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Abstract: Molecular imprinting technology (MIT) offers an effective technique for efficient separation
and enrichment of specific analytes from complicated matrices and has been used for illicit veterinary
drug detectionin recent years due to its high selectivity, good chemical stability, and simple
preparation. The development of in silico-based approaches has enabled the simulation of molecularly
imprinted polymers (MIPs) to facilitate the selection of imprinting conditions such as template,
functional monomer, and the best suitable solvent. In this work, using density functional theory
(DFT), the molecularly imprinted polymers of clenbuterol and its metabolites were designed by
computer-aided at B3LYP/6-31 + G (d, p) level. Screening molecular imprinting components such as
functional monomers, cross-linkers, and solvents has been achieved in the computational simulation
considerations. The simulation results showed that methacrylic acid (MAA) is the best functional
monomer; the optimal imprinting ratio for both clenbuterol (CLB) and its dummy template molecule
of phenylephrine (PE) to functional monomer is 1:3, while the optimal imprinting ratio for the two
dummy template molecules of CLB’s metabolites is 1:5. Choosin gethyleneglycol dimethacrylate
(EDGMA) as a crosslinker and aprotic solvents could increase the selectivity of the molecularly
imprinted system. Atoms in Molecules (AIM) topology analysis was applied to investigate the
template-monomer complexes bonding situation and helped to explain the nature of the reaction
in the imprinting process. These theoretical predictions were also verified by the experimental
results and found to be in good agreement with the computational results. The computer-simulated
imprinting process compensates for the lack of clarity in the mechanism of the molecular imprinting
process, and provides an important reference and direction for developing better recognition pattern
towards CLB and its metabolite analytes in swine urine samples at the same time.

Keywords: clenbuterol; metabolites; molecularly imprinted polymer; computer simulations; density
functional theory

1. Introduction

Clenbuterol (C12H18CL2N2O, CLB), which is used in human and veterinary medicine as a
therapeutic drug for the pulmonary disease, is a synthetic β2-adrenoceptor agonist [1]. However, it has
been often illicitly abused as a “lean meat agent” in the feed for pig and cattle to improve growth rate,
and enhance lean meat-to-fat ratio. More and more investigations have demonstrated that clenbuterol
is a medium cumulative drug and residues build in animals, which can lead to symptoms such as
muscle chatter, palpitation, trembling, headache, nausea, and vomiting after human consumption of
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meat products. It is especially harmful to patients with diseases such as hypertension, heart disease,
hyperthyroidism, and prostatic hypertrophy [2]. Although there have been no major food safety
incidents under the supervision of the government in recent years, according to online public opinion
surveys, the illegal use of “lean meat agent” has always been one of the food safety issues that people
are most concerned about [3].

Current detection methods for clenbuterol mainly include enzyme-linked immunoassay
(ELISA) [4], gas chromatography coupled with mass spectrometry (GC-MS) [5], high performance
liquid chromatography (HPLC) [6], liquid chromatography–mass spectroscopy (LC-MS) [7], surface
molecularly imprinted polymers [8], electrochemical analysis [9], capillary electro-phoresis [10],
and fluorescence biosensor [11]. ELISA is a commonly used technique in rapid detection, but there is
a problem of false positives in practical use [12]. GC-MS, HPLC and LC-MS methods can accurately
detect clenbuterol, however, there are disadvantages such as long detection cycle and many operation
procedures. At the same time, these methods are time consuming and labor intensive, as well as
expensive equipment are needed, which are not likely to be rapid, sensitive and appropriate detection
for routine monitoring [13].

Compared with the above detection methods, molecular imprinting technology (MIT) enjoys
a unique advantage in rapid detection. This yields MIT a wide range of applications infood
analysis [14–16]. MIT is a process in which a target molecule is used as a template to prepare a
polymer matrix, which can selectively rebind the template molecules from a mixture of closely related
compounds [17,18]. Because its recognition process is similar to the relationship between enzyme
and substrate, molecularly imprinted polymer (MIP) is also called "artificial antibody" [19]. Since
Mosbach and co-workers [20] reported on the results of the preparation of MIP of theophylline in
the non-covalent approach, MIT technology has gained more and more attention. Recently, with the
rapid development of in silico simulation, it is a hot topic in current research to assist in the rational
design of MIPs system through computational chemistry [21] and computer simulation plays an
important role in determining the optimal functional monomer, optimizing the synthesis conditions of
the imprinted substance, and elucidating the mechanism of molecular imprinting recognition [22–24].
For instance, based on the density functional theory (DFT), Maouche and Mazouzet al. [25,26] adopted
quantum chemical calculation to determine the nature of interactions between each analyte and the
polypyrrole matrix and the dopamine imprinted polypyrrole sensing layer. It is worth mentioning
that recently Terracina et al. [27] developed a novel in silico method for computationally imprinting
and characterizing enantioselective binding sites, which makes a new progress in elucidating the
mechanism of imprinting enantioselectivity. Besides, there are also multiple experimental methods
utilized to guide the rational design of MIPs. For example, pre-polymerization mixtures, changes
in spectral properties, thermodynamic properties, and electrochemical parameters before and after
interaction of the template with the monomer can be measured by NMR [28], differential scanning
fluorometry [29], isothermal titration calorimetry (ITC) [30] and conductivity measurement [31],
which enables quantitatively study of binding affinities and unravel the mechanisms underlying
molecular interactions.

More recently, different approaches have been used to synthesize MIPs for CLB detection, practical
application of this technique, however, is still lacking, and this study would be conducive to fill this
gap in the context of the increasing attention of computational chemistry. Although we have previously
reported the results of a novel molecularly imprinted sensor array for the detection of CLB and its
metabolites [32], our focus, in the past, was on whether MIP-QCM (quarzt crystal microbalance)
could be established and the construction of molecular imprinting systems was sloppy. Hence, more
thorough investigations into the rational design of MIPs for both CLB and its metabolites are required.
In order to achieve this aim, DFT and AIM-based computational and theoretical approaches were
applied in this work for describing, predicting and analyzing molecular imprinting systems. CLB,
4-hydroxymandelic acid (HMA) and 4-Aminohippuric acid (AHA) have been selected as template
molecules in the past [32]. Wherein, HMA and AHA are alternative template molecules for two
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metabolites. In this study, phenylephrine (PE) will also be employed as a dummy template molecule
for CLB, thus the designed array will be constituted of four sensors based on four high selective
molecular imprinted polymers, which can be developed into a robust and cost-effective method
suitable for simultaneous detection of CLB and its metabolites.

2. Experimental

2.1. Selection of Functional Monomer

Four functional monomers were employed, namely acidic acrylic acid (AA) and methacrylic acid
(MAA), neutral acrylamide (AM) and basic 4-vinylpyridine (4-VP), their molecular structures are
shown in Figure 1. The initial conformations of each template molecule and functional monomer were
optimized respectively to obtain the energy and the Gibbs free energy of these molecules. The template
molecule was then combined with the functional monomer to yield a stable complex conformation with
no imaginary frequencies. Depending on the size of the binding energy ∆E, the functional monomers
that bind to the template molecules were selected. Besides, the Gibbs free energy of molecules could
be obtained through Gaussian 09 programs (Gaussian, Inc., Wallingford, CT, USA) [33]. The size of the
binding energy can be used to judge the extent of the reaction, while the Gibbs free energy value can
be useful to determine the spontaneity of the reaction. Counterpoise method was used to eliminate the
basis set superposition error (BSSE), which was proposed by Boys et al. [34].
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The BSSE corrected interaction energy and Gibbs free energy are as follows:

4 E = Ecomplex − Etemplate − nEmonomer + BSSE (1)

4 G = Gcomplex − Gtemplate − nGmonomer (2)

2.2. Analysis of Reaction Sites

During the non-covalent approach, the imprint molecules interact, during both the imprinting
procedure and the rebinding, with the polymer via non-covalent interactions, e.g., ionic, hydrophobic
and hydrogen bonding. The analysis of the site of the imprinting process is pre-judged by the
natural population analysis and the molecular electrostatic potential diagram. The natural bond
orbital (NBO) analysis allows for calculation of the number of atoms in the molecule, the molecular
structure, and the intramolecular or intermolecular hyperconjugation interactions. Using the natural
population analysis (i.e., NPA charge) calculated by natural bond orbital theory, the NPA charge
transfer between the template molecule and the functional monomer could be judged and the site of
action and the magnitude of the force could be predicted. The electrostatic potential diagram maps
ESP (electrostatic potential) to an isosurface with an electron density of 0.001 (definition of van der
Waals surface by Bader) was used to obtain the electrostatic potential coloring diagram of the surface
of the molecule [35,36].
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2.3. Construction of Template-Monomer Complexes

In order to obtain the optimal conditions for the construction of template-functional
monomer-cross-linkercomplexes during imprinting process, not only their charge distributions but
also their steric hindrances were taken into account, the ratio of imprinting functional monomers to
the target or template molecules was modeled in terms of energy via the strength of the hydrogen
bonds under the assumption of generating possible hydrogen bonds until the most stable imprinted
complexes were achieved. After obtaining final imprinted complexes, their number of hydrogen bonds,
bond length, and bond types were further analyzed. Hydrogen bonds are usually expressed in the
form of X–H...Y. X, Y = F, O, N (i.e., atoms of large electronegativity and small radius). O...H is between
0.97 Å (typical O-H length) and 2.6 Å (O–H van der Waals radius) and the bond energy is typically
less than 42 KJ/mol. In biological systems, DNA double-helical and protein α-helical and β-structure
conformations are extensively hydrogen bonded, in which the length of the hydrogen bond ranges
from 2.6 to 3.1 Å [37]. And the nature of hydrogen bond described by Jeffrey is outlined in Table 1 [38].

Table 1. Hydrogen bonding categories following the classification of Jeffrey [38].

Type Strong Moderate Weak

interaction type strongly covalent mostly electrostatic electrostat/dispers
length of H . . . A (Å) 1.2–1.5 1.5–2.2 >2.2
length of X . . . A (Å) 2.2–2.5 2.5–3.2 >3.2

2.4. AIM Topology Analysis

Multiwfn [39] is an extremely powerful program for wavefunction analysis, which is especially
good at visual study of real space functions such as electrostatic potential (ESP) and electron localization
function (ELF) running on Windows and Linux platform. Bader’s Atoms in Molecules (AIM) topology
analysis [40] is the most commonly used and classic method of weak interaction analysis that interprets
weak interaction features by the nature of the inter-atomic bond-critical points (BCPs). According
to AIM theory, BCP is the most representative point of interatomic interaction [41,42]. Therefore,
to a certain extent, the key features of bond can be utilized to understand the properties of BCP.
Modeling from the BCP toward the direction of the fastest ascent of the electron density gradient until
it encounters the nucleus, its path is called the bond path, which depicts the path of the interaction
between atoms.

2.5. Cross-Linking Agent Screening

Ethyleneglycol dimethacrylate (EDGMA) is the most commonly used crosslinkers, however,
crosslinkers containing 3 or more vinyl groups such as trimethacrylate (TRIM), pentaerythritol
triacrylate (PETRA) may make MIP have better column capacity, resolution and selectivity [43,44].
Thus, besides EDGMA, PETRA, and TRIM were also chosen for modeling and analysis. The formula
for crosslinker binding energy is

4 EB = EC − ET − EM − ECL (3)

where EC stands for the total energy of the cross-linking agent, the template and the functional
monomers complex; ET, EM, and ECL represent the single-point energy of monomer, template and
cross-linking agent respectively. Their chemical structures are depicted in Figure 2.
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2.6. Selection of Solvent

PCM model (Polarizable Continuum Model) is one of the most widely used methods since it
meets a good compromise between accuracy and computation time, the newest version, G09, includes
some improvements on the corresponding codes making PCM calculations more achievable. However,
it does not include the calculation of the non-polar part of the solvent effect [45]. The SMD model [46]
supported by G09 is by far the best implicit solvent model since the single-point energy given at this
time already contains both polar and non-polar contributions. In this study, the solvation energy of
each template-monomer-crosslinker system was calculated via the SMD model. According to the
polarity of the solvent, five commonly used solvents (acetonitrile (ACN), chloroform (CHF), dimethyl
sulfoxide (DMSO), methanol (MeOH), and tetrahydrofuran (THF) were chosen for in silico analysis.
The formula for solvation energy is:

Ein solvation = Ein gas − Ein solvent (4)

2.7. Selectivity Examination by Computational Simulation

In order to understand the properties of MIPs at the molecular level, selectivity simulations were
performed to examine bias related to the selectivity of previously designed molecularly imprinted
polymers by recombination energy size, which shows the adsorption capacity of the imprinted polymer
to other template molecules. In this step, the cavity formed was used in the selectivity studies, and the
theoretical model of polymer cavity was created on the basis of the most stable prepolymerization
complex structure. Subsequently, the template was removed from the complex, and an empty space
was proposed as a computer model of the binding site in the polymer matrix. The trial molecules of
analogues were inserted into the cavity replacing the template molecule. The binding energy was
correlated with the binding capacity of the selected analytes, and the results from the runs were
examined to evaluate the empirical binding scores.

2.8. Preparation of MIP-QCM and Measurement of Sensors Response

2.8.1. Surface Cleaning of QCM Gold Electrode

Gold microelectrodes on both side surfaces of QCM were polished and cleaned in Piranha
solution (30% H2O2: 98% H2SO4 1:3, v/v) for 10 min. Then, rinsed with deionized water and dried by
nitrogen rinsing.

2.8.2. Self-Assembled Monolayer (SAM) of QCM

The QCM was placed into 20 mL of 10 mM solution of 11-mercaptoundecanoic acid in ethanol,
kept at 20 ◦C for 24 h and then was rinsed with ethanol and deionized water.
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2.8.3. Preparation of AIBN-QCM

The carboxyl groups were activated by placing the resonator in 10 mL of 10 mM aqueous solution
of 2-ethyl-5-phenylisoxazolium-3′-sulfonate for 30 min. The resonator was then transferred into
methanol solution of 20 mL of 10 mM AIBN, 0.25 mM DMAP, 1.0 mM DCC and kept at 20 ◦C for 5 h.
The initiator AIBN was then covered on the gold electrodes.

2.8.4. In Situ Preparation of MIPs

2.5 mmol of CLB and 7.5 mmol of MAA, (Alternatively, 2.5 mmol of HMA and 12.5 mmol of MAA;
or 2.5 mmol of AHA and 12.5 mmol of MAA) were dissolved in 10 mL acetonitrile. Subsequently, 71 µL
of EGDMA was added and the QCM was dipped. The reaction system was purged with nitrogen and
then left to polymerize overnight at 65 ± 2 ◦C for 12 h. Finally, MIP-QCM was slowly rinsed with 5%
acetic acid solution to remove template molecules.

2.8.5. MIP-QCM Performance Test

The measuring apparatus for sensor array construction and the collected signal records were
performed as our previously established method [32]. The specific parameters of the network analyzer
were set as follows: the scan type was set to linear scan; the scan frequency span was 30 kHz;
the number of scan points was 12,801 points; the smoothing function was turned on, and the average
factor was set to 3. The frequency resolution is 30,000/12,801 = 2.34Hz.

2.9. Statistical Analysis

Data were expressed as means ± S.D. and statistical significance was determined using one-way
ANOVA, followed by Tukey’s test.

3. Results and Discussion

3.1. Theoretical Selection of Functional Monomer

Density functional theory (DFT) method in B3LYP level with 6-31G (d, p) [47] basis set has been
widely applied to obtain the most stable configurations and binding energy for qualitative analysis of
the hydrogen bonding-dominant weak interaction in molecular imprinting process [48], because the
property of electron cloud deformation could be effectively and accurately predicted in the modeling.
However, in the simulation process, it was found that affected by the interference of some strong
influence points, the change trends of 4E and 4G did not show strong consistency. Diffuse s- and
p- functions for non-hydrogen atoms were then added in order to obtain a higher accuracy. It has
proved that the diffuse function does make the simulation results more refined and high consistency of
4E and4G was achieved. The correlation coefficient between4E and4G reaches 0.955. Therefore,
6-31 + G (d, p) [49] was chosen as the basis set for the computational simulation.

In the meantime, it can be seen from the Figure 3 that two acidic functional monomers, AA and
MAA, showed stronger binding capacity with clenbuterol and its metabolites compared to the neutral
monomer AM and the basic monomer 4-VP. Considering the poor performance of the combination
between AA and HMA, and MAA has been more commonly used in molecular imprinting, MAA was
chosen as the functional monomer.
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energy of molecules was obtained through Gaussian 09 programs, and the ∆E and ∆E calculation was
illustrated in the section of the Experimental. 4-aminohippuric acid, AHA; acrylic acid, AA; methacrylic
acid, MAA; 4-vinylpyridine, 4-VP; 4-hydroxymandelic acid, HMA; N-dicyclohexylcarbodiimide;
clenbuterol, CLB; pentaerythritol triacrylate.

3.2. Theoretical Selection of Template Molecules and Determination of Functional Monomer Site of Action

Computing by molecular self-assembly, the template molecule and the selected functional
monomer MAA are supposed to form a stable complex configuration. The spatial conformation
of the complex, the sites of hydrogen bonding and the number of hydrogen bonds, all of these will
all have a direct impact on the final imprinting effect. The construction of the initial position and
conformation of the final stable complexes were calculated with the assistance of NPA charge and
molecular electrostatic potential (MEP) electrostatic potential diagram in order to find out the possible
coordination modes of the template compound with functional monomers.

The molecular electrostatic potential represents the attraction between the molecule and a proton,
which is useful in rationalizing the interactions between molecules and molecular recognition processes.
A map of the electrostatic potential onto the molecular surface of four templates and functional
monomer MAA is shown in Figure 4. According to the distribution of the electron cloud, the active
sites can be directly predicted. On the basis of comprehensive consideration of the spatial conformation,
the MEP map and the NPA charge of each atom were applied to analyze the active sites and to construct
the template-monomer complex. As indicated in Figure 4e, the proton donor of MAA is H12 and its
proton acceptor is O10; the proton donors of CLB in Figure 4a are H12, H13 and its proton acceptor is
O34, N11, N19; while the proton donors of PE in Figure 4b are H12, H21 and its proton acceptors are
O11, O15, N20. In Figure 4c,d, the template molecules are AHA and HMA respectively. Compared
with CLB and PE, these two template molecules hold more active sites and their carboxyl and carbonyl
groups have a higher reactivity. Proton donors of HMA are H12, H18, H20 and its proton acceptors are
O11, O16, O17, O19; proton donors of AHA are H12, H13, H17, H24 and its proton acceptors are O15,
O22, N11, N16 respectively. In addition, the NPA charges of the active sites of each template molecules
are listed in the Table 2, which is consistent with the MEP distribution analysis.
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Figure 4. Electrostatic potentials on the molecular surfaces of (a) CLB, (b) PE, (c) AHA molecules, (d)
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analysis (NPA) charge of each atom were applied to analyze the active sites and to construct the
template-monomer complex, please refer to the section of the Experimental for details.

Table 2. NPA charges and reactive sites of each template molecules.

Template Reactive Site NPA Charge Template Reactive Site NPA Charge

CLB O34 −0.781 PE O11 −0.713
H12 0.431 O15 −0.790
H13 0.432 H12 0.510
N11 −0.858 H21 0.399
N19 −0.745 N20 −0.743

HMA O11 −0.709 AHA O15 −0.626
O16 −0.621 O22 −0.607
O17 −0.711 H12 0.420
O19 −0.772 H13 0.420
H12 0.510 H17 0.439
H18 0.524 H24 0.523
H20 0.522 N11 −0.861

N16 −0.677

3.3. Formation of the Template-Monomer Complexes

The hydrogen bonding interactions between the active interaction sites play an important role in
the formation of MIPs. Suitable molar ratio between template molecule and functional monomer will
enable the prepared MIP with desired recognition property. In the present study, the different molar
ratios were chosen for simulation. For each imprinting system, simulations were started from 1:1 molar
ratio until the most stable conformations were reached. As the imprinting ratio increased, the binding
energies were gradually reduced, and the complexes became more stable. Exceeding the upper limit of
the optimum ratio, undesired hydrogen bonds could be formed via the non-characteristic bonding
points between the monomers, which might lead to lower the selectivity of the synthesized polymers.
The detailed binding energies changing trend is shown in Figure 5.
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Figure 5. Binding energies of each template-monomer complexes at different molar ratios.

The final configuration of the complex was depicted in the Figure 6. The optimal conditions were
obtained, which were as follows: The molar ratio of template to functional monomer for CLB and
PE is 3, and the molar ratio of template to functional monomer for AHA and HMA is 5. Owing to
more active molecular sites, both AHA and HMA template molecules have a larger molar ratio of
template to functional monomer than CLB and PE, which requires more monomer to form a more
stable conformation of the complex.
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A quantitative analysis of the formation of hydrogen bond networks is illustrated in Table 3,
all formed hydrogen bond lengths were scaled from 1.60243 to 2.47659 Å, just between the range of the
general O–H single bond and van der Waals radius. The mean hydrogen bond length of the imprinted
molecule complexes was 2.26305, 2.06338, 1.76894, and 2.01016 Å for the template CLB, PE, AHA,
and HMA, respectively. It can be seen that molecular imprinted complex constructed from template
AHA has the lowest binding energy, which is not only related to the high molar ratio of template to
functional monomer, but also to the existence of formed multiple hydrogen bonds in the complex.
Linked by the double H bond, two adjacent molecules are approximately coplanar, which interaction
pattern can improve the stability of the complex. Similarly, for molecularly imprinted complex formed
with template CLB, the number of hydrogen bonds generated is relatively small and the bond length
is relatively long due to less active sites on the guest molecules and relatively weaker activity as well.

3.4. AIM Topology Analysis

Koch et al. [50] and Lipkowski et al. [51] proposed eight general topological criteria for existence
of HB interactions, of which the electron density of ρ(r) (density of all electrons) and52ρ(r) (Laplacian
of electron density) should be within the ranges of 0.002~0.035 a.u. and 0.024~0.139 a.u., respectively.
With respect to the electron density characteristics obtained for the complexes studied, Rozas et al. [52]
suggest that these criteria can be used to characterize HBs, i.e., when52ρ(r) > 0, H(r) > 0, the formation
of the electrostatic interaction between the molecules formed weak hydrogen bonds; when52ρ(r) > 0
and H(r) < 0, there is a moderate hydrogen bond between molecules; when52ρ(r) < 0, H(r) < 0, there
is a strong interaction between molecules, and most of them are covalent. The resulting calculated
properties of the electron density ρ(r) are shown in Table 3. The topological analysis of the V(r)
(electrostatic potential) is the resultant at each point r, which is the net electrostatic effect produced at
the point r by both the electrons and nuclei of the molecule. A positive (negative) value reveals that
the electrostatic potential at r is dominated by the charge of the nucleus (electron). The results of the
weak interaction between templates and monomers analyzed by Multiwfn are also shown in Table 4.

For adduct CLB + 3MAA, the maximum value of ρ(r) at BCP in hydrogen bond is 0.043535397
a.u. and the minimum is 0.01507693 a.u. The range of52ρ(r) is within 0.038173768–0.127935635 a.u.
The ρ(r) at BCP-O35 exceeds 0.035 a.u., suggesting that the bond formed at the BCP has a strong large
hydrogen bond and a significantly shorter bond length (1.69824 Å). The average hydrogen bond energy
of CLB + 3 MAA is 4.89 Kcal/mol.

For adduct PE + 3MAA, the maximum value of ρ(r) at the BCP in the hydrogen bond is 0.03996
a.u. and the minimum is 0.00975 a.u. The range of 52ρ(r) value is within 0.03516–0.10997 a.u. The
ρ(r) of BCP at O23 is over 0.035 a.u., indicating that the hydrogen bond strength is stronger than other
hydrogen bonds and the hydrogen bond length is also short (1.75467 Å). The average hydrogen bond
energy of PE +3 MAA is 5.89 Kcal/mol, which is a reasonable value as well.

The calculated results show that for the two adducts of AHA + 5MAA and HMA + 5MAA, there
are 4 and 5 BCPs with large values of ρ(r) respectively. These sites are formed by the template molecule
with a carboxyl group, a carbonyl group and an alcoholic hydroxyl group bonded to the carboxyl
group of the monomer MAA. Due to the simultaneous donation of double hydrogen bonds, it can
facilitate the tight association of the auxiliary and substrate, and thus appears to be a particularly
effective method for polymer synthesis.
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Table 3. Calculated hydrogen-bond properties and distances of the monomer-template complexes.

Complex 4E (Kcal/mol) Type Length (a.u.) Complex 4E (Kcal/mol) Type Length (a.u.)

CLB + 3MAA −24.41008997 C–O . . . H–O 1.69824 PE + 3MAA −26.767172 C=O . . . H–N 2.40893
C–H . . . O=C 2.68041 C–O . . . H–O 1.75467
C=O . . . H–N 2.19275 C=O . . . H–O 2.02096

O–H . . . CL–C(Ring) 2.48079 O–H . . . O–C(Ring) 1.82306
HMA + 5MAA −42.36144579 C=O . . . H–O 1.67043 C(Ring)–H . . . O=C 2.30929

C=O . . . H–O 1.56804 C–O . . . H–O 1.80407
C–O . . . H–O 1.77916 AHA + 5MAA −47.047349 C=O . . . H–O 1.64880
C=O . . . H–O 2.09553 C=O . . . H–O 1.61433

O–H . . . O–C(Ring) 1.98828 C=O . . . H–O 1.74762
C=O . . . H–O 1.77762 C=O . . . H–O 1.74762

O–H . . . O–C(ring) 1.84295 C=O . . . H–O 1.64637
C(Ring)–H . . . O=C 2.51227 N–H . . . O=C 1.86144

C–O . . . H–O 1.92005 N–H . . . O=C 2.11431
C–H . . . O=C 2.40054 C=O . . . H–O 1.77100

C(Ring)–H . . . O=C 2.54566
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Table 4. Electron and energy densities ofthe monomer-template complexesat the hydrogenBCPs (bond critical points).

Complex H-bond Length
(a.u.) BCP ρ(r) (a.u.) 52ρ(r) (a.u.) V(r) (a.u.) H(r) (a.u.) Energy Kcal/mol

CLB + 3MAA 1.69824 C–O . . . H–O 0.043535397 0.127935635 −0.032649256 −0.000332674 −10.24385917
2.19275 N–H . . . O=C 0.01507693 0.045642552 −0.011384074 1.32821E-05 −3.571807242
2.48079 O–H . . . CL–C(Ring) 0.012694051 0.038173768 −0.007446028 0.001048707 −2.336226571
2.16356 N–H . . . O=C 0.013996606 0.048719521 −0.010914976 0.000632452 −3.424625563

PE + 3MAA 2.40893 N–H . . . O=C 0.009747326 0.03516367 −0.007088061 0.000851428 −2.22391283
1.75467 C–O . . . H–O 0.039957715 0.109973591 −0.029138968 −0.000822785 −9.142489513
2.02096 C=O . . . H–O 0.023316164 0.069012021 −0.018481353 −0.000614174 −5.798612246
1.82306 O–H . . . O–C(Ring) 0.03203572 0.096666388 −0.02385453 0.000156034 −7.484472015
2.30929 C(Ring)–H . . . O=C 0.013204826 0.039189977 −0.009323669 0.000236913 −2.925345378
1.80407 C–O . . . H–O 0.033958284 0.098802002 −0.024766909 −3.32041E-05 −7.770735288

AHA + 5MAA 1.64880 C=O . . . H–O 0.049287466 0.139181341 −0.037615209 −0.001409937 −11.8019506
1.61433 C=O . . . H–O 0.053882161 0.146874063 −0.042683048 −0.002982266 −13.3920091
1.74762 C=O . . . H–O 0.038615681 0.112801746 −0.028256176 −2.78698E-05 −8.865509525
1.74762 C=O . . . H–O 0.049922233 0.139027425 −0.03838753 −0.001815337 −12.04426994
1.64637 C=O . . . H–O 0.031355728 0.089591298 −0.023029819 −0.000315997 −7.225715144
1.86144 N–H . . . O=C 0.010611115 0.039224958 −0.008058956 0.000873642 −2.528535829
2.11431 N–H . . . O=C 0.016231044 0.052271763 −0.012528486 0.000269727 −3.930871974
1.77100 C=O . . . H–O 0.034097227 0.109044945 −0.024677559 0.001291839 −7.74270143

HMA + 5MAA 1.67043 C=O . . . H–O 0.046441973 0.134085029 −0.034848649 −0.000663696 −10.9339293
1.56804 C=O . . . H–O 0.060896745 0.153953802 −0.05136232 −0.006436935 −16.11517194
1.77916 C-O . . . H–O 0.036416615 0.10657766 −0.026942346 −0.000148965 −8.453288886
2.09553 C=O . . . H–O 0.020289963 0.061744074 −0.016108194 −0.000336087 −5.054022243
1.98828 O-H . . . O–C(Ring) 0.023371537 0.065811757 −0.017801058 −0.000674059 −5.585166537
1.77762 C=O . . . H–O 0.038597233 0.110446154 −0.029301292 −0.000844877 −9.193419389
1.84295 O–H . . . O–C(Ring) 0.030576225 0.089785381 −0.022241089 0.000102628 −6.97824731
2.51227 C(Ring)–H . . . O=C 0.008593919 0.028551998 −0.005604602 0.000766699 −1.758470634
1.92005 C–O . . . H–O 0.024679618 0.073704853 −0.018155766 0.000135224 −5.696457753
2.40054 C–H . . . O=C 0.011004729 0.034475186 −0.007524568 0.000547114 −2.360868924
2.54566 C(Ring)–H . . . O=C 0.007706916 0.027055854 −0.005051907 0.000856028 −1.585059833
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3.5. Theoretical Selection of Crosslinker

In order to make the imprinting process more effective, it is hoped that the functional residues
derived from the functional monomers can be uniformly distributed in the entire cross-linked networks.
The main function of the crosslinking agent in the entire imprinting process is to copolymerize with
the functional monomer and to fix the three-dimensional structure of the monomer-template complex
in space. In prepolymerization and copolymerization, the crosslinking agent may complex with both
the functional monomer and the template molecule via hydrogen bonding or electrostatic interactions.
The formation of such interference complexes is difficult to experimentally define. With the help of
computational simulation and calculation, some of the undesirable factors could be avoided. As a
result (Figure 7), for CLB, PE, and HMA templates, when EDGMA was used as the crosslinking agent,
the interaction between the template molecule and the crosslinker was minimal, that is, the crosslinker
has minimal interference with the imprinting process. Compared with crosslinker TRIM or PETRA,
EDGMA can reduce unwanted interaction energy by about 3% to 7% for CLB, PE and HMA. For AHA,
EDGMA was slightly less effective than TRIM, but it was not much different. Both EDGMA and TRIM
had significantly better results than PETRA. EDGMA is a widely used crosslinker with a chemical
structure similar to that of MAA. When the random copolymerization of MAA and EDGMA occurs,
the product obtained by the crosslinking agent EDGMA and the functional monomer MAA can form a
uniform distribution of carboxylic acid groups. In addition, given the limited advantages of TRIM
over EDGMA in AHA composites and consistency in practice, the cross-linker was chosen as EDGMA.Polymers 2018, 10, x FOR PEER REVIEW  16 of 23 

 

 
Figure 7. △E of cross-linking agents (EDGMA, TRIM, and PETRA) with template-monomer 
complexes. 

3.6.Theoretical Selection of Solvent 

In the molecularly imprinted polymer synthesis process, the solvent is also known as "porogen" 
in addition to playing the role of dissolving the polymerization reagents. This is because the solvent 
can provide a porous structure for the imprinted molecular polymer to increase the speed of 
bonding the template molecule during recognition. For non-covalent imprinting, the choice of 
solvent has a direct impact on the formation of non-covalent adducts between the monomer and the 
template and its imprinting effect. 

As can be seen from Figure 8, CHF and THF display lower solvation energy overall and 
therefore their imprint effect is limited, while MeOH show the strongest effect with each template 
molecule. The strong interaction between the template molecule and the solvent shields the 
molecular interaction sites and weakens the interaction with the MAA, making the molecular 
recognition effect of the imprinted polymer relatively poor. Previously, ACN was used in our 
laboratory and the solvation energy of the template molecules was relatively high. If CHF and THF 
were used instead, the specificity of the imprinted polymer could be further improved. However, in 
practice, it is also necessary to consider the solubility of the template molecule and the functional 
monomer in the solvent and the porosity of the solvent. Although there are still some realistic factors 
that need to be coordinated, this calculation result can provide an idea for the direction of 
improvement. 

Figure 7. 4E of cross-linking agents (EDGMA, TRIM, and PETRA) with template-monomer complexes.

3.6. Theoretical Selection of Solvent

In the molecularly imprinted polymer synthesis process, the solvent is also known as “porogen”
in addition to playing the role of dissolving the polymerization reagents. This is because the solvent
can provide a porous structure for the imprinted molecular polymer to increase the speed of bonding
the template molecule during recognition. For non-covalent imprinting, the choice of solvent has a
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direct impact on the formation of non-covalent adducts between the monomer and the template and
its imprinting effect.

As can be seen from Figure 8, CHF and THF display lower solvation energy overall and therefore
their imprint effect is limited, while MeOH show the strongest effect with each template molecule. The
strong interaction between the template molecule and the solvent shields the molecular interaction sites
and weakens the interaction with the MAA, making the molecular recognition effect of the imprinted
polymer relatively poor. Previously, ACN was used in our laboratory and the solvation energy of
the template molecules was relatively high. If CHF and THF were used instead, the specificity of the
imprinted polymer could be further improved. However, in practice, it is also necessary to consider
the solubility of the template molecule and the functional monomer in the solvent and the porosity of
the solvent. Although there are still some realistic factors that need to be coordinated, this calculation
result can provide an idea for the direction of improvement.Polymers 2018, 10, x FOR PEER REVIEW  17 of 23 
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Figure 8. Solvation energy of each template molecules in each chosen solvent (dimethyl sulfoxide,
DMSO, acetonitrile, ACN, chloroform, CHF, methanol, MeOH, and tetrahydrofuran, THF).

3.7. Selectivity Simulation

From the results of selective simulation, each single imprinted polymer shows the strongest
binding energy for its corresponding target molecule, which reflects the selectivity of molecularly
imprinted polymer. In the Figure 9, the binding energy of two guest molecules, AHA and HMA,
is greater than that of CLB and PE, because the molar ratio of template to functional monomer of CLB
and PE is 3, while for AHA and HMAs, the ratio is 5. This is consistent with the judgment in the
previous subsection that both AHA and HMA molecules have more active sites.

As indicated in Figure 9, each designed imprinted system exhibits a higher specificity for its target
molecule, however, it is worthy to be pointed out that in practical applications there are rather few
false positive responses depending on the individual molecularly imprinted polymer. Because even
a single molecularly imprinted sensor produces a higher response signal, this does not prove to be
caused by the target molecule to be captured. In terms of our approach, simultaneous detection of CLB
and its metabolites may reduce false positives, because the data measured from the sample is no longer
a single dimension of CLB content, but rather the simultaneous detection of CLB together with its
metabolites in the pig urine sample, which results in an increase in the data dimension. The data will
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be then processed by statistical or intelligent algorithms, so that the analysis results for the sample to
be tested are more accurate. The selectivity simulation described in this article makes some predictions
on the possible situations and provides the forecast and theoretical support for the interpretation of
the actual detection.Polymers 2018, 10, x FOR PEER REVIEW  18 of 23 
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Figure 9. Selectivity test through the rebinding energies of the complexes.

3.8. Experimental Verification

Finally, on the basis of the optimal experimental conditions obtained by the simulation, MIPs were
synthesized on gold electrode surface of the QCM sensors. To demonstrate the applicability of this
method, the fully integrated sensor array was applied to detect CLB and its two metabolites. Standard
curves for CLB sensor, AHA sensor, and HMA sensors were plotted and illustrated in Figure 10. The R2

values of the three sensors reached 0.9935, 0.9927, and 0.9918, respectively. The 1× 10−8 M Clenbuterol
solution was equivalent to a mass concentration of about 3 µg/L, and the selectivity of the sensor was
also investigated. As can be seen from the Figure 11, each sensor could specifically recognize the target
molecules and the respective signal responses toward the target solutions were 3 times larger than the
response values toward non-target solutions (For CLB-MIP-QCM, AHA, and HMA ethanol solutions
are non-target solutions; for AHA-MIP-QCM, CLB and HMA ethanol solutions are non-target solutions;
for HMA-MIP-QCM, CLB and AHA ethanol solutions are non-target solutions). The experimental
results therefore verified the theoretical predictions and found to be in good agreement revealing
specific affinity of the prepared MIPs to each target analytes.
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Figure 10. The corresponding frequency shifts of the quarzt crystal microbalance (QCM) sensors for
CLB template (a), HMA template (b), and AHA template (c). Note: the synthesis of molecularly
imprinted polymers, (MIPs) for each template molecules on gold electrode surface of the QCM sensors,
and the construction of the apparatus as well with the measuring method were described in our
previously established method [32].
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Figure 11. The responses of the MIP-coated QCM sensors with each template solutions over the time.
(a)CLB-MIP-QCM, (b) HMA-MIP-QCM and (c) AHA-MIP-QCM. Note: the measuring apparatus for
sensor array construction and the collected signal records were performed as our previously established
method [32].

However, it is worth noting that, with regard to the real sample determination under the harsh
environmental conditions, unknown factors, which may influence the combining capability of the MIPs,
should be involved to modify the simulation model and to improve its applicability. In addition, in
the future, we are also interested in expanding our screening approach to more complex analyte
mixtures (i.e., CLB and its metabolite analytes present in swine urine samples simultaneously).
Nevertheless, the method of computationally imprinting enantioselective binding sites allows for
greater understanding of the mechanisms underlying MIP binding, and the proposed method provides
a promising platform for fabricating simple, fast, and economical sensing system to detect trace
amounts of contaminants in food samples.

4. Conclusions

In the study, we elucidated the imprinted nature and the interaction mechanization through in
silico analysis. Our research covered the geometry optimization, the bonding situation, and the binding
energies of selected functional monomers with different proportions to target template molecules
in different solvents. The theoretical results showed that MAA was the best functional monomer
and EDGMA was the proper cross-linking agent, the optimal imprinting molar ratio of template
to functional monomer were 1:3 for both CLB and its dummy template molecule PE, and the ratio
were 1:5 for the two dummy template molecules of CLB’s metabolites, respectively. In addition,
the predicted recognition of the template molecules towards selected functional monomers in the
proper cross-linking agent provided a powerful tool for prediction of the selective biding capability
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to the synthesized MIPs in the actual tested sample. This study indicates that the experimental and
calculated results are consistent, which could provide theoretical references for the preparation of the
MIPs, which also revealed that in silico analysis of the properties of molecularly imprinted polymer
systems will ultimately allow for the fabrication of more sensitive and selective materials.
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