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Abstract
TMEM16A/ANO1 is a calcium-activated chloride channel expressed in several types of epi-

thelia and involved in various physiological processes, including proliferation and develop-

ment. During mouse embryonic development, the expression of TMEM16A in the olfactory

epithelium is dynamic. TMEM16A is expressed at the apical surface of the entire olfactory

epithelium at embryonic day E12.5 while from E16.5 its expression is restricted to a region

near the transition zone with the respiratory epithelium. To investigate whether TMEM16A

plays a role in the development of the mouse olfactory epithelium, we obtained the first

immunohistochemistry study comparing the morphological properties of the olfactory epi-

thelium and nasal glands in TMEM16A-/- and TMEM16A+/+ littermate mice. A comparison

between the expression of the olfactory marker protein and adenylyl cyclase III shows that

genetic ablation of TMEM16A did not seem to affect the maturation of olfactory sensory

neurons and their ciliary layer. As TMEM16A is expressed at the apical part of supporting

cells and in their microvilli, we used ezrin and cytokeratin 8 as markers of microvilli and cell

body of supporting cells, respectively, and found that morphology and development of sup-

porting cells were similar in TMEM16A-/- and TMEM16A+/+ littermate mice. The average

number of supporting cells, olfactory sensory neurons, horizontal and globose basal cells

were not significantly different in the two types of mice. Moreover, we also observed that the

morphology of Bowman’s glands, nasal septal glands and lateral nasal glands did not

change in the absence of TMEM16A. Our results indicate that the development of mouse ol-

factory epithelium and nasal glands does not seem to be affected by the genetic ablation of

TMEM16A.
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Introduction
TMEM16A/ANO1, a member of the family of transmembrane proteins with unknown func-
tion 16 [1,2], has been recently identified as a calcium-activated chloride channel [3–5].
TMEM16A is expressed in several types of cells of secretory epithelia, smooth muscle cells [6–
8], as well as in cells of sensory systems: cochlea [9–10], retina [11–13], nociceptive neurons
[14–15], vomeronasal sensory epithelium [11,16–17], and olfactory epithelium [11,16,18].
TMEM16A is involved in several types of physiological processes [6–7] including proliferation
and development.

A role of TMEM16A in proliferation had been already suggested before its identification
as a calcium-activated chloride channel. Indeed, TMEM16A was reported to be overex-
pressed in some malignant tumors and was known by different names, such as DOG1 (Dis-
covered On Gastrointestinal stromal tumor protein 1 [19–20]), TAOS2 (Tumor Amplified
and Overexpressed Sequence 2 [21]) overexpressed in oral squamous cell carcinomas, and
ORAOV2 (Oral Cancer Overexpressed 2 [22]) overexpressed in oral and esophageal squa-
mous cell carcinomas. In addition to a potential role for TMEM16A in proliferation, sug-
gested by the overexpression of this channel in some tumors, TMEM16A has also been
shown to be a regulator of cell proliferation in healthy cells. Indeed, Stanich et al [23] showed
that TMEM16A regulates proliferation of interstitial cells of Cajal at the G1/S transition of
the cell cycle.

Some studies also indicated a possible role of TMEM16A in the development of the trachea
[24] and the cochlea [10]. Rock et al [24] showed that TMEM16A is expressed in the epitheli-
um of the developing trachea and in the embryonic tracheal muscle of mice. Furthermore, the
same authors produced knockout mice for TMEM16A and showed that these mice have alter-
ations in the formation of tracheal cartilage rings and die within one month, possibly because
of tracheomalacia. In addition to providing a mouse model of tracheomalacia, these results
point out to the possible role of TMEM16A in epithelial and smooth muscle cell organization
in development [24]. Reduced transepithelial current and accumulation of mucus in the tra-
chea of these mice indicate that TMEM16A also play a role in secretory processes [25,26]. Ad-
ditional alterations caused by TMEM16A loss of function include block of gastrointestinal
peristalsis and reduced nociception [15,27].

Another study [10], suggested that TMEM16A plays a developmental role in the mouse
postnatal developing cochlea. Indeed, these authors showed that supporting cells in the great-
er epithelial ridge of the cochlea exhibited spontaneous calcium-dependent volume changes
that were inhibited by anion channel blockers, indicating that volume changes may be related
to the activity of calcium-activated chloride channels. Moreover, volume changes were corre-
lated with the time course and location of TMEM16A expression in the cochlea, suggesting
that TMEM16A may be the pacemaker of spontaneous activities in postnatal developing
cochlea.

Based on previous studies showing that TMEM16A plays a role in cell proliferation and in
development [7,10,24] and on our previous observation that at embryonic day E12.5
TMEM16A immunoreactivity was present at the apical surface of the entire olfactory epitheli-
um, whereas from E16.5 TMEM16A immunoreactivity was restricted to a region near the
transition zone with the respiratory epithelium [18], we investigated whether TMEM16A
plays a role in the development of the olfactory epithelium. For this purpose, we used immu-
nohistochemistry to identify morphological properties of the olfactory epithelium and nasal
glands during mouse embryonic development and at postnatal age in TMEM16A+/+ and
TMEM16A-/- mice.
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Materials and Methods

Ethics Statement
All animals were handled in accordance with the Italian Guidelines for the Use of Laboratory
Animals (Decreto Legislativo 27/01/1992, no. 116) and European Union guidelines on animal
research (No. 86/609/EEC). Experimental procedures were notified to and approved by the
Italian Ministry of Health, Directorate General for Animal Health. The work has been per-
formed on the explanted tissues from sacrificed mice and did not require ethical approval, as
stated by the Italian law (decree 116/92). The entire procedure is in accordance with the regula-
tions of the Italian Animal Welfare Act, with the relevant EU legislation and guidelines on the
ethical use of animals and is approved by the local Authority Veterinary Service.

Experiments were performed on TMEM16A-/- and TMEM16A+/+ littermate mice obtained
by breeding TMEM16A+/- mice generated by Rock et al. [24]. Male and female mice were put
together for mating in the evening and separated the next morning. If a vaginal plug was ob-
served in the morning, that day was designated as embryonic day 0.5 (E0.5). Once the mouse
was positive for vaginal plug, on the prerequisite embryonic day the mouse was anaesthetized
by CO2 inhalation, followed by cervical dislocation. Embryos were removed from the uterus
and decapitated. The head region was further processed for immunohistochemistry. For post-
natal mice, date of birth was defined as postnatal day 0 (P0). Postnatal mice were anaesthetized
by CO2 inhalation and decapitated. Nose was separated from the rest of head and further
processed.

Genotyping protocol
To check the genotype of mouse for Tmem16a gene, genotyping for deletion of exon-12 of
Tmem16a and insertion of PGK-neo cassette was done. Genomic DNA was isolated from the
mouse tails by using 5'PRIME Kit (Eppendorf, Milano, Italy), according to manufacturer’s pro-
tocol. PCR was carried out in a total volume of 25 μl under the following conditions for 40 cy-
cles: 94°C for 5 min (for 1 cycle), 94°C for 30 sec, 60°C for 30 sec and 72°C for 30 sec. The final
reaction mixture contained 100 ng of genomic DNA, using Taq Polymerase Master Mix
(VWR, Milano, Italy). Two separate PCRs were required to identify homozygous knockout
mouse: one for the mutant allele (PGK-neo instead of exon-12) and one for the wild type allele.
Wild type allele size was 330 bp and mutant allele was 450 bp. DNA was separated by electro-
phoresis on 1.5% agarose gel with ethidium bromide.

Primers used:

WT (f): 5’-CCTATGACTGCCAGGGACGCCC-3’

WT(rev): 5’-TGTTCCTGTCCCTGCAATGCGG-3’

Mut (f): 5’-GACGCCCTCCATTGACCC-3’

Mut (rev): 5’-GCAGTAGAAGGTGGCGCGAAG-3’

Immunohistochemistry
For E12.5 and E14.5 whole head region and for E16.5, E18.5 and P4 dissected out nose was
fixed in 4% paraformaldehyde prepared in 0.01 M phosphate-buffered saline (PBS) for over-
night at 4°C. Tissues with olfactory epithelium were equilibrated at 4°C in 30% (wt/vol) sucrose
until the tissue sank to base in solution for cryoprotection. Then the tissue was embedded in O.
C.T. (Bio-optica, Milano, Italy) and stored at −80°C. Before sectioning on cryostat, O.C.T.
blocks were kept at −20°C for at least 12 hours. With a cryostat, 12–14 μm coronal sections
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were cut and stored (-80°C) for further use. For antigen retrieval, sections were usually treated
with SDS 0.5% (wt/vol) in PBS for 15 min. However, for the following primary antibodies:
cytokeratin 8, sox2, Ki67, and cytokeratin 5, heat-induced antigen retrieval was used. Sections
in 0.01 M citrate buffer (pH 6.0) were heated in a microwave oven for 20 min. After cooling,
sections were rinsed three times in PBS. Sections were incubated in a blocking solution [2%
FBS (vol/vol) and 0.2% (vol/vol) Triton X-100 in PBS] for 90 min, and then with the primary
antibody (diluted in the blocking solution) overnight at 4°C. Sections were then rinsed with
0.1% (vol/vol) Tween 20 in PBS (PBS-T) and incubated with the fluorophore-conjugated sec-
ondary antibody (diluted in PBS-T) for 2 h at room temperature. After washing with PBS-T,
sections were treated with 0.1 μg/ml DAPI for 30 min, washed with PBS-T, and mounted with
Vectashield (Vector Laboratories, Burlingame, CA). Postnatal mice tissues were fixed for 6
hours and processed as described for the embryonic tissues. As far as possible, different embry-
onic and postnatal tissues were processed in parallel at the same time to avoid any discrepan-
cies in results.

For each age, sections were analyzed from at least three mice obtained from at least
two litters.

All chemicals, unless otherwise stated, were purchased from Sigma, Milano, Italy.
The primary antibodies used in this study are listed in Table 1.

Secondary antibodies
The following secondary antibodies obtained from Invitrogen (Eugene, OR, USA), were used:
donkey anti-rabbit Alexa Fluor 488 (1:500; catalog no. A21206), donkey anti-goat Alexa Fluor
594 (1:500; catalog no. A11058), goat anti-rabbit Alexa Fluor 594 (1:500; catalog no. A11037),
goat anti-mouse Alexa Fluor 488 (1:500; catalog no. A11001)

Table 1. Primary antibodies used in this study.

Primary antibody Immunogen Dilution Manufacturer/catalog number/lot
number or clone

Rabbit polyclonal TMEM16A Synthetic peptides corresponding to amino acid residues 424–519,
628–731 and 904–986 of human TMEM16A

1:50 Abcam/ab53212/GR71118-3

Goat polyclonal TMEM16A Synthetic peptide corresponding to amino acid residues 825–875 of
human TMEM16A

1:50 Santa Cruz Biotech/sc-69343/
H0713

Rabbit polyclonal adenylyl
cyclase III (ACIII)

Synthetic peptide corresponding to amino acid residues 1125–1144
of human ACIII

1:100 Santa Cruz Biotech/sc-588/ K0608

Goat polyclonal olfactory
marker protein (OMP)

Purified natural rat OMP 1:1000 Wako Chemicals/ 544-10001/
IUP1001

Mouse monoclonal ezrin Synthetic peptide corresponding to amino acid residues 362–585 of
human ezrin

1:100 Abcam/ab4069/3C12

Rabbit monoclonal cytokeratin
8

Synthetic peptide corresponding to amino acid residues 300–350 of
human cytokeratin 8

1:150 Novus Biologicals/NB110-56919/
EP1628Y

Rabbit polyclonal aquaporin 5 Synthetic peptide corresponding to 17 amino acid sequence in the
cytoplasmic region of rat aquaporin 5

1:150 Calbiochem/178615/D00140208

Goat polyclonal sox2 Synthetic peptide corresponding to amino acid residues 277–293 of
human sox2

1:50 Santa Cruz Biotech/sc-17320/
A1314

Goat polyclonal Ki67 Synthetic peptide mapping near the C-terminus of Ki67 of mouse
origin

1:150 Santa Cruz Biotech/ sc-7846/
C2012

Rabbit polyclonal cytokeratin 5 Synthetic peptide sequence derived from the C-terminus of the
mouse keratin 5 protein

1:200 BioLegend/ 905501/ D14FF0122

doi:10.1371/journal.pone.0129171.t001
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Imaging
Immunoreactivity was usually visualized with a confocal microscope (TCS SP2; Leica) using
40X/1.25NA or 63X/1.4NA oil immersion objectives. Images were acquired using Leica soft-
ware (at 1,024 × 1,024 pixel resolution). All images were taken as average of z-stacks of 1–2 μm
thickness. Images in Fig 7 were obtained with a Nikon Eclipse 90i microscope using a Plan Apo
VC 60X/1.4NA oil immersion objective. Images were prepared and assembled in Inkscape ver-
sion 0.48.2. Images were not modified other than to level illumination. Only DAPI signals were
enhanced, to show the anatomy of the olfactory epithelium. In any case, data were not altered
because of the above adjustments.

Cell counting
To determine cell density, the number of nuclei in a 150 x 150 μm2 area of the olfactory epithe-
lium was counted with imageJ 1.48v software. As nuclei of the olfactory epithelium have vari-
ous shapes, we counted the cells manually using the cell counter tool of imageJ 1.48v. Eight
coronal sections of 16 μm thickness were collected from each animal. For E14.5 every fourth
section was collected, while for E16.5, E18.5 and P4 every seventh section was collected. Ap-
proximately 40–47 areas were selected from the septum and turbinates in each animal to count
the cells. Areas were chosen randomly at different epithelial thicknesses. In each group at least
three animals were used.

Number of cells are reported as average ± SEM. Statistical significance was determined
using paired or unpaired Student’s t-tests and p values<0.05 were considered significant.

Results
Fig 1A shows a schematic diagram of a nose coronal section illustrating the localization of the
olfactory epithelium, respiratory epithelium, and various types of glands. The olfactory epithe-
lium is mainly composed of olfactory sensory neurons, supporting cells, and basal cells, as
schematized in Fig 1B.

In agreement with our previous observations [18], TMEM16A is expressed at E12.5 at the
entire apical surface of the olfactory epithelium (Fig 1C), whereas at P4 it is expressed only in a
region of the olfactory epithelium near the transition zone with the respiratory epithelium [Fig
1(D, D1, D2)]. Moreover, Gritli-Linde et al [28] showed a dynamic expression of Tmem16a
during embryonic development, with the highest expression at E12.5, which greatly decreased
after E18.5. TMEM16A has been shown to be involved in various physiological processes, in-
cluding cell proliferation and development. In the developing olfactory epithelium, mitotic
cells are abundant at the apical surface at E12.5 [29,30], and the majority of mitoses occur in
the apical layer up to about E14, whereas later proliferative activity is transferred to the basal
layer [31,32]. Based on these observations, we investigated the hypothesis that TMEM16A may
play a role in cell proliferation and development of the mouse olfactory epithelium by compar-
ing results obtained with TMEM16A-/- and TMEM16A+/+ littermates.

Expression of ACIII and OMP in TMEM16A-/- and TMEM16A+/+ mice
In a first set of experiments, we investigated the expression of TMEM16A and ACIII, a well-
known ciliary marker protein in olfactory sensory neurons [33–35]. In the olfactory epithelium
of TMEM16A-/- mice, TMEM16A immunoreactivity was absent, thus confirming the loss of
TMEM16A and the specificity of the antibody for this protein, while ACIII was expressed at
the apical surface of the olfactory epithelium (Fig 2).
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In TMEM16A+/+ mice, Fig 1C and 1D and Fig 2 confirm our previous results [18], showing
that TMEM16A was expressed at E12.5 at the apical surface of the entire olfactory epithelium
(Fig 1C), whereas from E16.5 to postnatal age it was expressed only in a region of the olfactory
epithelium near the transition zone with the respiratory epithelium (Fig 1D and Fig 2). Fig 2B
shows that at E14.5 both ACIII and TMEM16A were expressed at the apical surface of the ol-
factory epithelium, with ACIII present in small clusters and TMEM16A expressed in a layer
just below the ACIII clusters (Fig 2B). At subsequent days of development ACIII

Fig 1. Schematic representations and confocal images of nose coronal sections. A: Schematic diagram of a nose coronal section showing the olfactory
epithelium, respiratory epithelium, Bowman’s glands, nasal septal glands, and lateral nasal glands.B: The pseudostratified olfactory epithelium is mainly
composed of supporting cells, olfactory sensory neurons and basal cells. Supporting cells have columnar cell bodies, microvilli at the apical side, and reside
in the most apical region of the epithelium. Mature and immature olfactory sensory neurons are bipolar neurons with a single dendritic process projecting
toward the apical surface of the epithelium. In mature olfactory sensory neurons, several cilia protrude from the dendritic knob. Two types of basal cells reside
near the basal lamina: horizontal basal cells (HBCs) that are attached to the basal lamina, and globose basal cells (GBCs) that are located above the HBC
layer.C-D: confocal images of coronal sections of the olfactory epithelium at E12.5 and P4.C: At E12.5, TMEM16A was expressed at the surface of the
entire olfactory epithelium.D: At P4, TMEM16A immunoreactivity was present only in the olfactory regions toward the respiratory epithelium. Arrows in (D)
indicate the transition between olfactory and respiratory epithelium. The apical surface of the olfactory epithelium was well stained by adenylyl cyclase III
(ACIII). Higher magnification images taken from the boxed areas are shown in D1 and D2. Cell nuclei were stained by DAPI. Scale bars: C = 50 μm;
D = 100 μm; D1-D2 = 20 μm.

doi:10.1371/journal.pone.0129171.g001
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immunoreactivity increased and at P4 the two antibodies stained distinct layers at the apical
surface without any overlap (Fig 2H).

The expression of ACIII in TMEM16A-/- and TMEM16A+/+ littermates between E14.5 and
P4 appears to be largely similar (Fig 2A–2H). As ACIII is expressed in the cilia of olfactory sen-
sory neurons, genetic ablation of TMEM16A does not seem to cause any large change in the
development of the ciliary layer in the olfactory epithelium.

To further evaluate whether TMEM16A has an influence on the maturation of olfactory
sensory neurons during development, we used the olfactory marker protein (OMP) as the typi-
cal marker for mature olfactory sensory neurons [36]. A small number of OMP immunoposi-
tive neurons were present at E14.5 both in TMEM16A-/- and TMEM16A+/+ embryos (Fig 3A
and 3B). With development, the density of mature neurons increased and firmly packed OMP
positive neurons were present at postnatal stage in both types of mice (Fig 3A–3H).

Fig 2. Expression of TMEM16A and ACIII in the olfactory epithelium of TMEM16A-/- and TMEM16A+/+

littermate mice.Confocal images of coronal sections of the olfactory epithelium from a region near the
transition zone with the respiratory epithelium at E14.5, E16.5, E18.5 and P4. A, C, E, G: No
immunoreactivity to TMEM16A was detectable in TMEM16A-/- mice (goat anti-TMEM16A). B, D, F, H:
TMEM16A expression in TMEM16A+/+ mice was below adenylyl cyclase III (ACIII) expression and did not
overlap with ACIII. TMEM16A immunostaining is discontinuous because of interruption by dendritic knobs of
olfactory sensory neurons. Expression of ACIII was similar in both types of mice. Images are averages of z-
stacks of ~1.0 μm thickness. Cell nuclei were stained by DAPI. Scale bars = 5 μm.

doi:10.1371/journal.pone.0129171.g002
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These results indicate that genetic ablation of TMEM16A does not seem to affect the matu-
ration of neurons and cilia in the olfactory epithelium (Figs 2 and 3).

Supporting cells in TMEM16A-/- and TMEM16A+/+ mice
We have previously reported that TMEM16A is localized at the apical part of supporting cells
and in their microvilli [18]. Here, we investigated whether TMEM16A has an influence on the
development of supporting cells. We used cytokeratin 8, ezrin and sox2 as markers for support-
ing cells. Fig 4A shows that cytokeratin 8, a cytoskeleton protein, stained cells with the typical
morphology of supporting cells, characterized by large cell bodies with the shape of an inverted
flask located in the apical region of the epithelium and processes reaching the basal part of the
epithelium, although microvilli at the apical surface were not marked by cytokeratin 8. Further-
more, we performed a double-labeling experiment using OMP (Fig 4B) and found that cytoker-
atin 8 and OMP immunoreactivity did not overlap (Fig 4A–4C), indicating that cytokeratin 8

Fig 3. Olfactory sensory neurons in the developing olfactory epithelium of TMEM16A-/- and
TMEM16A+/+ mice.Mature olfactory sensory neurons express the olfactory marker protein (OMP). Confocal
images of coronal sections of the olfactory epithelium at E14.5, E16.5, E18.5 and P4 from TMEM16A-/- (A, C,
E, G) or TMEM16A+/+ (B, D, F, H)mice. In both mice, at E14.5 a limited number of mature neurons was
present (A, B), but the number progressively increased from E16.5 to P4 (C-H). ACIII signals were seen in
the cilia protruding from the dendritic knob of mature olfactory sensory neurons (A-H). Mature neurons
expressing OMP and cilia marked by ACIII were similar in TMEM16A-/- and TMEM16A+/+ littermates. Images
are averages of z-stacks of ~1.5 μm thickness. Cell nuclei were stained by DAPI. Scale bars = 5 μm.

doi:10.1371/journal.pone.0129171.g003
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does not label olfactory neurons and is a good marker for supporting cells. Fig 4D further con-
firms that cytokeratin 8 immunoreactivity was absent in microvilli, as illustrated by the absence
of overlap with ezrin immunoreactivity. Fig 4E shows that sox2 is a good marker for the nuclei
of supporting cells, although it also stains nuclei of basal cells located near the basal lamina of
the olfactory epithelium, in agreement with previous reports [37–39].

To examine the anatomical organization of supporting cells in TMEM16A-/- and
TMEM16A+/+ littermates, we first stained the olfactory epithelium with cytokeratin 8. Fig 5A–
5D shows large similarities in the organization of supporting cells. Furthermore, a comparison
among microvilli of supporting cells marked by ezrin (Fig 5E–5H) also shows a similarity in
TMEM16A-/- and TMEM16A+/+ littermates. Moreover, Fig 5F and 5H confirms our previous
observation that TMEM16A was mainly localized to the proximal part of microvilli of support-
ing cells and to the apical part of supporting cells [18].

Fig 4. Markers for supporting cells. A-C: Cytokeratin 8 marked cells with the typical morphology of
supporting cells. Double staining of cytokeratin 8 with OMP showed no co-localization. D:Microvilli of
supporting cells stained by ezrin were not stained by cytokeratin 8. E: Double staining of cytokeratin 8 with
sox2 shows that sox2 is a nuclear marker for supporting cells whose nuclei are located in the apical region of
the epithelium. Sox2 also stains nuclei of basal cells. Coronal sections of the olfactory epithelium of wild type
mice at P60 (A-C), or P4 (D, E). Images are averages of z-stacks of ~1.5 μm thickness. Cell nuclei were
stained by DAPI. Scale bars: A-C, D = 5 μm; E = 10 μm.

doi:10.1371/journal.pone.0129171.g004
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Fig 5. Expression of TMEM16A, cytokeratin 8 and ezrin in the olfactory epithelium of TMEM16A-/- and
TMEM16A+/+ littermate mice.Confocal images of coronal sections of the olfactory epithelium from a region
near the transition zone with the respiratory epithelium at E16.5 and P4 from TMEM16A-/- (A, C, E, G) or
TMEM16A+/+ (B, D, F, H). No immunoreactivity to TMEM16A was detectable in TMEM16A-/- mice. A-D:
Supporting cells marked by cytokeratin 8 were similar in both types of mice. In TMEM16A+/+ mice, TMEM16A
(goat anti-TMEM16A) and cytokeratin 8 immunoreactivity did not overlap (B, D), whereas TMEM16A
expression (rabbit anti-TMEM16A) partially overlapped with ezrin immunopositive signals (F, H). Supporting
cells marked by cytokeratin 8 and microvilli marked by ezrin were similar in both types of mice. Images are
averages of z-stacks of ~1.5 μm thickness. Cell nuclei were stained by DAPI. Scale bars = 5 μm.

doi:10.1371/journal.pone.0129171.g005
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Quantitative comparison among cell types in TMEM16A-/- and
TMEM16A+/+ mice
To obtain a quantitative comparison among various cell types in the olfactory epithelium we
counted supporting cells, neuronal cells, and basal cells in TMEM16A-/- and TMEM16A+/+

mice. Moreover, since from E16.5 to postnatal age TMEM16A expression in the olfactory epi-
thelium of TMEM16A+/+ mice is restricted to a region near the transition zone with the respi-
ratory epithelium, we evaluated whether cell numbers change in different regions by
comparing cell count analysis obtained in regions with and without TMEM16A expression.
Corresponding regions were selected for cell counting in TMEM16A-/- mice.

It is well known that sox2 stains both nuclei of supporting and basal cells and that these
cells can be distinguished on the basis of their shape and position in the olfactory epithelium
[37–39], as schematically shown in Fig 1B. To count supporting cells we considered oval-
shaped nuclei stained by sox2 at the apical part of the olfactory epithelium (Fig 4E).

The average number of supporting cells at E14.5 was 45 ± 2 in TMEM16A+/+ mice, not sig-
nificantly different from the value of 48 ± 2 in TMEM16A-/- mice (p-value> 0.05, Fig 6A). It
may be of interest to note that the average number of supporting cells decreased as the age in-
creased, reaching the value of 32 ± 2 at E18.5 for both TMEM16A+/+ and TMEM16A-/- mice

Fig 6. Cell densities in the olfactory epithelium of TMEM16A-/- and TMEM16A+/+ littermate mice.Comparison among the average number of supporting
cells and olfactory sensory neurons in the olfactory epithelium of TMEM16A-/- and TMEM16A+/+ littermate mice. Average number of supporting cells (A, B) or
neuronal cells (C, D) was calculated by counting nuclei in 150 x 150 μm2 areas from several regions of the olfactory epithelium.B, D: Average number of cells
calculated near the transition zone with the respiratory epithelium (TR), corresponding to TMEM16A expression in TMEM16A+/+ mice, or far from the
transition zone (OE). Counting was done in three different animals for each group and presented as average ± SEM.

doi:10.1371/journal.pone.0129171.g006
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(p-value< 0.05, Fig 6A). At every age, the average number of supporting cells was not signifi-
cantly different between TMEM16A+/+ and TMEM16A-/- mice (Fig 6A). For ages between
E16.5 and P4, we also compared the average number of supporting cells in regions of the olfac-
tory epithelium near and far from the transition zone with the respiratory epithelium and did
not find a significant difference, as shown in Fig 6B.

To obtain a quantitative estimate of olfactory sensory neurons (both mature and immature),
we counted nuclei that were not stained by sox2 and were located in the middle layer, between
the basal and the apical region of the olfactory epithelium. The average number of olfactory
sensory neurons at E14.5 was 185 ± 8 in TMEM16A+/+ mice, not significantly different from
the value of 170 ± 14 in TMEM16A-/- mice (Fig 6C). At every age, the average number of neu-
rons was not significantly different between TMEM16A+/+ and TMEM16A-/- mice (Fig 6C). As
observed for supporting cells for ages between E16.5 and P4, also the average number of olfac-
tory sensory neurons in regions of the olfactory epithelium near and far from the transition
zone with the respiratory epithelium was not significant different, as shown in Fig 6D.

Furthermore, we estimated the number of horizontal and globose basal cells at P4. Horizon-
tal basal cells lie near the basal lamina, while globose basal cells are located above the layer of
horizontal basal cells (Fig 1B). We used cytokeratin 5 to identify horizontal basal cells [40–41],
and Ki67 to stain globose basal cells (Fig 7A–7F). Ki67 is a marker of proliferating cells in all
phases of the proliferating cycle, except for G0, that is often used as a marker for globose basal
cells [42–45].

At P4, the average number of horizontal basal cells was 7 ± 1 in TMEM16A+/+ mice, not sig-
nificantly different from the value of 8 ± 1 in TMEM16A-/- mice (Fig 7G). The average number
of globose basal cells was 15 ± 1 in TMEM16A+/+ mice, not significantly different from the
value of 15 ± 2 in TMEM16A-/- mice (Fig 7G). Furthermore, we also compared the average
numbers in regions near and far from the transition zone with the respiratory epithelium and
did not find a significant difference, as shown in Fig 7H.

In addition, in agreement with previous studies, we found that very few horizontal basal
cells are immunopositive for proliferating markers in the normal olfactory epithelium [40]. In-
deed, out of 2787 cells stained by cytokeratin 5 in TMEM16A+/+ and TMEM16A-/- mice we
found only 16 cells (0.006%) co-stained by Ki67.

Taken together, these results indicate that genetic ablation of TMEM16A does not signifi-
cantly affect the average number of olfactory sensory neurons and supporting cells during
mouse embryonic development and at postnatal age. Moreover, the average number of hori-
zontal basal cells and globose basal cells at P4 also remained similar in the presence and in the
absence of TMEM16A.

Bowman and nasal glands in TMEM16A-/- and TMEM16A+/+ mice
We investigated the expression of TMEM16A in Bowman’s glands, nasal septal glands, and lat-
eral nasal glands, whose localization is schematically represented in Fig 1A, and used aquaporin
5 as a marker for these glands [46].

Fig 8A and 8D shows that aquaporin 5 stained the internal wall of the duct of a Bowman’s
gland as well as microvilli of supporting cells. Previous reports showed expression of
TMEM16A in the duct of Bowman’s glands and in the luminal surface of nasal septal glands
and lateral nasal glands [16]. However, in TMEM16A+/+ mice, we did not find expression of
TMEM16A in Bowman’s glands, whereas the luminal surface of nasal septal glands and lateral
nasal glands expressed both TMEM16A and aquaporin 5 (Fig 8B and 8C). A comparison with
results from TMEM16A-/- mice shows that immunostaining of aquaporin 5 remains un-
changed, whereas TMEM16A immunoreactivity was absent (Fig 8D–8F). The morphology of
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Fig 7. Expression of cytokeratin 5 and Ki67 in the olfactory epithelium of TMEM16A-/- and TMEM16A+/+ littermate mice.Confocal images of coronal
sections of the olfactory epithelium from a region near the transition zone with the respiratory epithelium at P4 from TMEM16A+/+ (A-C) and TMEM16A-/-

(D-F)mice. Cell nuclei were stained by DAPI. Scale bars = 10 μm.G: Comparison among the average number of horizontal (HBC) and globose (GBC) basal
cells in the olfactory epithelium of TMEM16A+/+ and TMEM16A-/- littermate mice. Average numbers of HBCs or GBCs were calculated by counting nuclei in
150 x 150 μm2 areas from several regions of the olfactory epithelium.H: Average number of cells calculated near the transition zone with the respiratory
epithelium (TR), corresponding to TMEM16A expression in TMEM16A+/+ mice, or far from the transition zone (OE). Counting was done in three different
animals for each group and presented as average ± SEM.

doi:10.1371/journal.pone.0129171.g007
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Bowman’s gland, nasal septal glands and lateral nasal glands remained the same in both types
of mice.

Thus, the absence of TMEM16A does not seem to influence the development of Bowman’s
glands, nasal septal glands and lateral nasal glands.

Fig 8. Expression of TMEM16A in various nasal glands of TMEM16A-/- and TMEM16A+/+ littermate
mice. Expression of TMEM16A and aquaporin 5 in the Bowman’s gland (BG), nasal septal gland (NSG) and
lateral nasal gland (LNG) of TMEM16A-/- and TMEM16A+/+ littermate mice. A, D: aquaporin 5
immunopositive signals were seen in Bowman’s glands in P4 mice. Aquaporin 5 expression in glands and
ducts is clearly visible. TMEM16A immunoreactivity (goat anti-TMEM16A) was not present in Bowman’s
glands of TMEM16A-/- nor of TMEM16A+/+ littermate mice (A, D). However, aquaporin 5 and TMEM16A were
co-expressed in nasal septal glands (B) and lateral nasal glands (C) of TMEM16A+/+ mice. No
immunoreactivity to TMEM16A was detectable in TMEM16A-/- mice (E, F). Glands marked by aquaporin 5
were similar in both types of mice. Images are averages of z-stacks of thickness of ~2.0 μm for A, D, or ~1 μm
for B, C, E, F. Cell nuclei were stained by DAPI. Scale bars = 10 μm.

doi:10.1371/journal.pone.0129171.g008

TMEM16A and Olfactory Epithelium Development

PLOS ONE | DOI:10.1371/journal.pone.0129171 June 11, 2015 14 / 20



Discussion
In this study, we have obtained for the first time immunohistochemistry data comparing mor-
phological and anatomical properties of the olfactory epithelium and of Bowman’s and nasal
glands during mouse embryonic development and at postnatal ages in TMEM16A+/+ and
TMEM16A-/- mice.

Olfactory sensory neurons and supporting cells
As TMEM16A-/- mice die before reaching P30 and 90% of them die before P9, we restricted
our study up to the age of P4. In the first part of this study, we showed that the development
and the morphology of olfactory sensory neurons were similar between TMEM16A+/+ and
TMEM16A-/- mice. Interestingly, an in vitro study suggested that TMEM16A is involved in the
early phase of ciliogenesis [47]. In the olfactory epithelium, we did not find expression of
TMEM16A in the cilia of olfactory sensory neurons [18]. Furthermore, the similar morphology
of cilia and knobs in TMEM16A+/+ and TMEM16A-/- mice indicates that TMEM16A does not
mediate ciliogenesis in olfactory sensory neurons.

To investigate whether TMEM16A has an influence on the development of supporting cells
we first used cytokeratin 8 as a marker for supporting cells. Cytokeratin 8 or keratin 8 is a sub-
type of keratin intermediate filaments. It is type II (basic) keratin and is found associated with
type I (acidic) cytokeratin 18 and cytokeratin 19 in various epithelial cells [48–50]. We found
that cytokeratin 8 is a selective marker for supporting cells of the olfactory epithelium, indeed
cytokeratin 8 immunostaining revealed cells with the typical morphology of supporting cells
and, in addition, did not overlap with the immunopositive signals of OMP that stains mature
olfactory sensory neurons. As cytokeratin 8 stains the cytoskeleton, its use allows the investiga-
tion of changes in supporting cell cytoskeleton during development. Both cytokeratin 8 and
cytokeratin 18 are the abundant intermediate filament subtypes during mouse embryonic de-
velopment [51]. Using cytokeratin 8 as a marker for supporting cell cytoskeleton, we found
that at E14.5 the cytoskeleton was loosely organized and individual filaments of the cytoskele-
ton could be observed (data not shown). In postnatal mice, cytokeratin 8 immunopositive cyto-
skeletons became densely packed and supporting cells’ nuclei aligned in the top layer of the
olfactory epithelium. In TMEM16A+/+ mice, TMEM16A expression was observed just above
the cytokeratin 8 immunopositive signals, but we did not found any overlap in their expression
(Fig 5). TMEM16A-/- mice were devoid of TMEM16A expression, but cytokeratin 8 expression
pattern remained very similar to that observed in TMEM16A+/+ littermate mice, indicating
that organization and morphology of supporting cells were not largely affected by the absence
of TMEM16A.

TMEM16A has been shown to interact with ezrin in salivary gland epithelial cells [52]. We
confirmed our previous observation that TMEM16A was expressed in the apical part of sup-
porting cells and in their apical microvilli marked by ezrin [18]. Double staining of TMEM16A
with ezrin showed that at E16.5 TMEM16A and ezrin immunoreactivity largely overlapped,
whereas at later ages TMEM16A was only expressed in the proximal part of microvilli. A very
similar pattern of expression was observed in TMEM16A-/- mice. A comparison between ezrin
expression in microvilli in TMEM16A+/+ and TMEM16A-/- littermate mice indicates that mi-
crovilli development did not seem to be largely altered by the absence of TMEM16A.

It is of interest to note that TMEM16A, ezrin and cytokeratin 8 expressed in supporting
cells, but cytokeratin 8 immunoreactivity did not even partially overlap with TMEM16A or
ezrin immunoreactivity (Fig 4D, and Fig 5A–5D). An explanation for the absence of overlap
between cytokeratin 8 and TMEM16A may arise from the ultrastructural study of the mor-
phology of supporting cells by Frisch [53]. Indeed, Frisch [53] reported that, at the apical part

TMEM16A and Olfactory Epithelium Development

PLOS ONE | DOI:10.1371/journal.pone.0129171 June 11, 2015 15 / 20



of supporting cells, the cytoplasm seems to be strongly gelated and devoid of cellular organelles.
Indeed, we observed a space between ezrin and cytokeratin 8 immunoreactivity (Fig 4D),
which resembles the apical organelle free area described by Frisch [53]. TMEM16A was ex-
pressed in the free apical region of supporting cells and in the proximal part of microvilli (Fig
5). A similar free space without cellular organelles just below microvilli has also been reported
in intestinal brush border cells [54].

TMEM16A plays a role in cell proliferation in several systems. For example, proliferation of
interstitial cells of Cajal in TMEM16A-/- mice has been shown to be severely affected by the ab-
sence of TMEM16A [23]. In addition, TMEM16A is widely known for its role in carcinogenic
tumor proliferation [19–22,55,56]. Several studies from cancerous cell lines showed that cell
proliferation was severely affected by reducing TMEM16A expression with siRNA or inhibiting
its activity by using TMEM16A blockers [23,57,58], although other studies showed that
TMEM16A overexpression did not affect proliferation [55,58–60].

In the olfactory epithelium, Gritli-Linde et al [28] showed that Tmem16a expression was
high at E12.5, but greatly decreased after E18.5. We observed TMEM16A expression in sup-
porting cells all over the olfactory epithelium during early stages of development (E12.5 and
E14.5), whereas from E16.5 onward TMEM16A expression became restricted toward the tran-
sition zone between the olfactory and the respiratory epithelium [18]. In the early stages of de-
velopment dividing cells are abundant in the apical part of the olfactory epithelium [31,32] and
TMEM16A may play a role in cell division. Based on these observations, we counted the num-
ber of supporting cells and of olfactory sensory neurons and found that at E14.5 the average
number of supporting cells was significantly higher than average values at later stages of devel-
opment. However, similar values were estimated in TMEM16A+/+ and TMEM16A-/- littermate
mice, indicating that TMEM16A did not play a role in this process.

The average number of olfactory sensory neurons was not significantly different from E14.5
to P4 and between TMEM16A+/+ and TMEM16A-/- mice. In addition, the average number of
globose basal cells and of horizontal basal cells at P4 remained similar in the two types of mice
indicating that TMEM16A expression does not affect proliferation in the olfactory epithelium.

Bowman’s and nasal glands
TMEM16A is expressed in various secretory epithelia and glands and regulates anion secretion
[25–27,61–62]. The nasal cavity contains several types of secretory glands, such as Bowman’s
glands, nasal septal glands and lateral nasal glands. The olfactory epithelium is directly exposed
to changes in environment and prone to getting in contact with hazardous chemicals and sti-
muli. The apical part of the olfactory epithelium is always covered with mucus, which continu-
ously eliminates the unwanted molecules from the surface. Mucus is primarily secreted by
Bowman’s gland and supporting cells are involved in mucus secretion and ionic composition
maintenance [53,63].

Aquaporin 5, a water channel, is expressed in Bowman’s gland and supporting cells’micro-
villi [46,64]. We observed aquaporin 5 expression in the duct cells and secretory acinar cells of
Bowman’s gland both in TMEM16A+/+ and TMEM16A-/- littermate mice (Fig 8). We could
distinguish only a limited number of completely formed Bowman’s glands at E16.5 (data not
shown), while at E18.5 and in postnatal mice, numerous Bowman’s glands were present. We
did not find TMEM16A expression in Bowman’s glands between E16.5 and P4. However, one
study showed expression of TMEM16A in Bowman’s glands in adult mice and rats [16]. As the
majority of TMEM16A-/- mice die by P9, our study was limited to P4, and we cannot exclude
the possibility that TMEM16A is expressed in Bowman’s glands in adult mice. We found that
at P4 nasal septal glands and lateral nasal glands showed a strong TMEM16A immunopositive
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signal. In both types of glands TMEM16A was expressed in the apical region of secretory acinar
cells and in the luminal surface of the glands, where it coexpressed with aquaporin 5 (Fig 8).

In TMEM16A-/- mice, aquaporin 5 immunopositive signals were similar to those observed
in TMEM16A+/+ mice showing that the morphology of Bowman’s glands, nasal septal glands
and lateral nasal glands was not largely modified by the absence of TMEM16A.

Conclusions
In conclusion, our data provide the first immunohistochemistry study comparing the develop-
ment of the olfactory epithelium in TMEM16A+/+ and TMEM16A-/- littermate mice during
embryonic development. We did not find any significant difference in the olfactory epithelium
up to P4 between the two types of mice, indicating that TMEM16A does not seem to be in-
volved in proliferation and development of the olfactory epithelium. As TMEM16A-/- mice die
soon after birth, preventing functional and behavioral studies in adult mice, the development
and use of conditional knockout mice for TMEM16A will allow planning of additional experi-
ments to improve our present knowledge of the function of TMEM16A in the olfactory system.
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