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,e correct classification of cancer subtypes is of great significance for the in-depth study of cancer pathogenesis and the re-
alization of accurate treatment for cancer patients. In recent years, the classification of cancer subtypes using deep neural networks
and gene expression data has become a hot topic. However, most classifiers may face the challenges of overfitting and low
classification accuracy when dealing with small sample size and high-dimensional biological data. In this paper, the Cascade
Flexible Neural Forest (CFNForest) Model was proposed to accomplish cancer subtype classification. CFNForest extended the
traditional flexible neural tree structure to FNT Group Forest exploiting a bagging ensemble strategy and could automatically
generate the model’s structure and parameters. In order to deepen the FNT Group Forest without introducing new hyper-
parameters, the multilayer cascade framework was exploited to design the FNT Group Forest model, which transformed features
between levels and improved the performance of the model. ,e proposed CFNForest model also improved the operational
efficiency and the robustness of the model by sample selection mechanism between layers and setting different weights for the
output of each layer. To accomplish cancer subtype classification, FNT Group Forest with different feature sets was used to enrich
the structural diversity of the model, which make it more suitable for processing small sample size datasets. ,e experiments on
RNA-seq gene expression data showed that CFNForest effectively improves the accuracy of cancer subtype classification. ,e
classification results have good robustness.

1. Introduction

Cancer is a heterogeneous lesion caused by the loss of the
normal regulation of local tissue cell growth at the gene level
under the action of carcinogenic factors [1]. Nowadays,
cancer has become one of the major causes of human death
[2]. Traditional cancer research methods were mostly based
on clinical experience. Doctors made diagnoses by analyzing
clinical data and referring to a limited number of cases.
However, the molecular expression level of cancer is highly
heterogeneous, which means that there are many molecular
subtypes in cancer tissue. Cancer patients with the same
symptoms can show significant prognostic differences under
the same treatment regimens [3]. Heterogeneity is one of the
fundamental features of cancer, and it is also the biggest
challenge for the development of precision therapy for
cancer [4].

,e process of occurrence, development, and metastasis
of cancer is very complex. Findings have shown that dif-
ferent cancer subtypes differ significantly in multiple gene
expression data [5]. ,erefore, cancer research at the genetic
level is of great importance for cancer treatment and di-
agnosis. ,e advent of Next-Generation Sequencing has led
to an explosive growth in the amount of gene expression
data. However, making the best use of these data to make
accurate predictions for different cancer subtypes is a serious
challenge for researchers [6].

Although all the genes in the tissue cells were recorded in
the gene expression profile of the sample, only few genes
were associated with the classification of cancer subtypes [7].
In addition, the data structure of gene expression is complex,
the information redundancy is very high, and the correlation
between genes is very strong. Traditional biological research
methods are difficult to deal with gene expression data

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 6480456, 11 pages
https://doi.org/10.1155/2021/6480456

mailto:ise_mengqf@ujn.edu.cn
https://orcid.org/0000-0003-2054-805X
https://orcid.org/0000-0003-0387-8903
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6480456


effectively [8]. ,erefore, researchers are in urgent need of
new and targeted analysis methods.

Deep learning, a branch of artificial intelligence, has
become a powerful tool for biological data analysis and
processing through the use of backpropagation, hierarchical
processing, and various optimization algorithms [5]. Gene
expression data is characterized by high dimensionality, high
redundancy, and extreme spatial complexity. After pro-
cessing the gene expression data with machine learning
method, it can not only identify the relationship between
genes effectively, but also establish more accurate prediction
models.,is provides an important technical support for the
correct classification of cancer subtypes and is of great
significance for both theoretical research and practical
clinical applications of cancer [9].

In recent years, many researchers have made various
attempts to use deep learning methods to study cancer
subtype classification. Fakoor et al. [10] used unsupervised
feature learning on a deep stack autoencoder for processing
gene expression data and completed cancer detection and
cancer subtype analysis using it. ,e method improved the
accuracy of cancer subtype classification. A scalable method
to process gene expression data for different cancer subtypes
is also provided in the article. Khademi and Nedialkov [11]
proposed a probabilistic graphical model (PGM) to predict
and diagnose breast cancer. ,e model addresses the
problem of poor learning due to problems such as high and
small size of genomic datasets through diverse learning and
deep belief networks. In the article, the authors used SoftMax
nodes to integrate PGMs and DBNs constructed from
clinical and microarray data, and the approach showed good
results in cancer subtype classification, cancer recurrence,
and metastasis prediction tasks on real datasets. Guo et al.
[12] proposed a deep learning framework called BCDForest.
,e traditional deep forest model was improved by drawing
on the advantages of deep learning. Experimental results
show that the model can exhibit better classification per-
formance when classifying subtypes of various cancer.
Karabulut and Ibrikci [13] proposed a discriminative deep
belief network (DDBN) model for cancer subtype classifi-
cation. In this paper, the problem of high dimensionality and
imbalance of gene expression data was solved. Experimental
results showed that the proposed model outperformed other
classifiers in the accuracy of cancer subtype classification.
Xiao et al. [14] proposed a deep learning based multimodal
ensemble approach for cancer prediction using deep
learning methods to fuse multiple machine learning clas-
sification models. Experimental results on RNA-seq datasets
of lung, gastric, and breast cancers showed that the method
can effectively improve the accuracy of cancer subtype
classification.

In this paper, the Cascade Flexible Neural Forest
(CFNForest) was proposed for cancer subtype classification.
,is model is a deep neural network ensemble framework
based on FNT Group Forest. Compared with traditional
deep neural network models, CFNForest can automatically
optimize the structure and parameters of the internal neural
network during the training process. Compared with deep
models built on nondifferentiable models, the proposed

model can stratify genetic features without discrete input
features. CFNForest integrated multiple classifier ensemble
strategies and improves the overall classification accuracy of
the model through feature conversion between levels.
,rough the introduction of enhanced sample and feature
optimization mechanism, the model still showed good
classification performance on small sample size datasets.
Experimental results showed that CFNForest consistently
outperforms the state-of-the-art methods in the classifica-
tion of breast invasive carcinoma, glioblastoma multiforme,
and lung cancer using RNA-seq gene expression data.

2. Materials and Methods

2.1. Datasets. ,e RNA sequence gene expression data were
used in this paper, which were downloaded from,e Cancer
Genome Atlas (TCGA) [15]. ,ree types of cancers were
downloaded from the TCGA database and sorted: Breast
Invasive Carcinoma (BRCA), Glioblastoma Multiforme
(GBM), and Lung Cancer (LUNG). ,e labeling of each
sample is based on real clinical data of cancer patients
provided by TCGA. ,ere are four basic subtypes of BRCA:
Basal-like (98/∼19.06%), HER2-enriched (58/∼11.28%),
Luminal-A (231/∼44.94%), and Luminal-B (127/∼24.72%).
A total of 514 valid data samples were available. ,ere are
three subtypes in LUNG: Bronchioid (104/∼37.82%),
Magnoid (72/∼26.18%), and Squamoid (99/∼36.0), with 275
effective samples. In GBM there are four basic subtypes:
Classical (42/∼25.62%), Mesenchymal (55/∼33.5%), Neural
(28/∼17.1%), and Proneural (39/∼23.78%), and the number
of valid samples available is 164. ,e details of three cancer
types are shown in Table 1.

,e preprocessing steps are outlier deletion, missing data
imputation, and normalization: if the gene expression data
has more than 20% missing value in a patient, the patient
data will be filtered; for the missing data, K-nearest neighbor
is used to fill in; the normalization of cancer gene expression
data is processed as follows:

f �
f − E(f)

������
Var(f)

 , (1)

where f is the gene expression data feature and f is the
normalized gene expression feature. E(f) and Var(f) are
the mean and variance of f.

2.2. "e Flexible Neural Tree Model. ,e advantages of deep
neural networks, such as layer-by-layer processing, back-
propagation, and sufficient model complexity, make them
show strong performance advantages in several fields of
machine learning. However, when setting the structure of
neural networks, there are almost countless combinations of
layers of neural networks, numbers of neurons, and links
between neurons [16]. ,e quality of the model often
depended on the experience of the researcher. When the
network structure is too complex, not only is the model
prone to the risk of overfitting, but the complex training
process also brings extremely high computing costs [17].
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When the network structure is too simple, the classifi-
cation and prediction performance of the model will not be
very good. Based on this, Chen et al. proposed the flexible
neural tree (FNT) model [16–18]. ,e automatic optimi-
zation of the structure and the automatic optimization of the
parameters are the two most important parts in the process
of constructing a FNT model. In this paper, the grammar
guided genetic programming (GGGP) and the particle
swarm optimization (PSO) algorithm were used to optimize
the structure and parameters of FNT, respectively.

2.2.1. Grammar Guided Genetic Programming. Genetic
programming is an evolutionary computational method
proposed by Koza [19]. In terms of operators for population
evolution, genetic programming algorithm replaces the bi-
nary string representation of genetic algorithms and oper-
ates on more intuitive population individuals. ,e genetic
algorithm mainly utilizes the idea of superiority and infe-
riority in biology. It calculates a predetermined fitness
function using a hierarchical structure with a more flexible
expression form. After that, it simulates the process of bi-
ological genetic evolution and searches for the best one in
the solution space through genetic operations such as se-
lection, crossover, and mutation.

GGGP overcomes the drawback that the set of functions
and terminal instructions must be of the same type in
standard genetic programming algorithms and avoids the
problem of generating invalid individuals in the process of
crossover or mutation. When using GGGP to generate
chromosomes of individuals in a population, the context-
independent grammar G is defined by a quadruplet {N, T, P,
Σ}, where N is a set of nonterminal symbols, T is a set of
terminal symbols, P is a set of generation rules, and Σ is a
starting symbol. If x ∈ N and y ∈ N∪T are defined, the
grammar rule is denoted as x⟶ y. ,e following is the
algorithmic flow for generating GGGP:

(1) Randomly generate the initial population according
to the grammar model individual generation method

(2) Calculate the fitness of individual in the population
to evaluate each individual currently

(3) Generate the next-generation population by genetic
operations (including selection, crossover, and
mutation), and evaluate all individual trees
according to predefined criteria and individual
fitness

(4) If an individual optimal solution appears or the
termination condition is met, the program ends;
otherwise go to step (2) and continue the evolution

In the population generated by the optimization process,
the quality of the individual is judged by the value of the

fitness function Fit(i). ,e smaller the value, the smaller the
error between the actual and expected output of the algo-
rithm. In this paper, we use the standard variance as the
fitness function:

Fit(i) �

�������������
1
N

 y
i
1 − y

i
2 

2


, (2)

where N represents the total number of individuals. yi
1 and

yi
2 represent the actual value of the i-th individual and the

output value of the algorithm, respectively. ,e smaller the
value of Fit(i), the better the individuals we get.

2.2.2. Particle Swarm Optimization. ,e particle swarm
optimization (PSO) algorithm proposed by Kennedy was a
population-based heuristic search algorithm [20]. PSO
represents the solution space of a problem as the search
space of particles and the solution of a problem as the
position of particles. ,e velocity of the particles in the space
determines the speed and direction of the particles’ motion
[21]. ,e fitness value of each particle can be obtained by
calculating the objective function. In this way, the problem
of finding the optimal solution is transformed into the
problem of finding the optimal position of the particle in the
search space.

When using the particle swarm optimization algorithm,
the swarm of particles is first randomly initialized in the
given solution space, and each particle then has an initial
position and an initial velocity [22]. Iteration is performed
according to the set rules: each evolution particle updates its
position and speed in the solution space according to pbest
and gbest, where pbest is the optimal solution obtained by a
single particle in the evolution process and gbest is the op-
timal solution obtained by all particles in the evolution
process. After obtaining these two optimal solutions, particle
i can update its velocity and position according to formulas
(3) and (4):

vi � ω × vi + c1 × r1 × pbesti − xi  + c2 × r2 × gbest − xi( ,

(3)

xi � xi + vi, (4)

where vi is the velocity of particle i, xi is the position of
particle i, c1 and c2 are learning factors, r1 � rand(0, 1),
r2 � rand(0, 1). ω is the inertia factor. ,e particle con-
stantly adjusts its position according to the velocity but
cannot exceed the maximum velocity Vmax, which will be
restricted to Vmax when vi exceeds Vmax. Figure 1 further
illustrates the PSO optimization process.

,e particle swarm optimization algorithm mainly
contains six basic steps:① initialize relevant parameters;②
calculate the fitness value of particles;③ find out the current
optimal solution of each particle and set it as pbest; ④ find
out the current optimal solution of the whole particle swarm
and set it as gbest;⑤ update the velocity and position of the
particle according to formulas (3) and (4);⑥ go to step②
until satisfactory results are achieved or the termination
conditions are met.

Table 1: ,e detail of the three cancer types.

Dataset Sample Gene Class
BRCA 514 4247 4
GBM 164 3398 4
LUNG 275 4596 3
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2.2.3. Flexible Neural Tree. Compared with other forms of
deep neural networks, the FNT model can automatically
optimize its own structure during training, without the need
for the user to set it up in advance. During the structure
optimization process, FNT allows cross-layer linkage be-
tween input vectors and individual nodes, which can pro-
duce some sparse networks with good performance
relatively easily. It is difficult to achieve this when setting the
network structure based on human experience. [23] In
addition, FNT can automatically select key features by
assigning different weights to input vectors during the
training process, which greatly improves the classification
ability of the model. Figure 2 is a flexible neural tree model.

To construct a flexible neural tree as shown in Figure 2,
we first defined the model as
S � F∪T � +2, +3, +5{ }∪ x0, x1, . . . , x6 , where
F � +2, +3, +4{ } is the nonleaf node (function set), and FNT
can produce more diverse tree network structures by
changing the function set [24]. T � x0, x1, . . . , x6  is the
leaf node (terminal instruction set). ,e algorithm flow of
FNT is shown in Figure 3.

Initialize the relevant data; randomly assign the network
parameters and generate the initial tree structure; then
optimize the tree structure by grammar guided genetic
programming and repeat this step until a better tree
structure is found. Use particle swarm optimization to
optimize the network parameters of the current optimal tree
structure and repeat this step until the optimal parameter
value is found or the number of iterations exceeds the set
value. Finally the current generated network structure and
parameters are judged according to the termination con-
dition whether they can meet the requirements, and if not,
the network is regenerated by going back to the tree
structure optimization step until the termination condition
is met. In calculating the output of FNT, we use σ(x) �

1/1 + exp(−x) as the activation function of nonleaf nodes
[25]. ,e algorithm rules of the FNT model are shown in
Table 2.

2.3. Ensemble Method. Ensemble learning combines mul-
tiple learners with different ensemble strategies to train them
to perform the same task. Ensemble learning models usually
have better generalization performance than individual
learners [27]. ,ere are mainly two common ways to in-
tegrate learners: one is to generate base learners without
dependencies on each other in parallel by bagging ensemble
strategies [28]. ,e representative algorithm is Random
Forest (RF) [29]. ,e ensemble strategy of bagging can ef-
fectively improve the accuracy of the algorithm; the other is
through boosting ensemble strategy [30], which can serially
generate base learners with strong dependence between each
other. And the representative algorithms are AdaBoost and
Gradient Boosting Decision Tree (GBDT) [31]. Boosting
ensemble strategy can reduce the risk of model overfitting
and improve the generalization ability of the model. Figure 4
gave a block diagram combining the two ensemble ap-
proaches of bagging and boosting.

2.4. "e Cascade Flexible Neural Forest Model. Cancer
subtype gene expression data is a continuous type of data.
Different gene expression information had strong correla-
tion, which means that it is better not to discretize them
when classifying cancer subtypes on gene expression data.
,is will lead to various classifiers (such as decision trees and
random forests) showing poor performance in the classifi-
cation of cancer subtypes [32]. FNT is a new form of neural
network, which has many advantages that traditional deep
neural network models do not have (for example, the
structure and parameters of the model can be automatically
optimized, feature selection can be performed automatically,
etc.) [23, 33].

However the single output characteristic determined
that it cannot be directly used to deal with multi-
classification. ,erefore, it needs to be further optimized.
Secondly, gene expression data is expensive to obtain and the

+4

+3 +2X1 X3

+2 +2 +3 +2X5

X0 X1 X2 X3 X4 X2 X6 X1 X5

Figure 2: A flexible neural tree model.
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Figure 1: Schematic diagram of the basic principle of PSO, two
moving particles 1 and 2 exist in two-dimensional space. Under the
joint action of pbest and gbest, both particles deviate from the
original direction of motion and turn to the direction of the best
position. In this way the example gets rid of the original local
optimal position and gradually converges to the global optimal
position.
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number of samples available is small. But the good per-
formance of deep neural networks often depends on a large
number of training samples. Too few samples will lead the
model to suffer from poor performance caused by overfitting
[34]. ,erefore, it is necessary to use new methods to im-
prove the ability of FNT to use samples and make the model
suitable for processing small sample size datasets. In addi-
tion, in order to obtain better classification performance and
enhance the generalization ability of the model, we need to
do further deepening of FNT. ,e common deepening
methods not only add many hyperparameters to the model,
but also bring high calculation cost. So a more appropriate
framework should be used to deepen the FNT. Based on this,
this paper proposed the Cascade Flexible Neural Forest
model (CFNForest) as shown in Figure 5.

,e FNT model has only one root node as its output,
which determined that it can only do binary classification

problems, while cancer tends to have multiple subtypes. In
order to make the FNTmodel work well in the field of cancer
subtype classification, the M-ary method was exploited to
transform a multiclassification problem into several binary
problems. ,en the FNT Group was generated according to
the number of generated binary problems, which means that
there are log2 M FNTs in a group (M is the arity). We took a
FNT Group as a whole and used the bagging ensemble
strategy to form a FNTGroup Forest and put K FNT Groups
on each node. ,e number of K can be set according to the
demand (increasing the number of FNT Groups in the forest
is conducive to improving the classification performance of
the forest, but at the same time, it will increase the overall
computing cost; lowering the value of K can improve the
operating efficiency of the model but may affect the overall
classification accuracy of the forest). Figure 6 shows the
structure and algorithm inside the FNT Group Forest.

ST
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A Better Tree
Structure?

Parameter
Optimization

Termination
Conditions? EN
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N
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Y Y

Figure 3: FNT algorithm flowchart.

Table 2: Algorithm rules of flexible neural tree [26].

(1) ,e output of the leaf node is the given input characteristic variable value
(2),e output of nonleaf node +M is ynon−leaf � σ(

M
j�0 ωjIj + θ), where, Ij is the input of the current node, ωj is the corresponding weight

and θ is the bias of nodes
(3) ,e output of each node is treated as input to the node at the upper level to which it is connected
(4) Calculate the value of the output vector from the bottom up, from the leaf node to the root node
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Figure 4: (a) Boosting ensembled with multiple bagging algorithms; (b) bagging ensembled with multiple boosting algorithms.
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In order to improve the classification accuracy of cancer
subtypes by deepening FNT, ,e boosting strategy was
adopted to ensemble multiple powerful parallel FNT Group
Forests. ,e advantage of this framework is that it cannot
only make the model take the advantage of ensemble
learning and improve its generalization ability, but also

deepen the FNTwithout introducing new hyperparameters.
To build a good ensemble framework, the individual learners
should be diverse [35]. ,erefore, we use three different
function sets of FNT Group Forest in our model.

After getting the output of the first layer of the forest, we
used the classification results of the forest as enhancement
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Figure 5: A Cascade Flexible Neural Forest model.We generate three forests by different grammars.,e red forest used the function set {+2,
+3, +4}; the blue forest used the function set {+2, +3, +5}; the purple forest used the function set {+2, +4, +5}.
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Figure 6: Structure of FNT Group Forest. Each forest has K FNT Groups. For the four-classification problem, there are 2 FNTs in each
group. For all samples, FNT Group will produce a result such as {[0.02, 0.75] [0.35, 0.52] . . . [0.95, 0.83]}. At this time, the classification
results of the whole FNT Group Forest for this sample were averaged, and the classification results of the whole FNT Group Forest for this
sample were obtained as follows: [0.23, 0.70].
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samples. We combined them with the original features and
passed them on as new inputs to the next layer. ,rough this
internal feature transformation, we can effectively improve
the model performance and enhance the classification ac-
curacy. In this way, each layer of the forest gets log2 M∗ 3
enhancement samples. As the number of layers increased,
the entire forest can use more and more enhancement
samples in training. ,is will make the model still have
outstanding performance when dealing with small sample
size datasets. With the depth of the model increasing, this
advantage will become more and more obvious.

In order to improve the operational efficiency of
CFNForest and reduce the computational complexity of the
model, we introduced a sample selection mechanism after
each layer of the forest: setting a prediction confidence to
divide the samples into two parts. One is the sample that has
reached a high classification accuracy, which is called sample
set Y. ,e other one is the sample that does not meet the
confidence requirement, which is called sample set X. For
example, the prediction confidence interval is given as
[0 ∼ 0.2]∪ [0.8 ∼ 1]. ,ere are 5 samples processed in the
first layer, and the classification results are {[0.07,0.03]
[0.35,0.44] [0.52,0.67] [0.83,0.12] [0.95,0.14]}. We can then
split this sample set into two parts: the two samples with
output results of [0.07, 0.03] and [0.95, 0.14] are within the
confidence interval we set, so these two samples belong to
sample set Y. ,e other three samples that do not meet the
confidence requirement belong to sample set X.

For each sample in Y, we have enough certainty about
which cancer subtype they belong to, and we do not need to
send them to the next level for reclassification. As for the
sample setX, we believe that the current forest structure cannot
classify them effectively.,erefore, it is necessary to continue to
increase the depth of the model and optimize the overall
structure. ,e main purpose of setting output optimization
mechanism is to solve the problem of excessive computational
complexity caused by meaningless computation. As the
number of forest layers increases, the number of samples that
meet the confidence level requirement will increase layer by
layer. At the same time, fewer and fewer samples will need to be
sent to the next level for further classification. In this exper-
iment, the training set is divided into two parts, one for training
and the other for validation. When a new layer is added, the
validation set will validate the whole forest. When adding new
forests does not increase the accuracy anymore or the accuracy
increase is not significant, the number of layers in the model
will stop increasing. In this way, the model can automatically
determine its number of layers.

In order to avoid classification errors caused by the
difference between the classifications results of one layer of
the forest and other layers for the same sample, when cal-
culating the final output of the model, we let the classifi-
cation results of each layer participate in the calculation of
the final output with different weights. ,e final result yf

was calculated as follows:

yf � 
N

i�1
ωi ∗yi ωi � i/1 + 2 + · · · + i( , (5)

where N is the number of layers, yi is the output of the i-th
layer forest, and ωi is the weight of the classification result of
the i-th layer forest to the final output.

3. Results

3.1. Comparison of CFNForest with Other Classifiers on BRCA
Datasets. We tested the classification performance of the
model on CFNForest for cancer subtypes. In order to
demonstrate the superiority of CFNForest in classification
performance, we compared it with k-nearest neighbor
(KNN), the probabilistic graphical model (PGM) [11],
support vector machine (SVM), random forest (RF), dis-
criminative deep belief network (DDBN) [13], and boosting
cascade deep forest (BCDForest) [12], respectively. ,e gene
information obtained after feature processing is used as the
input to each classifier. For all input samples, we used a
fivefold cross-validation method to evaluate the overall
performance of each classifier. ,e full dataset was divided
into 5 subdatasets proportionally following class cardinali-
ties; each of the 5 parts was taken in turn as testing data (and
the remaining as training data) in each of the 5 runs of a
cross-validation experiment. For each classifier, the classi-
fication results were compared in terms of average precision,
recall, and F-1 score (as shown in Figure 7).

When classifying cancer subtypes of BRCA, the classi-
fication accuracy of CFNForest reached 94.4%. ,e classi-
fication performance was superior to other classifiers. In
Figure 7, we compared the deviation values of classification
accuracy and recall in 10 experiments. Experimental results
demonstrated that our proposed CFNForest not only
achieved higher classification accuracy, but also had more
stable classification results compared with other classifiers,
which indicated that this model has good robustness in
classification performance.

3.2. Comparison of CFNForest with Other Classifiers on GBM
Datasets. We proceeded to test the classification perfor-
mance of the proposed model on the GBM dataset for cancer
subtypes. It was compared with KNN, PGM, SVM, RF,
DDBN, and BCDForest. To ensure the accuracy of the ex-
perimental results, the fivefold cross-validation was used to
evaluate the overall performance of each classifier. ,e
evaluation results of each classifier in terms of average
precision, recall, and F-1 score are shown in Figure 8.

As shown in Figure 8, the classification accuracy of
CFNForest is significantly better than other classification
models. Compared with KNN, PGM, SVM, RF, DDBN, and
BCDForest, CFNForest still showed better classification
performance on GBM datasets. At the same time, we can
notice that the classification accuracy of all classifiers was
much lower than the results obtained on the BRCA dataset.
We think this is because the sample size of the training set is
too small. ,e emergence of such a situation also reaffirms
what we have mentioned before: with the limited number of
available training samples, how to build a better model to
achieve accurate classification for each sample is still a
problem that needs further consideration.
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3.3. Comparison ofCFNForestwithOtherClassifiers onLUNG
Datasets. Finally, we tested the performance of the pro-
posed model for the classification of these cancer subtypes
on the LUNG dataset. We let it be compared with KNN,
PGM, SVM, RF, DDBN, and BCDForest. ,e gene in-
formation obtained after feature processing is used as the
input of each classifier. For all input feature vectors, this
paper used the fivefold cross-validation method to eval-
uate the overall performance of each classifier. ,e clas-
sification results of each classifier were compared in terms
of average precision, recall, and F-1 score, and the results
are shown in Figure 9.

CFNForest achieved a classification accuracy of 90.9%
on the LUNG dataset, which is better than other classi-
fication models. Compared with KNN, PGM, SVM, RF,
DDBN, and BCDForest, the proposed model still showed
better classification performance on this dataset. Exper-
iments on the standard deviation of classification accuracy
showed that the experimental results obtained by
CFNForest are more stable than other classification
models.

4. Discussion

,e correlation between gene expression information is very
strong, while decision trees as well as random forests often
lose information in the process of discrete input features,
which in turn destroy the correlation between genes.
,erefore, this type of classifier tended to exhibit poor
performance in cancer subtype classification problems. Deep
neural networks, as a multilayer parametric model trained
by backpropagation, are well suited to process continuous
data such as genetic information because of their nonlinear
and differentiable characteristics. However, the structure of
traditional deep neural network models was generally
designed based on the researcher’s experience. ,ere are
almost infinite ways to combine the model structure.
,erefore, it is necessary to use a more appropriate neural
network model to process gene expression data to achieve
accurate classification of cancer subtypes.

Gene expression data are costly to acquire and the
number of samples available is small. However, the training
process of deep neural networks usually required a large
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Figure 7: Overall performance comparison of multiple classifiers on BRCA datasets. ,e average precision, recall, and F-1 score were
evaluated.
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Figure 8: Overall performance comparison of multiple classifiers on GBM datasets. ,e average precision, recall, and F-1 score were
evaluated.
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amount of training data. Otherwise, the model performance
is not only poor, but also easy to fall into the risk of
overfitting.,erefore, new optimization strategies need to be
proposed to improve the way deep neural networks use
training samples and make them suitable for processing
small sample size datasets.

In this paper, a novel deep neural network ensemble
model was proposed. Based on the traditional flexible neural
tree model, it was extended to FNT Group Forest using
bagging ensemble strategy, which can not only generate
good neural network structure and parameters adaptively,
but also overcome the problem that FNTcannot be used for
multiple classification tasks. ,e FNT model was deepened
with a cascade framework, and the model performance was
improved by feature transformation within the model.
Immediately after that, the robustness of the algorithm is
ensured by setting different weights for each layer as well as
introducing the feature optimization mechanism to the
forest, which improves the efficiency of the model operation.
Finally, FNT Group Forest with different functional sets was
introduced to enrich the diversity of model structure,
making it more suitable for processing small sample size
datasets.

In the current medical diagnosis, the diagnosis of most
cancer patients is based on the medical knowledge and
experience of medical practitioners. And cancer has certain
incubation period, the early lesions phenomenon is not
very significant, and once a medical worker is on a business
trip, the patient’s condition is often easy to miss the best
treatment period. ,erefore, how to effectively diagnose
cancer and correctly identify its subtypes is extremely
important for the medical field and the maintenance of
human life.

,e gene expression of cancer tissue cells is different
from that of normal tissue cells, which provides an effective
basis for elucidating the pathogenesis and developmental
characteristics of cancer from the perspective of genes [2].
,e analysis of gene expression data provides guidance and
decision-making for early diagnosis of cancer, which has

positive and far-reaching significance for the correct and
timely diagnosis of cancer. Of course, the study of cancer on
gene expression data only provides clinicians with an al-
ternative approach, and the personalized treatment of cancer
on other molecular biological characteristics [36] will also be
a direction we will focus on in future research.

5. Conclusions

As one of the major causes of human death, cancer has the
characteristics of multiple types and complex pathogenesis.
,e pathological changes in cancer tend to occur at any time.
Objective and accurate classification of cancer subtypes
enables doctors to correctly understand the pathogenesis
and primary location of cancer, which is of great significance
to the study of cancer genesis. ,e comprehensiveness of
gene expression data and the high correlation between genes
and cancers make it a natural advantage to conduct clas-
sification studies of cancer subtypes on gene expression data.
Gene expression data is essentially a high-dimensional, small
sample size, and highly redundant data. ,ere are great
difficulties in feature processing and model design on these
data using traditional classifiers. In this paper, a new cancer
subtype classification model, CFNForest, was proposed,
which is capable of hierarchical processing of gene features
without discrete input features compared with deep models
built on nondifferentiable models. Compared to traditional
deep neural networks, the proposedmodel can automatically
optimize the internal structure and parameters during the
training process. CFNForest uses a framework that inte-
grates multiple bagging algorithms using a boosting strategy.
On the basis of the advantages of ensemble learning, the
overall performance of the model is improved by feature
transformation between layers, which in turn enables it to
obtain high classification accuracy on small sample size
datasets. Experimental results show that CFNForest con-
sistently outperforms the state-of-the-art methods in clas-
sifying breast invasive carcinoma, glioblastoma multiforme,
and lung cancer by using RNA-seq gene expression data.
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Figure 9: Overall performance comparison of multiple classifiers on LUNG datasets. ,e average precision, recall, and F-1 score were
evaluated.
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Data Availability

,e gene expression data andmiRNA expression data can be
downloaded from ,e Cancer Genome Atlas website at
https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga/. ,e specific BRCA,
GBM, and LUNG datasets in our manuscript were available
through https://github.com/VeblenChung/Cancer-Subtype-
Classification-Data-Set.
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