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Abstract

Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation
pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost
exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing
errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and
proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation
refinement has been extended to include a comparative assessment of genomes across closely related species.
Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F,
and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation
methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain’s
predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start
sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is
presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated
pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses
related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-
associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation.
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Introduction

The vast majority of global microarray and proteomic studies

generate thousands of measurements representative of a system

under a specific set of treatment or growth conditions. Interpre-

tation of this high-throughput data is usually highly dependent on

protein-coding genes being properly annotated within an organ-

ism’s genome, making genome annotation a critical component of

modern biological research. The rapid pace of technological

improvement in genome sequencing has triggered the generation

of genomic sequences at a pace previously inconceivable [1]. It

took the coordination of countless people from both public and

private sectors nearly a decade to sequence the first draft of the

human genome [2,3], yet Pushkarev et al. recently achieved this

feat in several weeks on a single instrument with a single operator

for under $50,000 [4]. Advances to the genome annotation process

appear modest by comparison. Computational tools for high-

throughput data are being steadily introduced [5], but many

challenges still exist (e.g., a lack of gold-standard gene models for

training the ‘exotic’ organisms that are the focus of many second-

generation sequencing projects) [6]. Curation by knowledgeable

scientists remains an essential component to complement and

enhance computational work [7].

An understanding of the genome annotation process provides

insight into how experimental measurements can be used to

improve both the process itself and the extraction of biological

knowledge. Automated annotation efforts reduce the burden of

manual curation by employing algorithms to predict transcrip-

tional and translational start and stop sites, promoter regions,

protein coding regions, and untranslated regions, among other

genetic features [8]. However, even for prokaryotes which are

inherently less complex than eukaryotes in terms of gene structure,

the reliability of computational predictions remains imperfect. For

example, de Souza and colleagues analyzed a Mycobacterium

tuberculosis culture filtrate sample to examine discrepancies between

two established gene prediction methods. Even with the reduced

complexity of a culture filtrate (,10% of the predicted M.

tuberculosis proteome), nearly 2% of the identified peptides were
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specific to only one of the two automated annotations suggesting

that a substantial number of missed genes are present in the

genome-wide annotation [9]. Bakke et al. compared annotations

of the entire expressed proteome of the archean Halorhabdus

utahensis using three different gene-calling platforms [10]. The

authors found that less than half of the nearly 3000 predicted

protein-coding regions were consistent across the automatic

annotations, supporting the speculation that significant deviations

in gene calling efforts would be revealed in global-scale analyses.

Evidence shows that automated annotations are subject to error,

yet financial constraints lead to most gene predictions being

directly incorporated into databases. Libraries of potential coding

sequences with varying levels of confidence are generated. These

libraries directly influence the quality of high-throughput biolog-

ical studies. For example, microarray chip probe selections are

typically chosen from libraries of predicted protein coding genes.

The absence of a probe targeting a specific nucleotide sequence

does not mean that complementary mRNA is not expressed; it

simply reflects the inherent bias of the microarray design. An

example of error propagation associated with proteomics relates to

databases comprised of candidate proteins, a crux of many

modern experimental proteomic studies. The majority of peptide-

centric proteomic analyses occur by matching, not direct

interpretation, of spectra [11]. Search tools rely on peptide-

matching algorithms to compare experimental MS/MS spectra to

in-silico peptide spectra generated from protein databases. Several

of the unmatched high-quality spectra present in bottom-up

proteomic analyses may be explained by errors in protein

predictions from the genome. Importantly, the same omics

datasets that suffer from incorrect or absent gene assignments

can in fact help provide experimental revisions to existing genome

annotations.

The practice of utilizing MS/MS data for genome annotation

refinement was documented as early as 1995 when Yates et al.

introduced the concept of searching a six frame translation of a

nucleotide sequence with tandem MS data [12]. Annotations of a

number of prokaryotic and eukaryotic systems have since been

investigated using this approach, commonly referred to as

proteogenomics, resulting in the validation of predicted genes

and elucidation of annotation errors. Gupta and colleagues

identified 8 novel genes, redefined boundaries for 30 genes, and

observed expression of 13 pseudogenes in Shewanella oneidensis MR-

1 [13]. Similarly, Castellana et al. estimated that 13% of the

Arabidopsis thaliana protein coding genes were incorrect or absent

from the genome annotation [14].

Comparative proteomics can be applied to extrapolate findings

of peptide identifications from a single species to orthologs based

on evolutionary constraints [15,16,17]. This approach allows

researchers to either salvage or increase the confidence of evidence

used for annotation refinement. This is extremely important for

coding sequences that are expressed at low levels, encode short

products, or exhibit poor detection efficiency. Transcriptional

knowledge can also be used for annotation refinement. High

density tiling arrays and RNA sequencing aid in the discovery of

novel genetic features, and while their data alone does not confirm

protein expression, detection provides supporting evidence.

Complementary evidence is indispensable in instances when

proteins are inferred by single peptide identifications, a situation

that is typically insufficient for a protein’s identification. The

greatest potential for annotation refinement should come from

simultaneously merging transcriptomic and proteomic data [18]

with a comparative genomic approach.

We undertook a comparative omics approach to simultaneously

refine the genome annotations of three highly orthologous Yersinia

strains. The work presented herein extends typical proteogenomic

methodology by incorporating not only peptide measurements,

but also experimental oligo data and sequence comparisons across

strains. Yersinia was chosen as a model in part due to the high

genetic similarity between species possessing dissimilar character-

istics [19,20]. The examined strains were annotated by different

groups of researchers using different methods over several years

[21,22]; as such, variations in both sensitivity and specificity of

annotation are expected. Yersinia comprises three species patho-

genic to humans: Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis.

The latter two species diverged most recently, and while their

genomes are closely related, the bacteria exhibit markedly different

modes of transmission and pathogenecities [23]. Y. pseudotuberculosis

causes non-fatal gastrointestinal disease, and Y. pestis is the

causative agent of plague. The data described here characterize

Y. pseudotuberculosis PB1/+ and two Y. pestis strains, CO92 and

Pestoides F. The Y. pestis strains represent ‘‘epidemic’’ (CO92) and

‘‘non-epidemic’’ (Pestoides F) isolates, which differ in their

biochemical properties, virulence to different animal species, and

rearrangements of the genome mediated by the insertion

sequences [24,25]. The genomes of the examined strains have

been sequenced [21,22] and are available at NCBI (www.ncbi.

nlm.nih.gov). Each strain is currently annotated with approxi-

mately 4000 protein coding genes (Table 1). Our results validate

predicted protein-coding genes and revise the current genome

annotations through identification of 96 unannotated or erroneous

protein coding regions among the three strains. The refined

genome annotations are immediately useful for the entire Yersiniae

research community, and the comparative omics-based approach

is applicable to other organisms possessing similarity between

strains or species.

Results and Discussion

Comparative Yersinia omics-based annotation
A typical proteogenomic workflow integrates experimental

peptide evidence and computationally-predicted protein-coding

sequences. The approach presented herein (Figure 1) extends that

approach by also including orthogonal genome-wide measure-

ments (i.e., microarray probe hybridization). This comparative

omics approach was used to investigate current annotations for

three highly similar Yersinia strains: Y. pestis CO92 (YPO), Y. pestis

Pestoides F (YPDSF), and Y. pseudotuberculosis PB1/+ (YPTS).

Seventy-five matched RNA and protein samples from each strain

were collected across a range of thermal and temporal conditions

(26 or 37uC for 1, 2, 4, or 8 h) to maximize transcriptome and

proteome coverage. Analyses focused on validating predicted

genome annotations and discovering experimentally-supported

annotation errors. Existing genus level Yersinia annotations were

also compared across the examined strains to extrapolate putative

annotation errors. Experimental omics data were combined with

these findings to predict sequences that may exhibit protein

expression in the absence of experimental evidence.

A universal microarray was used to obtain genome-wide

expression measurements. Unlike a traditional microarray that

targets annotated genes for a single strain, this universal array

incorporated 7641 probes designed against seven sequenced

Yersinia strains on a single chip. As illustrated in Figure 2, 89%

of the probes were complementary to genes present in multiple, if

not all, represented Yersinia strains. The remaining probes targeted

genes annotated as purportedly unique to one of the Yersinia

strains. Comprehensive Yersinia genus level gene expression

measurements were made since each strain’s sample was

individually hybridized against the universal array. More specif-

Omics-Based Genome Annotation of Yersiniae
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ically, the expression of a nucleotide sequence (represented by a

probe targeted against at least one of the seven Yersinia genomes)

was examined for individual strains regardless of whether or not a

protein-coding sequence was currently annotated for the strain

being analyzed. Results were assessed for all probes present on the

universal array for all three strains.

Figure 1. Schematic showing the comparative omics-based genome annotation workflow employed for annotation refinement.
Transcriptomic data generated from an unbiased universal Yersinia microarray and peptide data matched to a 6-frame genome translation were
layered on existing genome annotations to validate predicted protein coding sequences and identify annotation anomalies. This evidence can be
used independently or combined with putative protein identifications derived from a comparative genomics approach for genome annotation
refinement.
doi:10.1371/journal.pone.0033903.g001

Table 1. Omics-driven genome annotation summary.

Y. pestis CO92 (YPO) Y. pestis Pestoides F (YPDSF) Y. pseudotuberculosis PB1/+ (YPTS)

Sequencing Center/year Sanger Institute/2001 JGI/2007 JGI/2008

Predicted pseudo genes 123 84 15

Protein-coding genes (total) 4066 4068 4237

Protein-coding genes (ortholog in $1 alternate strain) 3866 3895 3695

Summary of protein identification validations

Detected proteins ($2 peptides) 1682 (1641) 1773 (1751) 1603 (1550)

Detected proteins (single peptide) 380 (277) 392 (271) 398 (303)

Summary of genome annotation refinements

Novel genes 8 (4) 18 (16) 2 (1)

Translated ‘‘pseudo genes’’ 40 (36) 16 (15) 1 (0)

Extended start sites 3 (2) 3 (3) 2 (2)

Frameshifts 0 3 (3) 0

The total number of open reading frames with evidence (as described in Materials and Methods) are represented. Numbers within parentheses refer to the subset of
genes that have orthologs with experimental evidence in at least one of the alternate strains.
doi:10.1371/journal.pone.0033903.t001

Omics-Based Genome Annotation of Yersiniae
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In parallel to the transcriptional study, bottom-up proteomics

was used to identify peptides for inference of protein expression.

Approximately 1.6 million MS/MS spectra per strain were

searched against a stop-stop FASTA file comprised of a six-frame

translation (minimum length of 30 amino acids) of each

corresponding Yersinia genome. Data were filtered to ,0.4%

false-discovery rate using a reversed sequence decoy strategy [26].

A modest number of redundant peptides (i.e., peptides that map to

multiple genomic loci) were excluded from the workflow to remove

potential ambiguity. Post-filtering, nearly 20,000 peptides per

strain were mapped to each respective genome, corresponding to

the expression of 41%, 44%, and 38% of YPO, YPDSF, and

YPTS proteins (minimum of two peptides/protein), respectively.

Table 1 summarizes these identifications and illustrates the high

level of orthology between strains. Additionally, genome annota-

tion refinements for both annotated and unannotated open

reading frames (ORFs) are reported, indicating the utility of the

comparative omics-based annotation presented herein.

Identification of annotation anomalies exhibiting a
minimum of two peptides per ORF

Confident gene expression and peptide identification measure-

ments, along with predicted protein coding genes, were indepen-

dently layered on genome sequences for each Yersinia strain’s

chromosome and corresponding plasmid(s). Experimental evi-

dence observed within a protein-coding region of a gene was

considered validation of an existing annotation, and evidence

outside of annotated ORFs highlighted regions suggestive of

missed/incorrect annotation calls. Figure 3 shows the distribution

of experimental evidence across annotated ORFs (i.e., predicted

proteins) and unannotated ORFs (i.e., putative proteins not

associated with any existing transcript/protein annotations). Using

peptide measurements as primary evidence of protein expression,

it was determined that 1682, 1773, and 1603 predicted protein-

coding sequences were expressed with a minimum of two unique

peptide identifications for YPO, YPDSF, and YPTS, respectively.

Notably, greater than 98% of these protein identifications also had

Figure 2. Distribution of oligos for universal Yersinia microarray. A universal array was designed to represent genes from seven different
Yersinia strains on a single chip. A) A representative sample of oligos and their purported mapping to genes from each of the seven Yersinia strains
represented on the array is shown. The number of strains (n = x) for which a given oligo corresponds to an annotated protein coding sequence is
indicated, illustrating a subset of the possible combinations of unique or shared orthologs at the oligo level. B) The distribution of oligos based on
existing annotations is provided; oligos were predicted to be either unique to any one of the seven strains (n = 1) or shared by multiple strains (n.1).
doi:10.1371/journal.pone.0033903.g002
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complementary oligo hybridization evidence as support. Kolker et

al. generated both protein and gene expression data for a

functional annotation study in S. oneidensis [27]. Gene expression

was observed for 2082 of 2252 predicted proteins (93%),

comparable to the overlap represented in this work. In contrast

to Kolker’s work, the microarrays utilized for the current studies

possess a unique advantage important for an omics-based

refinement study, i.e., the ‘unbiased’ nature of oligos present on

the universal chip aid in the discovery of unannotated sequence

expression. Figure 3a shows the identification of currently

unannotated ORFs exhibiting experimental evidence; 37 (29), 22

(20), and 1 (0) unannotated ORFs mapped at least two unique

peptides (and a minimum of one oligo) for YPO, YPDSF, and

YPTS, respectively, warranting further investigation.

Proteins identified by single peptide identifications
It has been shown that random peptides exhibit a peptide-to-

protein distribution favoring single peptide correlations [28];

however many single peptide observations are in fact authentic,

confounding the choice to include or exclude these identifications.

Nearly universally, single peptides are discarded for proteomics

applications due to the high probability of false-positives for

proteins identified by a single unique peptide relative to proteins

with multiple unique peptides using a given set of filtering criteria.

These single peptide identifications (singlets) are often pejoratively

referred to as one-hit wonders. Unfortunately, removal of singlets

by increasing the stringency of filter criteria results in the loss of a

large number of possible true-positive protein identifications

[29,30]. Omics-based annotation can benefit from retaining single

peptide identifications as the main goal is to provide layers of

experimental evidence of gene expression. Figure 3b illustrates

380, 392, and 398 annotated proteins that were identified by

evidence of a single peptide. Using the stringent filters chosen for

this study, .96.7% of the proteins corresponding to singlets also

had evidence of at least one oligo with hybridization. These

findings lend increased support to the validity of proteins inferred

from single peptide identifications in this study [29] and prompted

examination of a group of 44, 27, and 7 unannotated ORFs

eliciting both singlets and oligo evidence for YPO, YPDSF, and

YPTS, respectively.

Orthologous and single peptide identifications
Orthology has been employed for global applications including

the identification of core genomes and proteomes [31,32,33].

Proteomic profiles of diverse environmental and pathogenic

bacteria [31] revealed the expression of a core genome, indicating

conservation amid diverse speciation events. Bottom-up proteomic

data have been measured in five model eukaryotic species and

quantitative protein abundances were found to be significantly

correlated for orthologs across a conserved core proteome [33].

Figure 3. Categorization of experimental evidence. Preliminary analysis shows the distribution of peptide and oligo evidence across annotated
open reading frames (ORFs) (i.e., predicted proteins) in black and unannotated ORFs in grey. Solid regions indicate ORFS with complementary oligo
and peptide evidence and hashed regions show ORFs with only peptide evidence. A) shows ORFs exhibiting two or more unique non-redundant
peptides and B) shows ORFs exhibiting a single unique non-redundant peptide.
doi:10.1371/journal.pone.0033903.g003

Omics-Based Genome Annotation of Yersiniae
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Even for homologous proteins with varying sequences, individual

peptide biases averaged out at the protein level. Relevant to the

present work, core proteins with similar sequences are expected to

have comparable peptide abundances given an inherent peptide

‘‘MS-detectability’’ [33]. While proteogenomics approaches are

qualitative in nature, the above concepts support the notion that

an orthologous peptide in one Yersinia strain has a high probability

of being detected in the alternate strains in the current

experiments. The caveat may be for regulated proteins where

differential protein abundance is sample dependent. For patho-

genic bacteria such as Yersinia, qualitative genomic divergence and

quantitative expression profiles contribute to a switch from a less-

pathogenic lifestyle (e.g., Y. pseudotuberculosis) to one of high

virulence (e.g., Y. pestis).

Ortho-proteogenomics and comparative proteogenomics, two

branches of proteogenomic pipelines, demonstrate the utility of

evolutionary constraints for refinements of genome annotation.

The ortho-proteogenomic approach has been demonstrated for

the Mycobacterium genus using M. smegmatis as the reference sample.

Genome refinements were made for the reference genome and

knowledge was propagated to other Mycobacterium species [15].

This approach is invaluable, however care must be taken when

extrapolating annotations to homologous genomes [34]. Compar-

ative proteogenomics is a more definitive approach to refining

highly similar genomes. This method incorporates parallel

experimental peptide data from multiple orthologous proteomes

with their respective genome sequences as performed for Shewenella

[16].

Orthologous singlet peptides (i.e., related peptides found across

multiple species) can be used to infer protein translation [16]. In

this study, this group of putative annotation errors includes

unannotated ORFs that exhibit singlet peptide evidence but lack

oligo hybridization data. Identical singlet peptides are valued;

however, identification is more reliable when peptides are

correlated (i.e., differ in sequence in at least one position).

Correlated peptides are related through sequence but either

possess mutations or modifications at a given amino acid residue

or comprise different lengths (ladder sequences). This results in

different b- and y-ion fragments and thus differing mass spectra for

matching. The likelihood of two independent false-positives for

correlated peptides in conserved species is extremely low. Notably,

245 (63) of the 705 YPO singlet peptides, 246 (55) of the 708

YPDSF singlet peptides, and 234 (61) of the 638 YPTS singlet

peptides are identical (correlated) to a peptide found in at least one

of the other Yersinia strains examined in this study (File S1).

Based on the preliminary analysis shown in Figure 3, the

following criteria were established to objectively generate a

conservative list of potential annotation errors for examination:

1) the presence of a non-redundant peptide and either an

additional non-redundant peptide or a hybridized oligo or 2) a

non-redundant peptide that has an orthologous peptide observed

in at least one alternate strain. Using these criteria, potential

protein sequences from unannotated regions were aligned to other

Yersinia species using BLASTp (NCBI). The presence of a highly

related structural homolog to an unannotated protein sequence

was considered evidence of a novel (i.e., missing) gene, incorrect

protein start site, or frameshift. Additionally, expression of

annotated pseudogenes was noted. This suggests that regions of

many of these ‘dead’ genes are in fact expressed, albeit not

necessarily functional, in agreement with other reports [17,35]. A

summary of these findings is shown in Table 1, and detailed

information for all annotation refinements including peptide and

oligo evidence, proposed gene boundaries, proposed protein

sequence, and corresponding ortholog data is provided in File S2.

Identification of novel genes
The first category of annotation anomalies identified represents

‘novel’ genes that were missed during the annotation process.

These errors reveal experimental evidence in intergenic regions

that currently lack annotation. The protein coding sequences

corresponding to these novel genes are annotated in at least one

other Yersinia strain (determined by BLASTp) but are missing in

their entirety in the strain containing the error. This analysis found

evidence indicative of 8, 18, and 2 novel genes in YPO, YPDSF,

and YPTS, respectively (for detail see File S2). Figure 4 represents

a novel gene found in Y. pestis Pestoides F: 13 peptides

corresponding to the same translational frame were observed in

a 427 nucleotide ORF between YPDSF_3634 and YPDSF_3635.

Using the high level of orthology between Yersinia strains, the

potential sequence of this missed protein was predicted and maps

with 100% identity to both Y. pestis CO92 and Y. pseudotuberculosis

PB1/+. Peptide evidence represented 79% sequence coverage of

the predicted protein, and correlated peptides were found in YPO

and YPTS supporting the inclusion of this hypothetical protein in

Y. pestis Pestoides F.

One major flaw of automated annotation is the under-

prediction of small genes. This often occurs because large ORFs

are conspicuous. Examination of protein lengths for these novel

genes substantiates this issue. Protein length histograms (Figure S1)

clearly show that the missed genes possess lengths that fall on the

short end of the range of annotated Yersinia proteins. Given that

short proteins yield fewer peptides, there is an increased likelihood

that short proteins will be identified by single peptide hits. Thus

the inclusion of confident singlet peptides is important, particularly

for genome refinement studies.

Protein coding genes may also fail to be predicted due to the

presence of an alternative translational start site. In the existing

annotations, 82%, 88%, and 91% of predicted proteins for YPO,

YPDSF, and YPTS, respectively, have an AUG initiation codon.

Noticeably, YPDSF and YPTS have a higher percentage of

purported AUG start codons relative to YPO and another

enterobacteria, E. coli, which has been reported to use 83%

AUG [36]. Based on comparison with orthologous sequences in

other Yersinia strains, for YPO, YPDSF, and YPTS, respectively, 5,

6, and 2 of the novel genes found in this study are proposed to

have a less common initiation codon: UUG/UUA or GUG rather

than AUG. While no peptide evidence is present to confirm the

predicted N-termini of these novel genes, it seems plausible that

these genes were overlooked during annotation due to the

presence of less common start codons.

Comparison of missed proteins from the targeted strain with

orthologous sequences from the other two examined strains

highlights a significant intention of this study: highly similar strains

possess orthologous genes that can be used for cross-validation of

proteomics data and for genome refinement. Of the 8 missed

proteins in YPO, 6 and 4 orthologous proteins are not predicted in

either YPDSF or YPTS, respectively. Similarly, of the 18 missed

proteins in YPDSF, 5 and 2 orthologous proteins are presumed

absent in YPO and YPTS, respectively. Two proteins were missed

in YPTS; of these, 1 ortholog is not predicted in either YPO or

YPDSF, and the remaining ortholog is not predicted in YPDSF.

As YPO was the first Yersinia genome annotated, these results

suggest transitive annotation omissions. During the genome

annotation process, predicted protein coding genes are searched

against protein databases. Homology findings are based on the

quality of the software utilized and on the quality of the

annotations that compile the protein databases [37]. The overlap

of missing proteins across the three strains examined in this work

suggests a propagation of errors for Yersinia strains. These overlaps

Omics-Based Genome Annotation of Yersiniae
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may be a result of failed searches against previously annotated

Yersinia genomes lacking predictions for the gene of interest.

Identification of upstream start sites
Another category of annotation error occurs when the

translational start site of a gene is predicted incorrectly. This type

of error has potentially deleterious effects for the structural

genomics community which relies on accurate protein sequences

for structure determinations and both function and localization

predictions. The accuracy of start site prediction has been

estimated to be as low as 80–90% [37]. Targeted proteogenomics

strategies have successfully been used to characterize N-termini of

Deinococcus proteins and findings revealed 73 incorrectly predicted

start codon sites and the use of several non-canonical translational

initiation codons [38]. Peptide evidence upstream of a predicted

start site, but C-terminal to a stop codon, suggests that the start site

was predicted to occur at the wrong codon. In YPO, YPDSF, and

YPTS, there is evidence for the incorrect prediction of 3, 3, and 2

start sites, respectively (File S2). Comparative analysis of BLASTp

results from sequences generated from a 59 extension of each gene

was used to assign new start sites. In all cases, orthologous

sequences implied new start codons that were consistent with the

observed experimental evidence. In 4 of the 8 start site anomalies,

peptide evidence spanned the existing start codon substantiating

extension to an upstream start site. Figure 5 shows an example of

an incorrectly predicted start site in Y. pestis CO92 with peptide

evidence spanning and oligo evidence 59 of the existing TTG start

codon of YPO0453. Comparison of orthologs suggests that

translation should begin five residues upstream of the predicted

start site. Notably, translation of TTG as a start codon would

result in the generation of a methionine, however the unbiased

search performed for this study identified this amino acid as a

leucine supporting an incorrect start codon prediction.

Identification of translated pseudogenes
Pseudogenes can be described as sequences of DNA that possess

disruptions such as insertions, premature stop codons, or

frameshifts that render them nonfunctional [39]. As such, these

entries are typically excluded from protein databases because the

DNA is not thought to be translated to protein. Pseudogenes are

not uncommon in prokaryotes (although much less common than

in eukaryotes which lack compact genomes), but Y. pestis is

Figure 4. Representative identification of a novel gene. In the upper frame, gene level alignments are shown for the three strains examined in
this study. Predicted protein coding genes are shown in grey and oligo evidence is shown in black. Sequence alignments are shown in the lower
frame. Annotated protein sequences are underlined, and experimental peptide evidence is shown in black text. For YPDSF, this region reveals
substantial oligo and peptide evidence in an unannotated region indicating a novel gene.
doi:10.1371/journal.pone.0033903.g004

Figure 5. Representative identification of an incorrectly predicted translational start site. Protein sequence alignments are shown for the
three strains examined (YPO, YPDSF, and YPTS) in addition to several other Yersinia species. Annotated protein sequences are underlined and
experimental peptide and oligo evidence is shown in black text. For YPO0453, evidence flanks the predicted start site (shown by boxed region) and
the observed peptide sequence reveals translation of a leucine instead of methionine confirming an N-terminal extension.
doi:10.1371/journal.pone.0033903.g005
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reported to have a disproportionately high number of predicted

pseudogenes [20,40]. Divergence from Y. pseudotuberculosis required

a change in both the bacteria’s phenotype and mode of

transmission, and gene loss is presumed to play a major role in

Y. pestis acquiring its niche as a virulent pathogen [20,41,42,43]. It

was originally reported that the genome for Y. pestis CO92

contained 149 pseudogenes [22]. Subsequently, comparative

studies were performed and additional Y. pestis CO92 pseudogenes

that were missed during the original annotation have been

proposed [20,40]. In this work, 40, 16, and 1 pseudogenes from

YPO, YPDSF, and YPTS, respectively, exhibited experimental

evidence of protein expression. The finding of pseudogene

expression is not a novel proteogenomic observation. A number

of authors present evidence challenging the belief that pseudo-

genes are translationally silent [13,14,17,44,45]. Since the function

of expressed disrupted genes is ablated in most cases, the existence

of inteins [44] and the active expression of interrupted genes in vivo

[46] are very interesting. It seems valuable in high-throughput

studies to include all coding sequences with the potential for

expression in a protein database and allow biological validation

studies to guide functional conclusions.

We identified the translation of genomic regions currently

labeled as pseudogenes (File S2) belonging to two major categories.

First, split genes containing insertion elements/transposons or

other cargo, and second, altered genes containing indels or

nonsense mutations. The argD locus represents an example of a split

gene. In CO92, the DNA sequence homologous to argD is

interrupted by the insertion of two IS21 genes (File S3). Notably,

argD peptides and oligos were observed on both termini, flanking

the insertion. The expression of the N-terminal portion of argD is

presumably under the normal promotor structure. Inspection of

the DNA region between the second IS21 element and the C-

terminal portion of argD revealed that the promoter structure

typically used to drive the IS element had likely been co-opted to

drive expression of argD (Michael Chandler and Guy Duval,

personal communication, and [47]).

The presence of the transposable element insertion was tested in

a dozen Y. pestis strains of different biovars including eight biovar

orientalis (same as CO92) strains from USA, Indonesia, South

America, and Madagascar, and it was confirmed that the insertion

occurs only in CO92 (data not shown). In Yersinia, as well as other

species with high genomic fluidity [48], it is not unexpected to find

‘unique’ proteins lacking homology. Evolutionary relationships

with transposons have been described [49], and speculatively, this

process may provide one driver for reassembly of domains that

could produce non-homologous proteins [50] for novel adaptive

functions. The nature of the ‘‘pseudogenes’’ identified as present as

translated proteins offers an enticing clue that the broad range of

proteins that are found to be unique within many sequenced

genomes may be driven by rapid evolution.

Another example of pseudogene expression in Y. pestis CO92 is

illustrated in Figure 6. YPO1195 encodes a 310 aa protein, but a

single point variation from A to T (confirmed by Sanger

sequencing, File S4) renders a premature TAG stop codon in

lieu of an AAG-encoded lysine rendering a truncated protein/

predicted pseudogene with a 155 aa N-terminus and a 154 aa C-

terminus. Interestingly, both peptide and oligo evidence span the

regions on either side of the stop codon. Regardless of the means

for expression, this example highlights a case where the YPO1195

protein sequence should be included in the CO92 protein

database.

Identification of translational frameshifts
Determination of translational frameshifts is one of the more

difficult tasks of genome annotation. This phenomenon, opposed

to mutational or replication-based frameshifts, occurs when the

ribosome either slips -1 base, stalls +1 base, or hops over a stretch

of nucleotides during translation causing two translational reading

frames to be expressed as a single protein [51]. Authentic

frameshifting events can either be spontaneous or programmed,

but what appear to be frameshifted proteins can also result from

DNA sequencing errors. Annotation predictions can be guided by

the referencing of known frameshifted proteins in similar species,

but more often than not, there are few if any proteins to reference.

Peptide chain release factor II (prfB) is one example of a +1

frameshift observed in several bacterial genomes. While prfB is

annotated in some Yersinia, the frameshift is missing in many

strains [17] revealing the challenge in annotating frameshifts even

when reference frameshifts are known. As previously mentioned

with regard to incorrectly predicted start sites, missed frameshifts

result in truncated sequences that may impact structural biology

studies. The current analysis identified three genes, all found in Y.

pestis Pestoides F, that have evidence indicative of frameshifts (File

S2). These genes currently have protein coding sequences

predicted, but the predicted proteins appear to be truncated due

to an apparent frameshift. Eight predicted pseudogenes in Y. pestis

Figure 6. Representative identification of an expressed pseudogene. Pseudogenes are considered translationally silent and typically
excluded from protein databases. YPO1195 is categorized as a pseudogene due to the presence of a stop site mid sequence (shown by vertical black
bar). Both oligo evidence (black boxes, upper frame) and peptide evidence (black text, lower frame) were observed on either side of the predicted
stop codon, indicating expression of this feature.
doi:10.1371/journal.pone.0033903.g006
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CO92 have experimental evidence in multiple reading frames

suggestive of translational frameshifts which may explain a

misclassification as a pseudogene.

Figure 7 illustrates an apparent frameshift in YPDSF_1005, an

ortholog of YPO2124. This gene encodes a hypothetical protein in

both Y. pestis strains. YPDSF_1005 encodes a 63 amino acid

protein, and the expression of YPO2124 produces a 210 amino

acid product. Both genes have hybridization evidence showing

similar thermal shift expression patterns for three oligos. All three

oligos fall within the protein coding sequence boundaries for YPO,

but two of the three oligos lie 59 of the boundary for YPDSF_1005.

Examination of YPDSF peptide data revealed four peptides

upstream of the predicted start site, consistent with the oligo data.

Importantly, Sanger sequencing (File S4) confirmed that these

peptides all fell on a translational reading frame different from the

predicted polypeptide. Extension of the N-terminus of

YPDSF_1005 on the alternate frame allowed the entire 210 amino

acid product of YPO2124 to be overlaid on the YPDSF_1005

sequence indicating the presence of a frameshift.

Utility of comparative data from orthologous strains
The genome annotation corrections presented here are in

addition to the recent Yersinia annotation revisions by Payne et al.

[17]. In that work, peptides were identified from Y. pestis KIM 6+
strain, and orthology clusters were used to extrapolate findings to

the remaining 11 complete published Yersinia genomes (including

the three examined in this work). Comparison of genome

refinements made solely based on the orthology of experimental

Y. pestis KIM 6+ results [17] with data gathered for this study

revealed many annotation error overlaps thereby validating the

prediction of proteins based on orthology. The comparative results

from this omics-based study were confirmed by experimental

design. Rather than extrapolating data to orthologous species,

orthologous data was generated for multiple Yersinia strains in

parallel. Unbiased oligo data is valuable evidence for these genome

annotation refinements. The high level of overlap between peptide

data and oligo data within coding sequences of predicted proteins

(Figure 3) validates the use of oligo data as complementary support

when the only evidence of protein expression is from singlet

peptides. By allowing oligo evidence and orthologous peptide

identifications to rescue singlets (Figure 8), 21, 18, and 5

annotation errors that otherwise would have been rejected by

the two-peptide rule [52] were retained in YPO, YPDSF, and

YPTS, respectively.

All errors described to this point were elucidated by the evidence

thresholds described previously and are thus considered primary

errors. Sequences of target strains possessing primary errors were

aligned to the other strains examined in this study (File S2). Eight

proteins had primary errors identified in multiple examined strains.

Four of these errors indicate novel proteins in both strains, 2 errors

suggest a novel protein in one strain and an upstream start site found

in an alternate strain, 1 error shows an upstream start site in two

strains, and 1 error shows a translated pseudogene in one strain and

an upstream start site in the other. This level of overlap suggests a

propagation of error during the predicted sequence searching

portion of the annotation process. Primary errors found in 8

proteins from the target strain suggest 14 ‘secondary annotation

errors’ in the orthologs. These secondary errors have experimental

oligo evidence but lack peptide data, thus explaining their exclusion

from the primary error list. Similar to ortho-proteogenomics studies,

this information can be extrapolated to the respective genomes and

these errors can be refined. It seems probable that as proteome

coverage increases, expression of many of these proteins will be

demonstrated with tangible evidence for each strain.

Conclusions
Prokaryotic genome annotation is primarily performed ab-initio,

but recent studies demonstrate that a combinatorial approach with

both computational predictions and experimental evidence

increases the accuracy of annotations [34,35,53]. The ease and

utility of the proteogenomic approach is now well-documented

and suggests that incorporation of experimental data for genome

annotation refinement could become routine in the future. The

finding of 96 previously undocumented errors in this study

(Table 1) enforces the concept that genome annotation refinement

is required for accurate studies by the scientific Yersinia community.

Similar approaches could readily be applied to annotation

refinement studies of other larger prokaryotic or eukaryotic [54]

organisms.

The thresholds set for this comparative omics-based workflow

were based on peptide evidence with oligo evidence included as

optional secondary support, yet several hundred open reading

frames across the genomes examined exhibited oligo hybridiza-

tion without any confirmation that the mRNA was translated.

This suggests that many additional annotation errors likely exist

and implies that the refinement process is far from complete for

these three genomes. Nearly 40% of each strain’s predicted

proteome was covered by peptide identifications in this work.

Limitations of the technology contributed to incomplete cover-

age. Several bioanalytical factors inherent to bottom-up proteo-

mics likely affected detection: post-translationally modified

peptides and peptides from low abundance proteins or small

proteins are difficult to observe. Itshould also be noted that the

expression of many genes is tightly regulated and/or inducible

only under specific conditions. For example, as much as a third of

the Salmonella typhimurium proteome has been shown to be

regulated at the translational level by the single virulence

regulator Hfq [55,56]. Hfq is only one mechanism of post-

transcriptional regulation, but it does highlight the fact that

regulation of translation and protein turn-over can lead to limited

detection of highly regulated proteins. The conditions used here

for Yersinia are intended to simulate important environmental

transitions during pathogenesis so it is reasonable to assume that

some RNA are transcribed but not translated into protein. A

protein’s observation is informative of a gene’s presence,

however, the absence of a protein when a transcript is present

requires further analysis. Proteome depth will become greater

and many of these oligo-supported protein predictions will be

clarified as more experimental data is generated, growth

conditions are tested, sample throughput is increased, and

instrument sensitivity is improved.

The universal microarray used in these experiments proved

fruitful for the discovery of annotation errors. High density tiling

arrays and next generation sequencing technologies show even

more promise for genome refinement studies. These newer

technologies have the potential for increased sensitivity, specificity,

and dynamic range relative to microarray profiling, and most

importantly for annotation studies, the expression of open reading

frames that have not been predicted to encode protein coding

sequences can be measured [45,57,58].

The comparative omics-based approach employed in this study

corroborates the utility of similar proteogenomic (simultaneously

examining orthologous genome annotations) [16] and evidence-

based (combining both transcriptional and peptide data) [18] work

in different prokaryotic organisms. These results also help to define

the transcription unit architecture [59,60], a fundamental property

that provides the basis for understanding key cellular processes

such as metabolism and transcriptional regulation at the genome

scale, of the Yersinia strains examined.
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Figure 7. Representative identification of a putative translational frameshift. A) Hybridization evidence for oligos labeled A, B, and C is
shown. Expression levels are shown normalized to each oligo’s mean (via a Z-score calculation) across a time course/thermal switch (37uC/26uC)
experiment for Y. pestis CO92 (YPO) and Y. pestis Pestoides F (YPDSF). Green indicates down-regulation relative to the mean, and red indicates up-
regulation relative to the mean. Genome annotations are labeled for YPDSF_1005 and YPO2124 corresponding to annotated coding sequences.
Although oligos A and B purportedly lack a corresponding transcription for YPDSF (NA = not applicable), evidence clearly shows hybridization
consistent with oligo C. B) illustrates the 210 aa translation of YPO2124 and C) illustrates the 63 aa translation of YPDSF_1005. Frame translations are
shown below gene level detail with oligo evidence (black) overlaid on each gene and peptide evidence (red) overlaid on the appropriate reading
frame. For YPDSF_1005, gene alignment with YPO2124 reveals two oligos upstream of the coding region. Corroborating peptide evidence was also
seen upstream but in a different reading frame than the existing annotation. This evidence supports the expression of YPDSF_1005 as a frameshifted
protein.
doi:10.1371/journal.pone.0033903.g007
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Materials and Methods

Cultivation of bacterial strains
Y. pseudotuberculosis PB1/+, Y. pestis Pestoides F, and a wild-type

Y. pestis CO92 cured from pPCP1 plasmid were grown in a

chemically defined medium BCS [61] in which neutral pH 7.2

was maintained by addition of 50 mM of morpholinopropane-

sulfonic acid (MOPS) as described previously [62]. Bacterial

cultures were grown in Erlenmeyer flasks aerated at 200 rpm at

26uC. A starter culture was grown, diluted to optical density

OD600 = 0.1 to begin overnight culture, and grown to an OD600

of ,3.0. The overnight culture was back-diluted to OD600 = 0.1

and grown in two flasks at 26uC. When the cultures reached

OD600 ,0.5, one flask was moved to 37uC. Aliquots from both

cultures were taken at 0, 1, 2, 4, and 8 hours, OD’s measured, and

samples prepared as described below for proteomics and

transcriptomics.

Reversed-phase nanocapillary LC-MS/MS analyses
Approximately 261010 bacteria were harvested from the culture

at each time point, pelleted, and immediately frozen at 280uC.

Thawed cell pellets were washed with 100 mM NH4HCO3

(pH 8), lysed via bead beating, and global protein digestions were

performed as described previously [63]. Peptides were concen-

trated in a Speed-Vac (ThermoFisher, Savant) to ,100 uL, a

BCA protein assay performed to quantitate peptide concentration,

and samples were either diluted for analysis or subjected to SCX

fractionation. Aliquots (60 ug) from each time point were pooled

together for each strain and subjected to offline LC fractionation

by strong cation exchange (SCX) chromatography on a

200 mm62.1 mm Polysulfoethyl A column (PolyLC, Columbia,

MD) preceded by a 10 mm62.1 mm guard column, using a flow

rate of 0.2 mL/min. LC separations were performed using an

Agilent 1100 series HPLC system (Agilent, Palo Alto, CA). Mobile

phase solvents consisted of (A) 10 mM ammonium formate, 25%

acetonitrile, pH 3.0 and (B) 500 mM ammonium formate, 25%

acetonitrile, pH 6.8. Once loaded, isocratic conditions at 100% A

were maintained for 10 min. Fraction collection began at 2.8 min.

Peptides were separated using a gradient from 0 to 50% B over

40 min, followed by a gradient of 50 to 100% B over 10 min. The

gradient was then held at 100% solvent B for 10 min. Following

lyophilization, all 24 fractions for each of the two pools collected

during this gradient were dissolved in 25 mM ammonium

bicarbonate and stored at 280uC. Peptides (0.5 mg/mL) from

global preparations (i.e., total unfractionated lysate) were run in

triplicate on a linear ion trap (LTQ) Orbitrap Velos mass

spectrometer (Thermo Scientific) (n = 30 LC-MS/MS runs per

strain), and SCX fractionated samples were run on a LTQ mass

spectrometer (Thermo Scientific) (n = 48 fractionated samples run

per strain). Peptides were separated by a custom-built nanocapil-

lary HPLC system as previously described [64,65]. The eluate

from the global preparations and fractionated samples was directly

analyzed by electrospray ionization (ESI). The MS instruments

were operated in data-dependent mode with m/z range of 400–

2000, collision energy of 35 eV, and the 10 most intense peaks

were selected for fragmentation. Raw data are available to the

public at omics.pnl.gov and further information available at www.

SysBEP.org.

Six-frame peptide identification
MS/MS fragmentation spectra were searched against a six

frame translation (minimum open reading frame length of 30

amino acids) of the Y. pestis CO92 genome and plasmids (NC_

003143), Y. pestis Pestoides F genome and plasmids (NC_009381),

and Y. pseudotuberculosis PB1/+ genome and plasmid (NC_010634)

located at NCBI using SEQUEST [66] peptide identification

software. The parent and fragment mass tolerances used for

matching were set to 63 and 61 Da, respectively. The average

peptide mass errors for the high resolution data were 0.79, 1.11,

and 1.09 ppm for YPCO, YPPF, and YSTB, respectively. Peptide

identifications were retained based upon the following criteria: 1)

SEQUEST DelCn2 value $0.10; 2) SEQUEST correlation score

(Xcorr) $1.9 for charge state 1+ for fully tryptic peptides and

Xcorr $2.20 for 1+ for partially tryptic peptides; Xcorr $2.2 for

charge state 2+ and fully tryptic peptides and Xcorr $3.3 for

Figure 8. Venn diagram overlap of evidence for unannotated
proteins identified by single peptide identifications. Open
reading frames with evidence were initially filtered based on the
presence of a non-redundant peptide. All singlet peptides were
required to have corroborating oligo evidence or it was required that
the singlet peptide mapped to an orthologous peptide in one of the
alternate strains examined.
doi:10.1371/journal.pone.0033903.g008
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charge state 2+ and partially tryptic peptides; Xcorr $3.3 for

charge state 3+ and fully tryptic peptides and Xcorr $4.0 for

charge state 3+ and partially tryptic peptides. For each strain, the

distribution of charges for detected peptides was as follows: YPCO

(q1 = 3.8%, q2 = 55.5%, and q3 = 40.7%), YPPF (q1 = 3.8%, q2 =

56.7%, and q3 = 39.5%), and YSTB (q1 = 3.4%, q2 = 54.9%, and

q3 = 41.7%). Redundant peptides (i.e., peptides that map to

multiple proteins) were excluded from the analysis to minimize

potential ambiguity. Using the reverse (decoy) database approach,

the false discovery rate (FDR) of filter-passing spectra/proteins

(minimum of two unique peptides per protein) was estimated to be

0.2%/0.1% for the Velos data, 0.8%/0.6% for the LTQ data, and

0.4%/0.8% for the combined data. Higher false-positive rates

were associated with singlet peptide identifications, so annotations

for these spectra are provided in the supporting data. As multiple

pieces of evidence (peptide, oligo, and orthology) were used to

identify annotation errors, we feel that the true FDR values are

nominally lower than the peptide-based FDR values reported.

Universal Yersiniae microarray design
A universal Yersiniae array was designed to contain probes

targeting genes for seven different Yersinia genomes on a single

microarray chip. In order to incorporate probes representative of

both unique and homologous genes between the seven strains,

gene FASTA files containing predicted ORF sequences for Y. pestis

strains CO92, KIM, Pestoides F, Antiqua, Nepal516, and biovar

Microtus str. 91001, and Y. pseudotuberculosis strain PB1/+ were

collected as targets for oligonucleotide design. Homologous genes

with high sequence similarity (i.e., .99% identity over the full

length of the genes) were combined resulting in a single

representative homolog for each homologous group. ArrayOligo-

Selector (http://arrayoligosel.sourceforge.net/) was used to design

70-mer oligonucleotides for each target with the goal of

maximizing oligo to target gene binding energy (assessed as

melting temperature, Tm) while optimizing specificity by mini-

mizing cross hybridization with non-target gene sequences.

Following the first round of design, resultant oligos were assessed

for the potential to cross hybridize with genes other than the

intended target. Gene targets having ambiguous oligos mapping to

other genes underwent a second round of design. The second

round of design tiled the remaining gene sequences with matching

oligos, followed by selection of the oligo for having the lowest

number of unintended gene hits. Preference was made for

designed oligos to target the 39 end of each gene. Blastn

(W = 15, bit score. = 280) was used to create a target map

detailing each oligo’s gene matches exhibiting a bit score . = 280

(90% identity over 70 bases). The final universal array included

7641 designed oligos which were printed in duplicate, in addition

to 1000 control and 1958 empty probes. The array platform

description and oligo list are available at NCBI Gene Expresssion

Omnibus (GEO) under accession GPL9009.

Microarray analysis of transcripts
At the appropriate times, 20–40 mL from each culture was

removed and immediately mixed with an equal volume of cold

RNAlater (Qiagen). Total RNA was isolated with a Qiagen Midi

kit according to manufacturer’s protocol. RNA was isolated from

approximately 86109 bacteria per sample and concentrated with

ethanol. RNA concentrations were determined by spectropho-

tometer (SmartSpecPlus, BioRad), quality was assessed by gel

electrophoresis, and purified RNA was stored at 280uC until

analysis. RNA samples were treated further to remove residual

DNA contamination prior to labeling and microarray hybridiza-

tions with Ambion Turbo DNA-free DNAse. Microarray

hybridizations with cDNA probes were accomplished on version

5QYP aminosilane-coated slides printed with a set of 18,240

elements; scanning, image analysis, and normalization were

performed as outlined in PFGRC standard protocol (http://

pfgrc.jcvi.org/index.php/microarray/protocols.html). Individual

TIFF images from each channel were analyzed with JCVI

Spotfinder software, and microarray data were normalized by

LOWESS normalization using TM4 software MIDAS (both

available at http://pfgrc.jcvi.org/index.php/bioinformatics.html).

Oligos generating intensity signals $35,000 ($3s of control

probes across all chips) were considered to have positive

hybridization above background and therefore incorporated as

experimental measurements. While not presented for all findings,

in cases where multiple oligos map to a single open reading frame,

expression patterns of annotated mRNA (as shown in Figure 7)

can support the identification of anomalous hybridization signals

across experimental samples. Transcriptomics data have been

deposited in the GEO repository under series accession

GSE30634.

Data processing and genome refinement
Peptides that are correlated (i.e., differ at a single amino acid

residue due to divergence/modification or otherwise identical

peptides that differ in length) across strains were identified using

PepAligner, an in-house program that compares two peptide files

using Smith-Waterman alignment. The following criteria were

established to objectively filter potential annotation errors based

on experimental peptide and oligo evidence: 1) a non-redundant

peptide and $1 additional non-redundant peptide or hybridized

oligo or 2) a singlet peptide that has an orthologous peptide

observed in $1 alternate strain. For the latter case, mass spectra

were manually validated for confidence of protein expression (File

S5). Distributions of evidence are provided in File S6. Experi-

mental evidence was visualized using the Artemis genome browser

[67] or Visual Exploration and Statistics for Proteomic Analyses

(VESPA) ((https://www.biopilot.org/docs/Software/index.php).

Using the established criteria, potential protein sequences from

unannotated 59 or intergenic regions were aligned to other Yersinia

spp. and the non-redundant database using BLASTp [68].

Supporting Information

File S1 Lists of orthologous peptides. All two-way

comparisons from the three strains examined are provided. Singlet

peptide observations from one strain are compared against all

peptide observations from another strain. Detailed information

including coverage and alignments is given.

(XLSX)

File S2 Comparisons of errors across strains. Both

peptide and oligo evidence of errors is provided as visualized

using the Artemis viewer. Errors were assigned arbitrary numerical

values for organization only, and each proposed error (along with

orthologous sequences from the other examined strains regardless

of their error statuses) is represented on an individual page.

.Forward and reverse DNA strands are labeled, along with each of

the six translational reading frames. Vertical black bars represent

stop codons, white regions represent DNA features, cyan regions

represent protein coding sequences, yellow regions represent oligo

evidence, and magenta regions represent peptide evidence.

(PDF)

File S3 Peptide evidence related to the insertion-
ablated pseudogene, argD. The regions encompassing argD

loci from Yersinia pestis strains CO92 and Pestoides F are shown.
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Annotated open reading frames are colored in yellow. Detected

peptide evidence is mapped by blue arrows and sequences are

provided.

(PDF)

File S4 Sanger sequencing. Methodology, primer sequences,

primer maps, and sequence alignments are shown for YPO1195

and YPDSF_1005.

(PDF)

File S5 Singlet peptide validations. Three errors were

supported by singlet identifications. Annotated spectra are

provided for these peptides.

(PDF)

File S6 Evidence summaries. Evidence for all detected open

reading frames is provided for each of the three strains.

(XLSX)

Figure S1 Protein length histograms. Bins are used to show

the distribution of protein lengths for all protein coding genes

(black) and novel annotation errors (grey).

(TIF)
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