
© 2020 Journal of Family Medicine and Primary Care | Published by Wolters Kluwer - Medknow 3872

Background

EARR (External apical root resorption) is the reduction of  root 
structure involving the apical region to the extent that it can be 
seen on standard radiographs.[1] Orthodontic force applied to 
teeth over a short period can produce resorption lacunae on the 
cementum root surface histologically which is a preliminary step 
towards EARR. When root resorption exceeds the reparative 
capacity of  cementum, EARR is seen.[2]

Studies to explain the causal relationship between orthodontic 
tooth movement and external apical root resorption have been 

inconclusive till date. Maxillary incisors are the most commonly 
affected teeth by EARR during orthodontic treatment.[3,4] 
Occlusal forces have been presumably attributed as the causative 
factor for EARR.[5-7] In addition, Harris et al. studied the 
hypothesis of  genetic influence on the EARR and found a great 
possibility of  inheritance.[8]

The prevalence of  EARR associated with orthodontic treatment 
greatly varies in the literature, depending on the methods used 
to determine it in the studies. More than one-third of  patients 
undergoing orthodontic treatment have root resorption greater 
than 3 mm and severe root resorption (>5mm) has been found 
to occur in 2%-5% of  the population.[4,9,10]

Risk factors for EARR
EARR is a complex phenomenon caused by a combination 
of  poorly understood environmental and host factors. 
Biomechanical or orthodontic treatment-related risk factors may 
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include treatment duration, type of  orthodontic appliance, tooth 
extraction, intrusive movement, root torque, extensive tooth 
movement and force magnitude.[11] Orthodontic tooth movement 
or “biomechanics” has been found to account for approximately 
from one-tenth to one-third of  total variation in EARR.[12]

There was considerable individual variation in the EARR 
associated with orthodontic treatment which overshadowed 
the force magnitude and force type, indicating an individual 
predisposition and multifactorial etiology.[4,8,13-17]

The role of  genetic factors was first suggested by Newman in 
1975.[15] Then in 1997, Harris et al. gave findings of  his research 
and reported the involvement of  genetic variation in EARR 
concurrent with orthodontic treatment through a heritability 
study.[8]Later, Hartsfield et al. confirmed that genetic variation 
was associated with as much as 50%-66% of  the variations 
observed with EARR during orthodontic treatment.[4] Since 
then, various authors have studied the role of  various genes in 
the occurrence of  EARR.

The genetic aspect of  EARR is of  utmost importance to the 
general care physicians also. Various genetic markers involved 
in EARR are also associated with various systemic and bone 
metabolism disorders. They need to be aware of  dental 
implications of  such polymorphisms. Sometimes dental findings 
can prove to be very helpful in early diagnosis of  systemic and 
bone metabolic disorders.

Materials and Methods

This article reviews the literature published during the past 20 years 
concerning the association studies linking EARR to genetic 
polymorphisms. The literature search was performed on PubMed 
and Science Direct using the following keywords: “external apical root 
resorption and gene and polymorphism”. All suitable articles were 
selected and their references were rechecked for any relevant articles 
overlooked during the electronic searches. Other relevant articles were 
handpicked from the institutional library. The research findings to 
date are discussed with emphasis on several candidate genes without 
constraints on population, sample size and treatment duration.

Main Text
Molecular and Genetic pathway of root resorption 
with orthodontic force
Orthodontic force application leads to a cascade of  events 
in compression and tension region leading tooth movement. 
Figure 1 describes the molecular pathway during orthodontic 
tooth movement. This is mediated through two pathways: 1) 
activation of  control of  osteoclasts through the ATP/P2RX7/
IL-1B inflammation modulation pathway; and 2) RANK/
RANKL/OPG osteoclast activation control pathway.[18]Following 
section describes various mediators of  tooth movement and their 
associated genetic polymorphisms responsible for external apical 
root resorption [Tables 1 and 2].

Interleukin 1 (IL 1) family
IL1α and IL1β are encoded by distinct genes but bind to 
the same receptor IL 1R1.[19] IL1α precursor is constitutively 
present, fully active and is released from necrotic cells during 
early phases of  inflammation. However, IL 1 β is inactive and is 
cleaved by caspase 1 to release the active cytokine in extracellular 
space.[20] The interleukin receptor antagonist, IL1ra is a unique, 
naturally occurring cytokine that inhibits IL1 activity by binding 
to IL1R1 receptors with high affinity thereby preventing signal 
transduction.[21]

IL-1β	is a potent bone-resorptive cytokine and plays a key role in 
the complex pathways leading to root resorption.[4] IL‑1B (+3954) 
polymorphism in orthodontically treated subjects plays a 
role in EARR and IL-1B allele is a risk factor of  EARR.[22] 
A study by Bastos Lages et al.[23] also found similar results in 
61 Brazilian orthodontic patients.IL-1B gene polymorphism, 
rs1143634 (C3954T) and EARR has frequently been found to 
be associated in several geographical patient populations[22-24] and 
in knock-out animal models.[25] Furthermore, this polymorphism 
was implicated in approximately 15% of  the variation in EARR 
of  maxillary central incisors of  orthodontic patients.[22] However, 
some patient-based studies obscured this association[11,12,26-28]

Gu lden  e t  a l . [ 26 ] found  an  a s soc i a t ion  of  IL-1A 
polymorphism (-889TT genotype) with root resorption in 
a German sample of  45 EARR patients and 40 anonymous 
controls. However, Sharab et al.,[12] Al Qawasmi et al.,[22]

Iglesias-Linares et al.[24,29] and Linhartova et al.[30] in their studies 
found no significant association of  IL‑1A polymorphism with 
EARR.

IL-1ra might affect bone resorption during orthodontic treatment 
by blocking IL-1 from stimulating the osteoclasts and thus lead 
to root resorption. IL-1RN gene polymorphisms have been 
correlated with a high expression of  IL-1ra and hence, with 
EARR.[31,32] Iglesias-Linares et al.[24] showed that the TT genotype 
of  IL-1RN Single Nucleotide Polymorphism (SNP) rs419598 is 
highly and positively correlated with EARR.

IL1Receptor-associated kinase 1 (IRAK1)

IL1β roles are mainly dependent on IL-1 receptor 1 (IL1R1) 
binding. Activation of  IL1R1 leads to the recruitment of  adaptor 
molecules like IRAK1, with subsequent activation of  signalling 
transduction pathways.[33] Hyper-phosphorylation of  IRAK1, 
switch on the signal transduction pathway activation, and later, 
its ubiquitination and proteasome degradation switches off  the 
signalling.[34] IRAK1 gene is located on chromosome X at position 
q28. IRAK1 polymorphism (rs1509703) has been associated with 
EARR by Pereira et al.

Interleukin‑6 (IL‑6)
IL‑6 acts as a multifunctional cytokine with both inflammatory 
and anti‑inflammatory effects. IL‑6 and its receptors mainly 
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activate two signal pathways: the JAK kinase, signal transduction 
and transcriptional activation (JAK/STAT) pathway and 
mitogen-activating protein kinases (MAPK) pathway.[35-37] IL-6 
was observed to increase in the gingival crevicular fluid (GCF) 
and PDL in orthodontic patients. It was discerned from the 
studies that IL-6 is instrumental in local regulation of  bone 
remodelling and acute inflammation at the commencement of  
orthodontic treatment.[38] Thus, Guo et al.[39] conducted a study 
where IL-6 SNP (rs1800796) with GC genotype was found to 
have greater root resorption than CC genotype.

Interleukin 17
Proinflammatory interleukin‑17A (IL‑17A) stimulated 
odontoclastogenesis and influenced the mRNA expression 
of  RANKL from human dental pulp cells in vitro.[40] Thus, 
Hayashi et al.[41] suggested that T-helper 17 cells may aggravate 
the process of  orthodontically induced inflammatory root 
resorption. Linhartova et al.[30] investigated IL-17A gene 
variability in postorthodontic EARR but found a non‑significant 
association.

Purinergic receptor P2X, ligand gated ion channel 
7 (P2RX7)
P2RX7 is expressed in osteoblasts and osteoclasts and seem 
to have a pro-osteogenic effect, activating osteoblast function 
and inducing osteoclast apoptosis. It also stimulates the release 
of  inflammatory cytokines such as IL‑1B by immune cells by 
acting through ATP/P2RX7/IL‑1B inflammation modulation 
pathway. In the study by Sharab et al.[12] SNP, rs208294, located 
in the P2RX7 gene was found to be associated with EARR. 
Linhartova et al. in the recent study[42] revealed that variability in 
the P2RX7 gene and the length of  orthodontic treatment may 
be important factors contributing to the etiopathogenesis of  
postorthodontic EARR.

Vitamin D receptor gene
Vitamin D is responsible for the regulation of  certain genes at the 
transcription level, via interaction with the vitamin D receptor,[43] 
and influences host immune responses and aspects of  bone 
development, growth, and homeostasis.[44] Vitamin D stimulates 
osteoclastogenesis acting through its nuclear receptor, Vitamin D 
receptor in immature osteoblast/stromal cells via RANKL/OPG 
regulatory pathway[45-47][Figure 1]. Also, Vitamin D enhanced 
IL-1β expression via a direct transcriptional mechanism during 
the inflammatory process.[48]

Polymorphisms in Vitamin D receptor gene have been associated 
with bone mineral density, bone turn over and diseases in which 
mineral loss is a cardinal sign. A study by Fontana et al. in the 
Brazilian population in 2012 reported that Vitamin D receptor 
TaqI (rs 731236) polymorphism is associated with EARR.[49]

Osteopontin (OPN) gene
Osteopontin is an acidic phosphorylated glycoprotein containing 
an Arg-Gly- Asp (RGD) motif, which can interact with various 
receptors including αv-β3 and other integrins and so cause the 
odontoclast to adhere to root surface at the onset of  physiological 
or pathologic resorption.[50,51] OPN plays role in odontoclast 
activation during the root resorption process. Iglesias-Linares 
et al. showed that OPN gene (rs9138; 3’UTR and rs 11730582; 
5’ near region) are determinants of  a genetic predisposition to 
suffer EARR secondary to orthodontic treatment.[52]

RANK/RANKL/OPG
Osteoblasts and stromal stem cells express receptor activator 
of  NF-kappa B ligand (RANKL), which binds to its receptor 
activator of  nuclear factor-kappa B (RANK, coded by 
TNFRSF11A gene), on the surface of  osteoclasts and 
their precursors. Osteoprotegerin (OPG, coded for by the 

Figure 1: Molecular pathway during orthodontic tooth movement
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Table 2: Summary of various studies assessing association of different genepolymorphisms with external apical root 
resorption

Author, Year, 
Journal

Country
(Ethnicity)

Sample size Gene and 
polymorphisms 
studied

Mean age Treatment 
duration

Radiograph 
Technique

Result

Iglesias-
Linares et al., 
2017, AO

Spain
(Caucasian)

372 subjects (174 
cases and 198 
controls) treated 
with either fixed 
or removable 
appliances

IL‑1β rs1143634 
IL-1RN rs419598
Osteopontin (SPP1) 
rs11730582, rs9138 

27.69+13.6 years 
(28.48+13.60 years
26.29+13.66 years)

Not mentioned OPG Predisposition to 
EARR is similar for 
invisalign and fixed 
appliances.
Homozygous subjects 
(TT genotype of  
IL1RN, rs419598) 
were
found to be 
three times more 
predisposed to 
experience EARR 
compared with the 
other genotypes.

Linhartova 
et al., 2017, 
OD

Czech 
Republic
(Caucasian)

30 cases (11 boys 
and 19 girls) with 
EARR in maxillary 
incisors/69 controls 
(26 boys and 43 
girls)

IL-17 rs2275913
Osteopontin (SPP1) 
rs11730582, rs9138 
P2RX7 rs208294,
rs1718119 
TNFRSF11B 
rs3102735, rs2073618

14.6+3.2 years
15.2+5.3 years

Not mentioned OPG,
Lateral 
Cephalogram

CG haplotype 
(rs208294+rs1718119) 
was associated with 
EARR while no 
association was seen 
for individual SNP.

Pereira et al., 
2016, OD

Portugal
(Caucasian)

195 (72 males and 
123 females); six 
maxillary anterior 
teeth were assessed

IL‑1β rs1143634 
IL-1RN rs315952 
IRAK1 rs1059703

17.24+6.8 years 36+10 months OPG C allele of  SNP 
rs1059703 (IRAK1) is 
protective for EARR.

Guo 
et al., 2016, 
AJODO

China
(Han 
Chinese)

174 patients (68 
males and 106 
females; left 
maxillary central 
incisors were 
monitored)

IL-1RN rs419598
IL-6 rs1800796

12-34 years 20.55+6.54 
months
(14-28 months)

CBCT GC allele of  SNP 
rs1800796 (IL-6) is 
associated increased 
risk for EARR.

Sharab et al., 
2015, OCR

USA
(Caucasian)

67 cases (38 
females, 29 males) 
with EARR 
of  maxillary 
incisors/67 age- 
and sex-matched 
controls

P2RX7 (rs208294, 
rs1718119, rs2230912) 
CASP1 (rs530537, 
rs580253, rs554344)
IL‑1α rs1800587 (‑889 
C/T) 
IL‑1β rs1143634 
(+3953), 
IL-1RN rs419598

15.78+1.13 years
15.79+1.14 years

2.49+0.10 years
1.97+1.14 years

OPG, 
occlusal

CC or CT genotype 
of  rs208294 (P2RX7) 
polymorphism is 
associated with 
EARR.

Lim 
et al., 2014, 
AJODO

Mice Not applicable Wnt signalling Not applicable Not applicable Not 
applicable

Reduced wnt 
signaling causes 
spontaneous root 
resorption

Iglesias-
Linares et al., 
2014, OD

Spain
(Caucasian)

37 cases with 
(EARR>2mm) / 50 
controls

Osteopontin rs9138, 
rs11730582

24.7+5.95 y
23.8+5.33 y

27.5+8.3 months Lateral 
cephalogram, 
OPG

Allele 2/Allele 2 (CC 
genotype) in rs9138
rs11730582 
(osteopontin gene) 
predispose to 
EARR secondary 
to orthodontic 
treatment. Allele 1(T) 
in rs9138 is protective 
for EARR. Allele 
1(A) in rs11730582 is 
protective for EARR.

Contd...
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Table 2: Contd...
Author, Year, 
Journal

Country
(Ethnicity)

Sample size Gene and 
polymorphisms 
studied

Mean age Treatment 
duration

Radiograph 
Technique

Result

Pereira et al., 
2014, OD

Portugal
(Caucasian)

195 cases (72 males 
and 123 females); 
six maxillary 
anterior teeth were 
assessed.

IL‑1β rs1143634 
(+3953)
TNFRSF11A 
rs1805034
P2RX7 rs1718119
TNFRSF11B 
rs3102735

17.24+6.8 years 36+10 months OPG GG genotype of  
rs1718119 (P2RX7 
gene) is associated 
with EARR. 

Linhartova 
et al., 2013, 
OD

Czech 
Republic
(Caucasian)

32 cases with 
EARR in maxillary 
incisors/74 controls 
without EARR

IL‑1α rs1800587 
(−889)
IL‑1β rs1143634 
(+3953)
IL-1RN (86bp VNTR)

15.0+4.1 years 
(cases)
15.2+5.3 years 
(controls)
(15.2+5 years 
average)

34.5+15.6 
months

OPG,
Lateral 
Cephalogram

IL1RN*12, *22 
genotypes and short 
allele *2 is associated 
with EARR in girls.

Iglesias-
Linares et al., 
2013, HH

Spain
(Caucasian)

93 patients (39 
cases with EARR > 
2mm in root‑filled 
teeth/54 controls 
without EARR in 
root‑filled teeth)

IL-1RN rs419598 
(+2018)

24
years 1 month+5 
years 5 months

27.21 
months+4.9 
months

Lateral 
cephalogram, 
OPG

Genotype TT of  
IL-1RN is associated 
with EARR in root 
filled teeth

Iglesias 
Linares et al., 
2012, OD

Spain
(Caucasian)

54 patients 
(25 cases with 
EARR>2mm/29 
controls)

IL‑1α rs1800587 
(−889)
IL‑1β rs1143634 
(+3953)
IL-1RN rs419598 
(+2018)

23.08+5.08 years 31.1+6.4 months Lateral 
cephalogram, 
OPG

Genotypes CC of  
rs1143634 (IL-
1β) and TT of  
rs419598 (IL-1RN) 
are associated with 
EARR.

Iglesias 
Linares et al., 
2012, IEJ

Spain
(Caucasian)

73 root canal filled 
teeth (35 with 
EARR>2 mm and 
38 non EARR 
teeth)/73 vital 
control teeth (30 
with EARR>2 mm 
and 43 non-EARR 
teeth)

IL‑1α rs1800587 
(-889)

IL‑1β rs1143634 
(+3953)

23+5 years per 8+9 
months

27+4.3 months Lateral 
cephalogram, 
OPG

Homozygous (TT, 
rs1143634) subjects 
has two times risk of  
EARR in root‑filled 
teeth as compared to 
vital teeth. 

Iglesias 
Linares et al., 
2012, JOE

Spain
(Caucasian)

93 RC treated teeth; 
39 with EARR>2 
mm/54 with 
EARR≤2mm

IL‑1α rs1800587 
(-889)
IL‑1β rs1143634 
(+3953)

24 years 1 month + 
5 years 5 months

27.21 
months+4.9 
months

Lateral 
cephalogram, 
OPG

Genotype TT of  
IL‑1β is associated 
with EARR in 
endodontically treated 
teeth.

Fontana 
et al., 2012, 
AJODO

Brazil
(Mixed 
whites)

377 Class II div 2 
individuals; group 1 
(EARR≤1.43 mm; 
treated)=157; group 
2 (EARR≤1.43 mm; 
treated)=175; group 
3 (untreated)=35

Vitamin D receptor 
rs731236 

14.9 years EARR measured 
at 6 months of  
treatment

IOPA Allele C is weakly 
associated with 
protection against 
EARR

Tomoyasu 
et al., 2009, 
OW

Japanese 54 Japanese 
(18 males and 
36 females); 24 Han 
Chinese; 24 African
Americans; 24 
European Americans; 
and 24 Hispanics 
(maxillary and 
mandibular central 
incisors, mesial 
and distal roots of  
mandibular first 
molars were analysed)

IL‑1β rs1143634 
(+3953)

Males = 19 years, 
Females = 21 years

3 years 1 month Lateral 
cephalogram, 
OPG

rs1143634 SNP is 
not associated with 
EARR.

Contd...
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Table 2: Contd...
Author, Year, 
Journal

Country
(Ethnicity)

Sample size Gene and 
polymorphisms 
studied

Mean age Treatment 
duration

Radiograph 
Technique

Result

Gulden et al., 
2009, JOO

Germany 
(Whites)

49 cases (45 
sporadic patients, 2 
pairs of  siblings)/40 
controls

IL‑1α rs1800587 
(−889)
IL‑1β +3954

>12 years Not mentioned OPG Genotype TT 
(rs1800587) of  IL‑1α 
is associated with 
EARR. 

Hartsfield, 
2009, OCR

USA 
(Caucasian)

135 cases 
(EARR>2mm in 
atleast one maxillary 
central incisor)

TNFRSF11B 
rs2073618

14.6+6.9 years 1.6+0.5 years G allele was 
associated with 
EARR.

Lages 
et al., 2007, 
AJODO

Brazil
(Brazilian 
whites)

23 affected/38 
controls (Maxillary 
incisors were 
evaluated)

IL‑1β +3954 18.9+5.2 years Not mentioned IOPA Allele C of  IL‑1β 
is associated with 
EARR

Al-Qawasmi 
et al., 2004, 
JMNI

Mice Not applicable IL‑1β Not applicable Not applicable Not 
applicable

IL‑1β is significantly 
associated with 
orthodontic root 
resorption

Al-Qawasmi 
et al., 2003, 
AJODO

USA
(Caucasian)

35 families (118 
persons: 73 siblings 
and 45 parents)

IL‑1α rs1800587 
(-889) 
IL‑1β +3954

12.1+1.89 years 2.82+1.09 years Lateral 
cephalogram, 
OPG

Genotype CC of  IL-
1β is associated with 
EARR.

Al-Qawasmi 
et al., 2003, 
JDR

USA
(Caucasian)

38 families (124 
persons: 79 siblings 
and 45 parents); 
EARR evaluated 
in Maxillary and 
mandibular central 
incisors and 
mandibular first 
molars.

TNSALP (AL215L)
TNFα (‑308) 
TNFRSF11A 
(D18S64)

12.3+1.82 years 2.77+1.13 years Lateral 
cephalogram, 
OPG

Linkage of  D18S64 
with EARR in 
maxillary central 
incisors.

*EARR: External apical root resorption, AO: The Angle Orthodontist, OD: Oral Diseases, AJODO: American Journal of  Orthodontics and Dentofacial Orthopaedics, OCR: Orthodontics and Craniofacial Research, 
HH: Histology and Histopathology, IEJ: International Endodontic Journal, JOE: Journal of  Endodontics, OW: Orthodontic Waves, JOO: Journal of  Orofacial Orthopedics, JMNI: Journal of  Musculoskeletal and 
Neuronal Interactions, JDR: Journal of  Dental Research,IL‑1α : Interleukin 1 alpha, IL‑1β : Interleukin 1 beta, IL‑1RN: Interleukin Receptor Antagonist, IL‑17: Interleukin 17, P2RX7: Purinergicreceptor, TNFRSF: Tumor 
necrosis factor receptor superfamily, IRAK1‑ Interleukin 1 receptor associated kinase‑1, IL‑6:”Interleukin 6, CASP‑1: Caspase 1, TNSALP: Tissue non‑specific alkaline phosphatase, TNF α: Tumor necrosis factor alpha

TNFRSF11B gene) is secreted by osteoblasts and osteogenic 
stromal stem cells and protects from excessive bone resorption 
by binding to RANKL and preventing it from binding to 
RANK.[53] Study by Hartsfield et al.[18] evaluated the association 
between single nucleotide polymorphism (SNP) rs2073618 of  
TNFRSF11B (OPG) gene and EARR in orthodontically treated 
patients and showed that OPG polymorphism accounted for 
approximately 8% of  total EARR variation.

Wnt
Wnt signalling pathways are a group of  signal transduction 
pathways made of  proteins that pass signals into a cell 
through cell surface receptors.OPG/RANKL regulates 
bone formation, and studies in the literature suggest that 
disruptions in OPG/RANKL contribute to low bone mass 
phenotypes in humans[54] and root resorption as well.[55,56] The 
OPG/RANKL pathway, in turn, is mediated by Wnt signalling; 
a positive Wnt stimulus simultaneously downregulated RANKL 
and upregulates OPG, thus enhancing bone formation and 
inhibiting bone resorption.[57,58] Lim et al. in their study showed 
that genetically reducing Wnt signalling in the environment of  
the periodontal complex is sufficient to cause spontaneous 
root resorption.[59]

Discussion

The present review attempted to review genetic risk factors for 
orthodontic treatment-induced external apical root resorption. 
We located 21 studies on different genes, which might influence 
EARR [Table 2]. 19 were human studies and 2 were on mice.

Fifteen studies have been reported for IL1 gene involving 
association with EARR.[11,12,22-30,39,60-62] IL-1α has been 
investigated in seven studies[12,22,24,26,30,60,61] involving four ethnic 
groups (German, Czech, Hispanics and US Caucasians) where 
only German Caucasians with TT genotype of  IL-1α was 
observed to have a significant association with orthodontically 
induced EARR. The occurrence of  the rare genotypes of  the 
SNP rs1800587 was associated with an almost fourfold increase 
in IL‑1 protein levels in the gingival crevicular fluid.[26]

There were 13 studies[11,12,22-30,60,61] which investigated the 
association of  IL-1B with EARR. 7 studies (3 Hispanics, 1 
US, 1 Portugal, 1 Brazil and 1 mice knock out model) found 
an increased risk of  IL-1B with EARR. 4 studies revealed CC 
genotype as associated with EARR[12,22-24] while 2 studies[60,61] 
on Root canal treated teeth in Hispanics showed association 
with TT genotype. These contrasting results may be pulp 
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related as it is the major IL-1B producing. Other studies in the 
US, Portugal, Czech, Germany, Spain and Japan didn’t find a 
significant association. Different results in different studies 
may be due to different allele frequencies in different ethnic 
groups and sample size variation. The minor allele frequency 
ofIL1B (+3954) is reported at 21%–29% in Caucasians, 14.7% in 
Hispanics and 5.6% in Japanese.[63] Failure to detect a statistically 
significant difference in frequency of  IL1B polymorphism 
between EARR cases and control in Japanese is due to low 
minor allele frequency. C3954T polymorphism is present on 
exon and is synonymous (Phe105Phe) and does not result in a 
change in protein conformation but was observed to increase 
IL-1B production which caused relatively more catabolic bone 
modeling in the cortical bone interface of  the periodontal 
ligament owing to the increased number of  osteoclasts associated 
with higher levels of  this cytokine. The variation might influence 
mRNA splicing, nuclear RNA stability, or, conceivably, levels of  
mRNA expression. Alternatively, the polymorphic site might 
be in strong linkage disequilibrium with another polymorphic 
site, within either the coding or the regulatory regions of  these 
genes.[64] Al-Qawasmi et al.[22] further reported a greater increase 
in resistance to EARR with IL1 composite genotype involving 
the combined presence of  T alleles of  IL1A and IL1B. This 
expounded the stronger linkage of  variation in IL-1B site as 
compared to the variation at the IL-1A marker and it further 
reflects the complex nature of  these loci in determining 
susceptibility to orthodontically induced EARR.

Seven studies investigated the association of  IL-1RN on 
EARR with 4 studies[24,29,30,62] (Czech, Spain) revealing a positive 
association and studies in US,[12] Portugal[28] and China[39] didn’t 
find any association. A polymorphism in the second intron 
of  IL1RN gene gives rise to VNTR (variable number tandem 
repeat) of  86 bp sequence and thus to different alleles. Atleast 
one copy of  allele 2 is associated with decreased secretion 
of  IL1ra and increased IL1B synthesis. IL1RN VNTR short 
allele with 2 repeats was associated with EARR in Czech 
females which might be due to more prevalence of  this allele 
in women. This allele was controversial regarding the reporting 
of  both increased and decreased IL1ra levels. Moreover, this 
VNTR polymorphism is strongly correlated with other IL1RN 
polymorphisms.[30]The + 2018T > C polymorphism in exon 2 of  
the gene is in complete linkage disequilibrium with a penta-allelic 
86 bp VNTR polymorphisms in intron 2 of  the gene. Genotype 
TT of  this polymorphism is associated with EARR in both vital 
and root‑filled teeth, which is consistent with an increase in 
IL1ra levels.[24,29,62] This genotype is not associated with EARR 
in Chinese[39] and the US.[12] C allele of  rs315952 is associated 
with increased IL1ra levels but was not found to be significantly 
associated with EARR.[28]

IL-6 polymorphism is associated with EARR only in the Chinese 
population.[39] According to this study, root resorption of  patients 
carrying the GC genotype was greater than that of  patients 
carrying the CC genotype. Moreover, Gu et al. observed lesser 
blood IL-6 levels in patients with G allele as compared to C allele. 

This indicates that IL‑6 has predominantly inflammatory action 
in orthodontic tooth movement with bone-resorbing effects 
thereby preventing EARR. However, Liu et al. detected IL-6 on 
both compression and tension sides of  the teeth in mice after 
orthodontic force application. Hence, this association needs 
further validation by studies in other populations.

C-allele of  IRAK1 (rs1509703) has been observed to have 
a protective effect against EARR whether in homozygous/
heterozygous form in Portuguese Caucasians population.[28] T 
allele is the high-risk genotype for EARR and encodes leucine. As 
IRAK1 locus is influenced by X‑inactivation, homozygotes CC 
have a similar expression of  serine isoform as male hemizygotes 
for allele C. Due to skewed X chromosome inactivation; we 
may anticipate that some heterozygotes will also be protected. 
Similar studies in other ethnic populations should be performed 
to further validate the proven association.

A allele of  IL-17A -197A/G (rs2275913) was observed to 
produce more IL-17 in vitro than those without the allele[65] and 
IL-17 plays a role in odontoclastogenesis.[40] But IL-17A (-197A/
G; rs2275913; Promotor) was not observed to have a significant 
association with EARR in the Czech population.[42]

Different studies exploring the role of  P2RX7 in EARR have 
yielded conflicting results. CC, CT genotype of  rs208294 have 
been observed to be associated with EARR in Caucasians.[12] The 
gain of  function variant of  rs1718119 (GCT > ACT; Ala348Thr) 
has a protective role against EARR. Hence, the GG genotype 
is associated with EARR in the Portuguese population.[11] 
However, CG haplotype involving both SNPs was found to have 
an association with EARR in the Czech population. However, 
variant rs1718119 and another SNP rs2230912 were not found 
to be associated with EARR in Caucasians.[42] There may be more 
SNPs that may have an inductive/protective effect on EARR. 
Thus, whole gene sequencing is desired for exploring the role 
of  P2RX7.

RANKL is a membrane-bound cytokine expressed in osteoblasts 
that induces osteoclast differentiation and activation, mediated 
by osteoclast expressed receptor RANK. RANK (TNFRSF11A; 
18q21.2-21.3) SNP D18S64 was found to have association with 
EARR in US Caucasians[66] but rs1805034 did not associate with 
EARR in Portuguese.[11]

OPG is a decoy receptor for RANKL, inhibiting osteoclastogenesis 
and bone remodelling. Osteoprotegerin was not found to have 
an association with EARR in both conducted studies on 
Portuguese[11] and Czech Caucasians.[42] SNP rs3102735 (-163T/
C; Promotor) in gene promoter region may affect transcription 
and has been associated with lower bone mineral density or 
higher frequency of  fractures related to minor allele G. Its minor 
allele frequency has been observed to be low in Portuguese 
which might have resulted in non significant results. SNP 
rs2073618 (+1181 C/G; Lys3Asn; Exon1) and rs3102735 were 
not associated in Czech population.
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Direct osteoclast activation by OPN has been found in Caucasians 
in the study by Iglesias-Linares et al.[29] This study suggests that 
inheritance of  a specific allele of  the OPN gene (rs9138 and 
rs11730582) could be a determinant of  genetic susceptibility to 
EARR in this ethnic group. However, Linhartova et al. did not find 
any association of  OPN with EARR in the Czech population.[42]

CASP1 did not show any significant association with EARR in 
a study conducted on US Caucasians.

Wnt showed a role in EARR in mice knockout study. It regulates 
cementum homeostasis and reduction in Wnt signaling has been 
associated with EARR.[59]

Tissue non‑specific alkaline phosphatase, TNSALP (1p36.1‑34) 
plays an important role in mineralization and cementum 
formation. Mice lacking functional TNSALP gene have defective 
acellular cementum formation and delayed tooth eruption. 
Tumor Necrosis Factor alpha, TNFα(6p21.3) levels elevate in 
gingival sulcus during orthodontic tooth movement. TNFα (-308, 
transcription start site) and TNSALP (AL215L) didn’t show any 
significant association with EARR in US Caucasians. Al‑Qawasmi 
et al. postulated that osteoclast maturation via RANK-mediated 
pathway is associated with EARR while that via TNF receptor 
is not associated with EARR.[66]

Vitamin D showed association with EARR in Brazilian 
population. Fontanna et al. suggested the association of  
Vitamin D receptor polymorphism (rs731236) with EARR. 
Genotype-containing C allele was found protective against root 
resorption in the Brazilian population.[49]

Population stratification and variation in frequencies of  SNPs in 
different ethnicities must be taken into consideration. Genetic 
variants may interact with other variants in the same (or another) 
gene and environmental factors that influence the observed 
phenotype. Hence, a minor gene effect, ethnic diversity or linkage 
disequilibrium contributed to variations in different studies. Also, 
studies must be performed with sufficient statistical power to 
detect the association of  a minor allele effect.

Presently studies apropos of  orthodontic tooth movement have 
constraints (a) histologic analysis is restricted as teeth moved 
and/or surrounding bone cannot be analysed; (b) interindividual 
dissimilitude in mechanobiological responses; (c) not all factors 
influencing tooth movement have been unmasked. It is believed 
that once the molecular database is completed, the biomolecular 
therapeutic intervention will ensue which will pave our way to 
enhance the orthodontic tooth movement with minimal or no 
root resorption.

Recent literature suggests that EARR is multifactorial and 
clinical risk factors like maxillary premolar extraction, increased 
overjet and presence of  dilacerated roots also pose high risk for 
development of  EARR. Therefore, these factors must also be 
considered while doing orthodontic treatment.[67,68]

Conclusions

• The outcome of  this review shows that different gene 
polymorphisms may indicate the occurrence of  EARR and 
also proposes certain recommendations for prospective 
researchers for further studies.

• Timely and repeated estimation of  cytokine levels at the site of  
localized force application must be performed concomitant 
with the determination of  genetic polymorphisms to 
authenticate the proposed association between a potential 
mediator and EARR.

• Genetics based studies along with other basic science research 
in the field might help to understand the exact nature of  
EARR, the influence of  genetic inheritance and possibly lead 
to the prevention or even eradication of  this phenomenon 
during orthodontic treatment.
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