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Background: Culex Flavivirus (CxFV) is an insect-specific virus that is widely distributed and primarily infects
mosquito species from the genus Culex. Its hosts include Culex tritaeniorhynchus, Culex quinquefasciatus, and
Anopheles sinensis mosquitoes. Since its original identification, CxFV has been reported in several countries. Despite
the increasing number of reports on CxFV, little is known about its genomic characteristics. It is unclear whether the
phylogenetic relationships between the strains are influenced by host species and geographic location.

Results: We characterized the Brazilian CxFV strain and performed a comprehensive genetic and phylogenetic
characterization of CxFV based on all ORF sequences described so far. Our results revealed that the Brazilian strain is
in a monophyletic clade with the Mexican strain. Overall, selective pressure indicates that the ORF is undergoing

Conclusions: The phylogenetic analysis revealed a strong association between climate and CxFV ancestry. Also,
based on phylogeny and the genetic distance between the main branches of the tree, we propose the
classification of the available sequences into two different genotypes. We also suggest the existence of two

Background

Flaviviruses are well known for causing important
mosquito-borne human diseases. They are transmitted
between arthropods and vertebrates, and are capable of
replicating in both hosts. In 1975, a new member of this
genus, incapable of replicating in vertebrate cells, was iso-
lated from mosquito cell cultures and named Cell Fusing
Agent Virus (CFAV) [1]. More recently, the isolation of
other insect-specific viruses has been reported [2—-5]. One
of these insect-specific viruses is Culex Flavivirus (CxFV),
an insect-specific virus that was first identified in 2007 in
Culex pipiens mosquitoes [6]. Other hosts include Culex
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tritaeniorhynchus, Culex quinquefasciatus, and Anopheles
sinensis mosquitoes [5, 7, 8].

Similar to other flaviviruses, CxFV encodes a polyprotein
from a single-strand positive RNA open reading frame
(OREF), flanked by 3" and 5’-untranslated regions (UTR).
The polyprotein of 3,364 aa is cleaved during and after
translation into structural and non-structural proteins in
the following order: C-prM(M)-E-NS1-NS2A-NS2B-NS3-
NS4A-2K-NS4B-NS5 [6].

Since its identification, Culex Flavivirus has been reported
in the United States, Mexico, Guatemala, Trinidad, Uganda,
Indonesia, Japan, China, and Brazil, indicating that it is
widely distributed [5, 6, 9-14]. Despite the increasing
number of CxFV sequences deposited in GenBanlk, it is not
clear if the phylogenetic relationships between the strains
are influenced by the host species or geographic location.
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Moreover, little is known about the genetic profile of the
CxFV genome.

Previously, we reported the first identification of CxFV in
Brazil [14]. Here, we perform a genetic and phylogenetic
analysis of the complete ORF of the Brazilian CxFV strain.
In addition, we perform the genetic characterization of
CxFV based on the ORF sequences described so far, and
we propose a novel genotype classification.

Methods

Culex Flavivirus (CxFV) strain

According to report published previously by this research
group [14], The CxFV strain obtained in this study was
derived from Culex quinquefasciatus mosquitoes, col-
lected between April 2007 and January 2008, in the city of
Séo José do Rio Preto (SJRP). The mosquitoes were pooled
according to genus, gender and geographic location, for
RNA extraction using Trizol protocol (Invitrogen).

The presence of Flavivirus was detected for each pool
by Multiplex-Nested_RT-PCR [15]. Ten positives pools
were inoculated three times passages on C6/36. After
the third passage pools were tested with primers specific
for Culex Flavivirus (CxFV), Saint Louis Encephalitis
Virus (SLEV), and West Nile Virus (WNV) [14]. One
CxFV isolated was used for sequence analysis in this
manuscript.

Next generation sequencing

The CxFV RNA extracted from the C6/36 supernatant
was quantified using a UV/Vis spectrophotometer (Pico-
Drop P200, Picodrop, Hinxton, Cambridgeshire, United
Kingdom) and treated with Deoxyribonuclease (DNase I,
Invitrogen, Carlsbad, CA, USA) to digest single and
double-stranded DNA. cDNA was obtained using com-
mercial SuperScript® III Reverse Transcriptase (Thermo
Scientific, San Jose, CA, USA) according to the manufac-
turer’s protocol. A multiplex nested PCR was used once
again to confirm CxFV positive sample [14, 15].

Double-stranded DNA was obtained using the Super-
Script® Double-Stranded c¢cDNA Synthesis Kit (Thermo
Scientific, San Jose, CA, USA), purified with commercial
magnetic beads (Agencourt AMPure XP, Beckman
Coulter Inc., Indianapolis, IN, USA), and quantified.
Sample were processed with the Nextera XT DNA Library
Preparation Kit and sequenced using a commercial kit
(MiSeq System, Illumina Inc., San Diego, CA, USA).

The assembly was performed by Geneious R6 (Bio-
matters, Auckland, New Zealand), using sequence of
Toyama740/2005 CxFV strain (gb AB701772) as refer-
ence to assemble it.

Culex flavivirus sequences
All the analyses in this study were based on a 26-se-
quence dataset composed of all complete Culex
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Flavivirus ORF sequences (10,092 nucleotides) depos-
ited in GenBank at the time of the study, plus the
Brazilian sequence described here (KT726939). Their
accession numbers are: AB701776.1, AB701775.1,
AB701774.1, AB701773.1, AB701772.1, AB701771.1,
AB701770.1, AB701769.1, AB701768.1, AB701767.1,
AB701766.1, ]Q308190.1, JQ308189.1, JQ308188.1,
JQ308187.1, JQ308186.1, HQ678513.1, FJ663034.1,
GQ165808.1, FJ502995.1, NC_008604.2, JQ518484.1,
EU879060.1, AB377213.1, and AB262759.2. All Se-
quences were aligned using Muscle in the SeaView
4.4.2 package [16, 17].

Similarity analysis
Similarity analysis was carried out using the Sequence
Identity Matrix tool from the BioEdit 7.0.5.3 package [18].

Genetic distance

Mean genetic distances for the CxFV ORF and each
specific region were calculated by the Kimura 2-parame-
ters substitution model using Mega 6 [19].

The site-by-site genetic distances between CxFV_BR-
RP01/2007 (KT726939) and the sequences identified in
other countries were calculated in SimPlot 3.5.1 [20].
The analysis was carried out using the Kimura 2-
parameter distance model and a 200-bp sliding window.
Sequences were grouped by geographic location.

Selective pressure analysis

Global and site-by-site » were estimated in HyPhy [21].
Global @ was calculated for the full ORF and for each
genomic region using the HKY85_3x4 substitution
model and global parameters. Site-specific selection was
calculated Single Likelihood Ancestor Counting (SLAC)
method, the MG94xHKY85 model, and a p-value of
0.05.

As HyPhy requires a starting tree for all analysis, a
maximum-likelihood tree was constructed for the entire
ORF and for specific regions by PhyML in the SeaView
package [22]. The GTR model was used, with optimized
nucleotide equilibrium frequencies and site rate
variation.

Phylogenetic analysis

A Bayesian Markov Chain Monte Carlo (MCMC)
analysis was used to estimate the phylogenetic tree using
BEAST v1.8 [23]. The analysis was performed under
strict molecular clock using as tree prior a constant
population size coalescent and MCMC was run for
10,000,000 steps and sampled every 1000 steps. Trees
were summarized using Tree Annotator 1.8 available on
Beast package and edited using FigTree 1.4 [24]. BaTS
0.9 was used to statistically test for association between
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tree topology and geography, host species or climate
[25].

The mean genetic distance between the sequences in
specific branches of the phylogenetic tree was calculated
in Mega 6 [19]. Sequences were divided into groups ac-
cording to their distribution in the phylogenetic tree and
the mean base substitution per site between groups was
conducted using the Kimura 2-parameters substitution
model [26].

Results

Culex Flavivirus (CxFV) identification

After collection, the mosquitoes were identified by gen-
der and grouped into pools. A total of 83 pools of female
Culex quinquefasciatus, ten mosquitoes per pool, were
analyzed. Among the samples, 41 (49.4 %) were positive
for CxFV in multiplex RT-PCR and ten were isolated in
C6/36. After three passages in C6/36 cells isolation was
confirmed from pool 73C by Multiplex-RT-PCR. The
complete genome of the isolate from pool 73C was
perform by Illumina Plataform.

Next generation sequencing

NGS by Illumina generated a total of 69,242 reads of
coverage, with 60,405 of CxFV reads, that generated
10,706 nucleotides. The sequence obtained was analyzed
on BLAST, for confirmation of its contents and was
deposited on GenBank under the accession number
KT726939 and is here referred as CxFV_BR-RP01/2007.

Similarity analysis

The sequence of the open reading frame (ORF) of the
Brazilian strain was aligned with all available CxFV full
genome sequences deposited on GenBank. The percent-
age of identity between the sequences was determined
with the BioEdit package using CxFV_BR-RP01/2007 as
the query sequence [18]. The highest similarity was
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observed between the Brazilian sequence and the
sequence from Mexico (98.5 %) followed by that of
Uganda (98.2 %) (Additional file 1: Table S1). All other
sequences were approximately 90 % identical to
CxFV_BR-RP01/2007.

Genetic distance

Overall mean genetic distance was calculated for the
complete ORF and for each specific genomic region.
The ORF mean distance among all deposited sequences
was 0.046. The mean genetic distance for each specific
region is shown in Fig. 1. The NS2A region presented
the lowest genetic distance and NS4B the highest.

A site-by-site genetic distance analysis was performed
on SimPlot in order to compare the Brazilian sequence
with those from other countries. Sequences were
grouped by geographic location. The resulting plot is
shown in Fig. 2, which also depicts each genomic region.
The plot reveals a lower genetic distance between the
Brazilian and the Mexican and Ugandan isolates. All
other sequences show similar genetic distances along the
genome. The genomic region with the lowest genetic
distance for all geographic locations is the NS2A region.

Selective pressure analysis
Global » was estimated for the entire CxFV ORF and
for each genomic region separately using HyPhy [21].
Our results indicate that the whole ORF is under strong
purifying selection (w =0.107). The same applies for the
individual genes encoding proteins as shown in Fig. 3.
Interestingly, the NS2A region presented the highest ®
(0.14), which is in contrast with the site-by-site genetic
distance results, where this region presented the lowest
values.

Site-specific selection analysis revealed 106 negatively
selected and no positively selected sites. Results are
graphically represented in Fig. 4. NS3 presented more
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Fig. 1 Overall mean genetic distance for CxFV specific genomic regions




Bittar et al. Virology Journal (2016) 13:158 Page 4 of 8
prM NS2A NS2B NS4A 2K NS4B
5UTR 4 4 3’ UTR
©
~ s;:’\ QS‘P q:’o ,,(,’I’,’ 0?"\? ﬂ?’éo «>§7 Q;Zéb '\s‘s’ -,éb

Distance

0.015
0.01
0.005} F
0.

iy

Tokyo_Toyama
China_Liaoning
USA_Houston
USA_lowa

Uganda
Japan_Tokyo_Shinjuku
Mexico

AT

o 500 1,000 1,500 2,000 2,500

Fig. 2 Genetic distance between the Brazilian sequence and isolates from other countries along the CxFV ORF. Analysis carried out on Simplot
3.5.1 with a 200 bp sliding window, Kimura 2-parameters distance model with CxFV_BR-RP01/2007 as query. Sequences were grouped by geo-
graphic location as specified in the legend. Schematic representation of CxFV genome based on the information provided by GenBank
NC_008604.2. Structural proteins represented in blue and non-structural proteins represented in green

3,000 3,500

4,500

5,000 5,500 6,000 7,500

Position

6,500 7,000 8,000 8500 9,000 9,500 10,000

Window: 200 bp, Step: 20 bp, GapStrip: On, Kimura (2-parameter), T/t: 2.0

0.16

0.14

012 gy

0.1

0.08
0.06

0.04

0.02

C PrM

E NS1

NS2A  NS2B
Fig. 3 Global w estimated for each genomic region separately using HyPhy

NS3  NS4A 2K NS4B NS5




Bittar et al. Virology Journal (2016) 13:158

Page 5 of 8

Negatively selected sites
2K 8.7%(2)
1
2.2%(3) 3.5%(5) 2.8% (12) 3.0% (11) 13%(3)  2.4%(3) 6.3% (37) 5.4%(9) 3.1% (8) 3.1% (28)
SRR R R T T R T
AN AN NN Xa g RII YN8 R RRRARNRRIILL8SRRRNE8RIRRIALANER

Fig. 4 CxFV amino acid sites under negative selection. Percentage of negatively selected sites and (n) are indicated for each region. Schematic
representation of CxFV genome based on the reference sequence NC_008604.2

negatively selected sites (6.3 %). The NS2A (1.3 %)
protein is the one with less negatively selected sites
followed by Core (2.2 %).

Phylogenetic analysis

The phylogenetic tree presented in Fig. 5 was recon-
structed based on the 26 full ORF sequence. It is
composed of two main monophyletic Clades with high
confidence (Posterior probablity: 1). Cade I includes
most sequences, which are distributed in two groups,
also supported high posterior probability (1). Clade 2
comprises viruses from Brazil, Mexico, and Uganda. All
members of this clade share the same host, Culex
quinquefasciatus. However, this is the same host species
as that of the strain collected in Houston, USA, which
groups in Clade 1.

In order to test for association of phylogeny with ei-
ther host, geographical location or climate the posterior
set of trees estimated by BEAST were analyzed by BaTS§,
which quantifies and statistically tests the phylogeny-
trait correlation. Evidence of strong association was
detected between phylogeny and climate (p < 0.05). Also,
Association index (AI) and parsimony score (PS)
indicate association for both host and geographical
location (p <0.05). However monophyletic clade (MC)
significance reveals that it only applies for Japan and
China (location) and Culex quinquefasciatus (host)
(Additional files 2—4: Tables S2—-S4).

In order to estimate the evolutionary divergence be-
tween the main clades of the phylogenetic tree, the mean
genetic distances between these groups were calculated.
Our results show that Clade I and Clade 2 diverge
104 %, while the two main branches that compose
Clade 1 diverge 5.1 %.

Discussion

Insect-specific flaviviruses, including CxFV, are a highly
divergent group within the Flavivirus genus that shares
a common ancestor with all other members, including
the disease-causing ones. Understanding the genetic
characteristics of CxFV is important not only to

understand its biology and evolutionary history, but also
to clarify some aspects of the whole genus.

Culex Flavivirus primarily infects globally distributed
mosquito species of the genus Culex, which are vectors
for pathogenic flaviviruses like WNV, SLEV, and JEV
[27-29]. The most represented hosts in this work, Culex
pipiens and Culex quinquefasciatus, are members of the
Culex pipiens complex that consists of closely related
species that are difficult to distinguish morphologically
[30]. Studying the geographical distribution of the host
is important to understand the evolutionary relation-
ships between the identified CxFV strains. Two main
monophyletic branches, Clade 1 and Clade 2, can be
observed in the phylogenetic tree with high branch
support. Regarding countries, all Asian strains are
grouped in Clade 1 along with some sequences from
USA. Clade 2 is composed by sequences from different
countries with only one sequence each. When consider-
ing host species, Clade 2 is composed only of sequences
derived from Culex quinquefasciatus while Clade 1 as
sequences from different hosts. This scenario prevents a
clear association by simply analyzing the ancestry.
Statistical analysis however revealed significant associ-
ation between phylogeny and climate (temperate x trop-
ical). Clade 1 consists of virus from temperate climate
regions while Clade 2 is composed from sequences from
region of tropical climate. Climate association is related
with host species distribution. Although Culex pipiens
occurs in temperate regions and Culex quinquefasciatus
in tropical and subtropical regions their range overlaps
and it has been proven they can hybridize [30-32].
When testing for host-phylogeny association only Culex
quinquefasciatus was significantly associated. Moreover,
country association was only found for Japan and China.
Considering that both country and host are related to
climate these factors may also be associated with CxFV
ancestry, however the limited number of sequences from
some hosts and geographic regions is probably prevent-
ing a more consistent conclusion.

We analyzed the genetic distance between the main
branches of the phylogenetic tree that was reconstructed
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based on all CxFV ORF sequences described so far,
including the Brazilian strain described in this work.
Clades 1 and 2 consist of strong groups with robust
branch support, which are 10.4 % genetically distant.
These observations sustain the idea that they could be
two different genotypes of CxFV. For Japanese Encephal-
itis Virus, another Culex borne virus, genotypes are
defined by 12 % difference in nucleotide composition of
the highly divergent PrM gene [33, 34]. Genotypes of
DENYV, also a flavivirus, are defined by 6 % difference

within a serotype based on the E region [35, 36]. In both
cases, the limits were determined arbitrarily but
supported by strong phylogenetic evidence such as ours.
Other researchers have previously suggested that CxFV
should be classified into different genotypes, based on
the phylogenetic analysis of the E genomic region [37].
According to those authors, Clade 1 described here
would consist of Genotype 1 and Clade 2 of Genotype 2.
Our analysis also evidenced that the two main branches,
with strong branch support (1000), in Clade 1 diverge
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5.1 %. These two branches could be considered different
subtypes of CxFV Genotype 1 (la and 1b). Similar
results were obtained using the E region (Additional file
5: Table S5), suggesting it is a suitable region for CxFV
genotyping and subtyping. We propose that groups of
CxFV that are more than 9 % genetically distant could
be classified as different genotypes and that differences
higher than 4 % within these groups could be considered
different subtypes. Although the cut-off values are arbi-
trarily defined, based on the genetic data available so far,
they seem suitable.

Overall, selective pressure analysis indicates that the
entire ORF, as well as specific regions, are undergoing
purifying selection. Accordingly, site-by-site analysis
found no positively selected sites and 106 sites under
negative selection. This suggests that the virus is well
adapted to its host and evolutionary forces are working
against amino acid change. The infection of Culex
mosquitoes by CxFV apparently does not result in
disease. This observation is supported by the fact that
the infection of C6/36 and AeAl-2, two Aedes albopictus
cell lines, results only occasionally in moderate cyto-
pathic effects [5, 6, 12]. If this is the case, any change in
the genomic composition could disrupt the fine balance
between what is advantageous for the virus and at the
same time does not negatively affect the host, supporting
the purifying selection.

Although the differences are not substantial, the NS2A
region presents higher w values and lower percentages
of negatively selected sites. It is interesting, however, to
notice that the same region also showed the lowest
genetic distance. At first, these data might seem in dis-
agreement. However, it suggests that NS2A displays low
genetic variability in general, but a more relaxed pres-
sure against amino acid change when compared to other
regions. CxFV and other Flaviviruses from the insect-
specific group present a frameshift signal that produces
an alternate reading frame called fifo [38]. The signal
consists of a stem-loop structure in the RNA genome
that is harbored inside the NS2A region [39]. In this
case, the selection is acting not only on the protein, but
also on the RNA structure to avoid disturbing the frame-
shift signal. It is important to highlight that different
amino acids might have similar chemical properties and
a change would not necessarily disrupt the tertiary struc-
ture. This could explain why, despite the low genetic dis-
tance, this region is more permissive to amino acid
change.

Conclusion

There are still many aspects of Culex Flavivirus and
other insect-specific flaviviruses that needs to be clari-
fied. Culex ssp. mosquitoes are distributed worldwide
suggesting that CxFV should be present in more places
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than currently reported. Here we report an association
between the ancestry of CxFV and climate. The identifi-
cation of new strains from different countries and hosts
is important for elucidating the ecology and evolutionary
history of this virus. Based on the available sequences,
we propose the classification of Culex Flavivirus into
two genotypes (1 and 2) and the existence of two
subtypes within genotype 1.

Additional file

Additional file 1: Table S1. Percentage of identity between CxFV_BR-
RP01/2007 and sequences from GenBank. Data determined by Sequence
Identity Matrix tool on BioEdit package. Table S2. Results from BaTS
when testing for country association. State 0 — Japan; State 1 - Brazil;
State 2 — Mexico; State 3 — USA; State 4 — Uganda; State 5 - Ching;
Al — Association Index; PS — Parsimony Score; MC — Monophyletic
clade. Table S3. Results from BaTS when testing forhostassociation.
State 0 — Culexpipiens; State 1 — Culextritaeniorhynchus; State 2 -
Culexquinquefasciatus; State 3 — Anopheles sinensis; Al — Association
Index; PS — Parsimony Score; MC — Monophyletic clade. Table S4.
Results from BaTS when testing for climate association. State 0 —
Temperate; State 1 - Tropical; Al - Association Index; PS — Parsimony
Score; MC — Monophyletic clade. Table S5. Mean genetic distance
between the sequences from envelope E region. Sequences were divided
into groups according to their distribution in the phylogenetic tree and the
mean base substitution per site between groups was conducted using the
Kimura 2-parameters substitution model. Cluster 1 - KT726939, GQ165808.1,
EU879060.1; Cluster 2 - JQ308187.1, JQ308186.1, JQ518484.1, HQ678513.1;
Cluster 3 — All others. (DOCX 833 kb)
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