-joining analyses of aligned toxR gene sequences and LC-MS Total Ion 

Chromatograms (TIC). The scale bar relates to the number of base substitutions in toxR 

gene sequences (as displayed by branch lengths in the phylogenetic tree). 
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Chemotyping of prokaryotes has mostly been restricted to analyses of fatty acids and sugars [42], 

but we show that also the profiling of small molecules can be used for species discrimination. This 

highlights the usefulness of metabolomics for bacterial classification, adding to recent work of 

whole-cell laser desorption MALDI-TOF mass spectrometry for characterization of vibrios [43] and 

secondary metabolite profiling to assess the biosynthetic potential of marine Pseudoalteromonas [32]. 

While our study is limited to the analysis of only three species from the Vibrionaceae family, the 

isolation of two genetically and chemically closely related “strain siblings” from distant oceanic 

regions indicated that production of certain secondary metabolites is a preserved trait. Similar 

secondary metabolite profiles were also shown for marine actinomycetal Salinispora spp. [44] from 

distant habitats. Also, all Ruegeria mobilis strains from worldwide locations produced the same 

antibiotic, tropodithietic acid [33]. 

2.3. Bioassay-Guided Identification of Antibacterial Compounds 

V. coralliilyticus (strains S2052 and S4053) and P. halotolerans (S2753) inhibited both 

V. anguillarum and S. aureus, whereas V. neptunius (strains S2394 and S4051) only inhibited 

V. anguillarum (Table 1). Antibacterial activity was highest in aerated cultures and detected after one, 

three, and five days of incubation. No significant difference in activity was seen between the tested 

culture media. 

Table 1. Inhibition of V. anguillarum strain 90-11-287 and S. aureus strain 8325 by ethyl 

acetate extracts from five marine Vibrionaceae. Antibacterial activity is displayed by the 

diameter of clearing zones (−: no activity; +: between 0 and 15 mm; ++: between 15 and 

30 mm; +++: over 30 mm). 

  Inhibition of  

Strain Species V. anguillarum S. aureus 

S2052 V. coralliilyticus +++ ++ 

S2394 V. neptunius ++ − 

S2753 P. halotolerans +++ ++ 

S4051 V. neptunius ++ − 

S4053 V. coralliilyticus ++ + 

The finding of bioactivity among marine Vibrionaceae underlined marine microorganisms being a 

source of antimicrobials. To our knowledge, none of the species investigated here have previously 

been studied with respect to their secondary metabolome including antibacterial compounds.  

To identify the compounds responsible for the observed activity, large-scale cultivations and 

fractionations were undertaken for V. coralliilyticus S2052 and P. halotolerans S2753, representing 

two distant Vibrionaceae species with different metabolite profiles. All fractionation steps were guided 

by activity testing against V. anguillarum strain 90-11-287. 

Initial dereplication of S2052 by LC-UV/MS [37] and explorative solid-phase extraction (E-SPE) [45] 

indicated that andrimid (Rt = 10.02 min; Figure 2) could be responsible for the antibacterial activity. 

This compound (Figure 3a), a hybrid nonribosomal peptide-polyketide antibiotic, was first described 

from an insect endosymbiont [46] and later found in other microbial species [47,48] including marine 
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vibrios [29,31]. Pure andrimid was isolated for NMR analysis, and our data was in accordance with 

literature data [47]. Andrimid acts as an acetyl-CoA carboxylase inhibitor [49], and we extended its 

broad antibiotic spectrum [50] by showing inhibition of the bacterial pathogens Salmonella Enteritidis, 

Bacillus cereus, Yersinia enterolitica, Yersinia ruckeri, Vibrio harveyi, and Vibrio vulnificus (data not 

shown). Production of andrimid was also confirmed for the other isolated V. coralliilyticus strain, 

S4053. We furthermore speculate whether a recent report of antagonism in the V. coralliilyticus type 

strain [12] was also attributed to this compound. Previous studies have revealed almost identical 

andrimid gene clusters and a transposase pseudogene in two producer species, suggesting horizontal 

gene transfer as the most likely explanation behind the cosmopolitanism of the antibiotic [51]. We 

hypothesize that such transfer is also the reason for its presence in V. coralliilyticus S2052 and S4053. 

Our study is the first linking andrimid production to a specific Vibrio species, with production 

occurring in two strains isolated from very different geographical regions and sources.  

The antibacterial compound of P. halotolerans S2753 was identified as holomycin (Rt = 1.70 min; 

Figure 2), a compound belonging to the pyrrothine class of antibiotics acting by interference with RNA 

synthesis [52]. Our NMR data (Figure 3b) was consistent with previous reports [53]. Holomycin has 

until now only been found in Gram-positive Streptomyces [54,55], and the present study is the first 

demonstrating production of this antibiotic in a Gram-negative heterotrophic bacterium. While parallel 

evolution of this trait is possible, horizontal gene transfer is the more likely explanation for its 

occurrence in both Vibrionaceae and actinomycetes. We extended the broad-spectrum activity of 

holomycin [52] by showing inhibition of the bacterial pathogens Listeria monocytogenes, 

Serratia marcescens, S. Enteritidis, B. cereus, Y. enterolitica, Y. ruckeri, V. harveyi, V. vulnificus and 

V. parahaemolyticus, as well as of several marine strains from the Roseobacter and 

Pseudoalteromonas groups (data not shown). 

Figure 3. Structures of andrimid (a) and holomycin (b) isolated from marine Vibrionaceae. 
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dual physiology, being antagonistic against other prokaryotes but pathogenic towards higher 

organisms. Moreover, the production of antibiotics in several species suggests that these compounds 

may be of ecological importance [1]. 

This study highlights one of the challenges in natural product discovery. Despite major screening 

efforts for novel antimicrobials to be used in pharmaceutical, food, and aquaculture industries, only a 

limited amount of compounds have been discovered in recent years [58]. While the isolation of 

culturable bacteria remains a promising approach [42] and the secondary metabolome of marine 

vibrios has not been extensively studied, we only isolated known compounds despite careful 

dereplication prior to any compound purification. Dereplication is apparently troubled by the high 

degree of gene transfer between distantly related bacteria such as Gram-positive actinomycetes and 

Gram-negative Proteobacteria [3]. Many compounds in natural product databases such as AntiBase [59] 

have similar masses (<5 ppm difference), so even the combination of UV/VIS spectra, accurate mass 

data (<5 ppm), and E-SPE [45] is not sufficiently discriminatory for these organisms. To avoid 

isolation of redundant chemistry, dereplication by NMR [60] or ultra high-resolution mass 

spectrometry (<1 ppm) with high isotope accuracy ratios for correct elementary composition 

determination [61] is imperative to exclude previously isolated compounds.  

3. Experimental Section  

3.1. Isolation of Bioactive Marine Vibrionaceae 

During a global research expedition (http://www.galathea3.dk/uk), marine bacterial strains were 

isolated from environmental samples and screened for antagonistic activity against a pathogenic 

Vibrio anguillarum, strain 90-11-287. Three hundred and one bioactive strains were identified as 

Vibrionaceae based on 16S rRNA gene similarities [8]. Pure cultures of strains were stored in 

cryoprotectant solution at −80 °C until being analyzed in the present study. 

3.2. Selection of Strains with Pronounced Antibacterial Activity 

All 301 strains were retested for antibacterial activity by spotting colony mass on agar seeded with 

either V. anguillarum strain 90-11-287 or S. aureus strain 8325. Activity was assessed by the 

formation of clearing zones around spotted colony mass. Selected active strains were grown both 

stagnant and aerated (200 rpm) in 30 mL Marine Broth 2216 (Difco 279110) for 3 days at 25 °C in 

250 mL glass bottles. Cultures were extracted with an equal volume of HPLC-grade ethyl acetate 

(EtOAc) for 30 min. The organic phase was transferred to fresh sample vials and evaporated under 

nitrogen until dryness. Extracts were redissolved in 1 mL of EtOAc and stored at −20 °C until further 

analysis. EtOAc extracts were tested in a well diffusion agar assay [62] for activity against 

V. anguillarum strain 90-11-287 and S. aureus strain 8325.  

3.3. Phylogenetic Analysis 

Genomic DNA was extracted from 1-day cultures using the NucleoSpin Tissue Kit (Macherey-Nagel, 

Düren, Germany) according to the manufacturer's instructions. PCR for recA and toxR gene fragments 

was performed according to [35], and PCR for rpoA gene fragments according to [34]. PCR products 
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were checked by agarose gel electrophoresis and purified using the Wizard PCR Preps DNA Direct 

Purification System (Promega, Madison, USA) according to the manufacturer’s instructions. Obtained 

nucleotide sequences were edited using Chromas Lite (Technelysium, Australia) and aligned to its 

closest sequence relative [36]. The phylogenetic relationship between the five isolates was determined 

by neighbor-joining analyses (1000 bootstrap replicates) of nucleotide and amino acid alignments 

(translated using EMBOSS Transeq, http://www.ebi.ac.uk/Tools/emboss/transeq/) done in ClustalX. 

Gene sequences have been deposited at GenBank under the accession numbers HQ452614–452618 

(toxR), HQ452619–452623 (recA), and HQ452624–452628 (rpoA). 

3.4. Influence of Culture Conditions on Bioactivity 

The five strains with strongest antibacterial activity (S2052, S2394, S2753, S4051, and S4053) were 

grown both stagnant and aerated (200 rpm) at 25 °C in either Marine Broth (MB) or Marine Minimal 

Medium [63] containing 0.4% glucose and 0.3% casamino acids (MMM). Per strain and culture 

condition, three bottles were inoculated with 30 mL of medium each, of which each one was sampled 

after 1, 3, and 5 days of incubation. In addition, strains were grown in 30 mL sea salt solution (Sigma 

S9883; 40 g L
−1

) with 0.4% glucose and 0.3% casamino acids for 3 days (200 rpm) at 25 °C. EtOAc 

extracts were prepared as described above, and tested in a well diffusion agar assay [62] for activity 

against V. anguillarum strain 90-11-287 and S. aureus strain 8325. 

3.5. Chemotyping 

Liquid chromatography-diode array/mass spectrometry (LC-UV/MS) analyses were performed on 

dried EtOAc extracts redissolved in methanol (MeOH) from all tested culture conditions to visualize 

the array of produced molecules. In addition, 3-day MMM cultures were extracted and analyzed in 

biological triplicate. LC-UV/MS was performed on an Agilent 1100 liquid chromatograph with a diode 

array detector (Agilent, Waldbronn, Germany) coupled to an LCT TOF mass spectrometer 

(Micromass, Manchester, UK) using a Z-spray ESI source. The separation was done on a Luna II C18 

column (50 mm × 2 mm, 3 µm) (Phenomenex, Torrance, CA) fitted with a security guard system using 

a linear gradient starting from 15% acetonitrile (MeCN) in water (H2O) to 100% MeCN over 20 min at 

a flow rate of 300 µL min
−1

. Both MeCN (HPLC grade) and H2O were buffered with 20 mM 

HPLC-grade formic acid (FA). 

3.6. Isolation and Structural Elucidation of Antibacterial Compounds 

Strains S2052 and S2753 were grown in 20 L sea salt solution (Sigma S9883; 40 g L
−1

) with 

0.4% glucose and 0.3% casamino acids for 3 days (100 rpm) at 25 °C. On day 3, sterile Dianion 

HP20SS resin (Sigma-Aldrich, St. Louis, MO) was added to the broth (12 g of resin L
−1

). After 24 h, 

the resin was filtered off and washed with H2O (2 × 1 L), followed by extraction with MeCN/H2O 

(80/20 v/v; 2 × 1500 mL).  

For S2052, all organic extracts were pooled, absorbed onto 90 g Sepra ZT C18 (Phenomenex), and 

dried before packing into a 100 g SNAP column (Biotage, Uppsala, Sweden) with pure resin (10 g) in 

the base. Using an Isolera flash purification system (Biotage), the extract was subjected to a crude 
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fractionation using a MeCN/H2O gradient (flow rate 30 mL min
−1

) starting with 10% MeCN (10 min, 

isocratic), increasing to 100% MeCN (25 min) before washing with 100% MeCN (15 min). Fractions 

were automatically collected using UV detection (210 and 320 nm). The fraction with antibacterial 

activity (185 mg) was subjected to further purification on a Luna II C18 column (250 × 10 mm, 5 μm) 

(Phenomenex) using a 45–70% MeCN/H2O gradient (buffered with 20 mM FA, flow rate 5 mL min
−1

) 

over 20 minutes on a Gilson 322 liquid chromatograph with a 215 liquid handler/injector (BioLab, 

Risskov, Denmark). This yielded 7.6 mg of pure andrimid.  

For S2753, the MeCN/H2O extract from Dianion HP20SS extraction was evaporated until dryness 

on a rotary evaporator. The extract was redissolved in EtOAc, absorbed onto 5 g Isolute diol (Biotage), 

and added to a glass column with pure diol (95 g). A total of 12 fractions were collected from the diol 

column (100 g, 20 × 350 mm) ranging from heptane, dichloromethane, EtOAc to pure MeOH, running 

under gravity. The fraction with antibacterial activity (172 mg, 100% EtOAc) was further separated on 

the Isolera flash purification system, on Sepra ZT C18 (10 g SNAP) using a MeCN/H2O gradient (flow 

rate 12 mL min
−1

) starting with 5% MeCN increasing to 30% MeCN (12 min), quickly increasing to 

100% MeCN (10 min). Fractions were automatically collected using UV detection (210 and 380 nm). 

Pure holomycin (4.3 mg) was obtained after final purification on a Luna II C18 column (250 × 10 mm, 

5 μm) (Phenomenex) using a MeCN/H2O (buffered with 20 mM FA) gradient from 7–37% MeCN 

over 17 min.  

NMR spectra were recorded on a Bruker Avance 800 MHz spectrometer with a 5 mm TCI 

Cryoprobe at the Danish Instrument Center for NMR Spectroscopy of Biological Macromolecules, 

using standard pulse sequences. The NMR data used for the structural assignment of andrimid and 

holomycin were acquired in DMSO-d6 (δH 2.49 and δC 39.5 ppm). 

Optical rotation was measured on a Perkin Elmer Model 341 polarimeter (Perkin Elmer, Waltham, 

MA) (αD at 589 nm). 

Andrimid: orange-yellow amorphous solid; UV (MeCN/H2O) λmax 200 (100%), 280 (40%) nm; 

[α]D
20

 −62.9° (c 0.24, MeOH); 
1
H NMR δH ppm: 0.75 (3H, d, 6.7 Hz, H-4’), 0.80 (3H, d, 6.7 Hz, H-5’), 

1.07 (d, 7.2 Hz, 1H, H-6), 1.78 (3H, d, 6.7 Hz, H-8’’’), 2.30 (m, 1H, H-3’), 2.65 (1H, dd, 14.6, 6.2 Hz, 

H-2a’’), 2.77 (1H, dd, 14.6, 8.2 Hz, H-2b’’), 2.91 (m, 1H, H-4), 3.92 (d, 5.6 Hz, 1H, H-3), 4.62 (dd, 8.4, 

5.4 Hz, 1H, H-2’), 5.28 (1H, m, H-3’’), 5.90 (1H, m, H-7’’’), 6.01 (1H, d, 15.2 Hz, H-2’’’), 6.18 (1H, m, 

H-6’’’), 6.26 (1H, dd, 14.5, 11.4 Hz, H-4’’’), 6.53 (1H, dd, 14.5, 10.0 Hz, H-5’’’), 7.00 (1H, dd, 15.2, 

11.4 Hz, H-3’’’), 7.20 (1H, m, H-7’’), 7.29-7.31 (4H, m, H-5’’/H-6’’), 8.11 (1H, d, 8.4 Hz, NH-2’), 

8.42 (1H, d, 8.5 Hz, NH-3’’), 11.36 ( s, 1H, NH-1); 
13

C NMR δC ppm: 14.5 (C-6), 17.2 (C-4’),  

18.3 (C-8’’’), 19.4 (C-5’), 28.1 (C-3’), 39.0 (C-4), 41.9 (C-2’’), 57.8 (C-3), 63.1 (C-2’), 124.2 (C-2’’’), 

126.4 (C-5’’), 126.9 (C-7’’), 128.1 (C-4’’’), 128.2 (C-6’’), 131.5 (C-6’’’), 133.4 (C-7’’’), 139.0 (C-5’’’), 

139.4 (C-3’’’), 142.9 (C-4’’), 164.3 (C-1’’’), 169.9 (C-1’’), 173.8 (C-2), 180.0 (C-5), 203.9 (C-1’); 

HRESIMS m/z 479.2435 (calcd for C27H33N3O5, 479.2420). 

Holomycin: orange-yellow prisms; UV (MeCN/H2O) λmax 200 (100%), 280 (40%) nm; 
1
H NMR 

δH ppm: 2.01 (s, 1H, H-9), 7.04 (s, 1H, H-1), 9.86 (s, 1H, NH-7), 10.69 (s, 1H, NH-3); 
13

C NMR 

δC ppm: 22.4 (C9), 110.6 (C-1), 115.4 (C-5), 133.7 (C-2), 133.9 (C-6), 167.9 (C-4), 168.8 (C-8); 

HRESIMS m/z 213.9860 (calcd for C7H6N2O2S2, 213.9871). 
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4. Conclusions 

The present study adds to the knowledge of Vibrionaceae bioactivity and physiology by showing a 

worldwide occurrence of marine strains producing antibacterial compounds. In addition, we underlined 

that chemotyping can support gene-based species identification and help resolving phylogenetic 

relationships within a genetically homogenous family such as the Vibrionaceae. The discovery of 

known antibiotics that are also produced by evolutionary distant microbes suggests an involvement of 

horizontal gene transfer, and indicates that these compounds are fundamental to compete and 

communicate in the natural habitat. The cosmopolitanism of identical antibiotics has major 

implications for natural product discovery strategies and stresses the need for careful dereplication in 

the initial stages of screening. An alternative approach could be the screening for largely untested 

bioactivities, for instance, interference with quorum sensing or modulation of gene expression. 
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