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Aim: To understand tissue-specific regulation of angiopoietin/angiopoietin-like (ANGPT/ANGPTL) genes
(especially the five genes embedded in introns of host genes) and their association with atherosclero-
sis. Methods: Transcription and epigenomic databases from various normal tissues were examined in the
vicinity of ANGPT1, ANGPT2, ANGPTL1, ANGPTL2, ANGPTL3, ANGPTL4 and ANGPTL8. Results: We identi-
fied tissue-specific enhancer chromatin regions that are likely to regulate transcription of ANGPT/ANGPTL
genes and were intragenic, intergenic or host gene-linked. In addition, we found atherosclerosis-linked
differentially methylated regions associated with ANGPT2 and with sequences encoding miR-145, a mi-
croRNA that targets ANGPT2 mRNA in cancers. Conclusion: Our findings implicate enhancers as major
contributors to tissue-specific expression of ANGPT/ANGPTL genes, which play critical roles in angiogen-
esis, atherosclerosis, cancer, and inflammatory and metabolic diseases.
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Atherosclerosis is a progressive disease involving damage to the arterial lumen’s endothelial cell barrier and accompa-
nying leukocyte infiltration, changes in endothelial cells and the subendothelial extracellular matrix and retention of
cholesterol-containing low-density lipoprotein (LDL) in the artery wall [1,2]. Also critical to pathogenesis are smooth
muscle cell (SMC) phenotypic transformations in the arterial wall and intra-aorta migration of SMC [3,4]. Damage
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to the aorta involves loss of elasticity, inflammation, calcification and, eventually, necrosis and apoptosis [5]. Among
the proteins implicated in the initiation and progression of atherosclerosis are angiopoietin (ANGPT) proteins,
which bind to TIE1 or TIE2 receptor tyrosine kinases, and most of the angiopoietin-like (ANGPTL) proteins,
which bind to other receptors and have one or two shared domains not present in ANGPT proteins [6,7].

The clinically important secreted ANGPT/ANGTPL proteins play many roles in development and disease
including in angiogenesis, inflammation, lipid and glucose metabolism, hematopoietic stem cell activity and can-
cer [6,8]. Seven of the eleven ANGPT/ANGPTL genes have been implicated in atherosclerosis, namely, ANGPTL1,
ANGPTL2, ANGPTL3, ANGPTL4 (ANG4), ANGPTL8, ANGPT1 (ANG1) and ANGPT2 (ANG2). Their en-
coded proteins have roles in lipid deposition in the aorta, vascular growth, vessel permeability and remodeling,
vascular inflammation, neovascularization and plaque destabilization during disease progression [6,7,9,10]. Two of
the ANGPT/ANGPTL genes, ANGPTL6 and ANGPTL7 [6], are associated with obesity, a risk factor for atheroscle-
rosis [11,12].

Some of the ANGPT/ANGPTL proteins can be either pro-atherosclerotic or protective against atherosclerosis
depending on the stage of the disease and the cellular context [6,10]. Their pro-atherosclerotic activity is due, in part,
to favoring chronic inflammation (ANGPTL2) as well as helping to transport lipoproteins into the atherosclerotic
or pre-atherosclerotic aorta and inhibiting lipoprotein lipase (LPL) and endothelial lipase (namely, ANGPTL3,
ANGPTL4 and ANGPTL8) [13–15]. Inhibition of LPL increases circulating levels of LDL and very LDL. Low ex-
pression of ANGPTL3 and ANGPTL8 in individuals with heterozygous inactivating mutations or in atherosclerosis
mouse models correlates with a reduced risk of atherosclerosis and lower levels of lipid in the bloodstream [6,15,16].
ANGPTL3 and ANGPTL8 bind to each other and act cooperatively in their inhibition of LPL activity, which
helps determine susceptibility to atherosclerosis [13,17,18]. ANGPT1 and ANGPT2 can act as competing or assisting
partners mediating angiogenesis [7,19].

Recent research suggests that atherosclerosis is an epigenetic disease involving changes in chromatin and
DNA methylation during disease progression [20–23]. Nonetheless, there are only a few reports describing chro-
matin modifications or DNA methylation at the ANGPT/ANGPTL genes other than the many studies about
carcinogenesis-related epigenetic changes in these genes [6,24,25]. A complication in the regulation of transcription
of ANGPT/ANGPTL family genes, including ANGPTL3 and ANGPTL8, is that many of them are small genes
residing in an intron of a large host gene. Understanding how epigenetic changes contribute to the control of gene
expression to help maintain precise levels of the corresponding ANGPT/ANGPTL proteins is important not only
to atherosclerosis, but also to apoptosis, metabolic diseases, retinopathies, sepsis, cancer and inflammatory diseases
like rheumatoid arthritis and dermatomyositis [6,7].

Here, we describe our analysis of whole-genome epigenetic and transcriptomic databases to elucidate epigenetic
factors that influence the tissue-specificity of expression of the seven atherosclerosis-associated ANGPT/ANGPTL
genes. For this study, we also utilized whole genome-bisulfite sequencing profiles of atherosclerotic and control aorta
to look for significantly differentially methylated regions (DMRs) in these genes that are associated with this disease.
We also examined the gene region that encodes miR-145, a microRNA (miRNA) that has been shown to target
ANGPT2 in cancer [26] and that has been demonstrated to regulate the cellular phenotype of aorta SMCs [27]. Our
findings underscore the importance of analyzing the involvement of intragenic, intergenic and host gene-embedded
enhancers in controlling expression of these clinically important genes.

Materials & methods
Bioinformatics
Epigenetic and RNA-seq profiles from the Roadmap and ENCODE projects [28,29] were analyzed using the UCSC
Genome Browser or its hubs for bisulfite sequencing (bisulfite-seq) and chromatin state segmentation (chromHMM,
AuxilliaryHMM) [30]. Reduced representation bisulfite sequencing (RRBS) methylation profiling [31] was used in
analysis of ANGPTL8. The studied tissues were histologically normal adult samples specified in the figures,
including brain (prefrontal cortex), muscle (psoas), heart (left ventricle). Cell cultures were cell strains except for
the lymphoblastoid cell line (LCL, GM12878) and the cancer cell lines (HepG2, K562, MCF-7 and LNCaP). The
color code for the 18-state chromatin state segmentation was slightly simplified from the original [28]. Enhancer
chromatin in this study denotes strong enhancer chromatin with states of 3 or 7–10 [28]. Quantification of RNA-seq
for tissues was from the GTEx database [32] using median values for reads per kilobase million (RPKM, in figures) or
transcripts per kilobase million (in Supplementary Table 1) from many samples for each tissue type. The RNA-seq
data track showing alignment of the signal with exons were from the UCSC Genome Browser (Burge tracks,
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vertical viewing range 0–1) [33]. RNA-seq data for cell cultures was from ENCODE UCSC Genome Browser tracks
as follows: transcription levels by Long RNA-seq for poly(A)+ whole-cell RNA with strand-specific analysis on
> 200 nt poly(A)+ RNA (vertical viewing range 0–30 unless otherwise indicated) and Small RNA-seq from total
RNA that was <200 nt (contigs) from Cold Spring Harbor Laboratories [29]. RNA Subcellular CAGE Localization
were from RIKEN Omics Science Center [29].

Determination of atherosclerosis-associated DMRs
For the atherosclerotic and control aorta samples (plaque and underlying aorta from an 88-year-old female with
grade VII atherosclerosis and nonatherosclerotic [Ctl] aorta from that individual), the bisulfite-seq data from
Zaina et al. [20] were used. These data were supplemented with two additional control aorta bisulfite-seq profiles
from a 34-year-old male and a 30-year-old female (Roadmap Epigenetics Project [28]). Bisulfite-seq data from the
atherosclerotic aorta (Athero A) and control aorta (Ctl A) samples were initially merged and analyzed on a site-by-
site basis by applying Fisher’s exact test to the counts of methylated and unmethylated CpG reads in each sample to
produce site-specific p-values, pi. Based on these results, candidate DMRs were then identified by determining the
joint probability of a sequence of five or more consecutive p-values (pi, pi + 1,. . . , pi + k) according to the uniform
product (UP) distribution as described in our previous study [34], where each candidate DMR was required to begin
and end with a statistically significant site. This analysis identified statistically significant regions at the 0.05 level,
and these were subsequently filtered to include only those regions with an average percent methylation difference of
at least ±20%, length greater than 250 bp and containing no gaps between consecutive sites greater than 200 bp.
Next, these samples were merged with the two additional control aorta samples [28], using custom scripts to correct
for single-bp shifts due to variable pre-processing routines. For all sites present in all four samples, logistic regression
models were fit to the counts of methylated and unmethylated reads at each CpG site to determine the statistical
significance associated with the difference in percent methylation between the atherosclerotic aorta (A) and the
three controls. Associated p-values for the comparison of athero aorta versus three control aortas were then analyzed
using our UP method to identify candidate DMRs, which were subsequently filtered as above for length, percent
methylation difference and gaps. Many atherosclerosclerosis-associated DMRs that we determined from these four
samples had been validated in a previous study of 15 pairs of atherosclerotic and control aortas subject to a more
limited DNA methylation analysis [20,35].

Statistical analyses of expression data
Expression profiles across 38 tissues (GTEx, Supplementary Table 1) [32] for selected genes were analyzed to evaluate
differences in median RNA levels with respect to liver expression using nonparametric Wilcoxon rank tests. To
robustly assess associations in expression profiles between pairs of genes, tests using both Pearson correlations on
the log2 expression values and rank-based Spearman correlations were employed.

Results
Tissue-specificity of expression of genes in the ANGPT & ANGPTL families
We first used the GTEx database [32], which contains RNA-seq data from hundreds of individuals for each tissue
type, to compare expression of ANGPT and ANGPTL family genes in 51 different kinds of human tissue to
confirm and extend our understanding of the genes’ tissue-specific expression. By examining steady-state RNA
levels rather than protein levels, we can address the tissue-specific generation of these blood-borne proteins without
the complication of their distribution through the circulatory system. All the genes in this family exhibit tissue-
specific expression (Figure 1), with the highest tissue specificity observed for ANGPTL3 and ANGPTL8 (C19orf80)
in liver, ANGPTL7 in tibial nerve and ANGPTL5 in ovary (Supplementary Table 1 and [32]). Not only do ANGPTL8
and ANGPTL3 show a strong preference for expression in liver, but also they are expressed at very high RNA levels
in this tissue, as are ANGPTL2 and ANGPTL4 in adipose (Figure 1). ANGPTL3 and ANGPTL8 are transcribed as
antisense transcripts from intron 14 of the broadly expressed DOCK7 and DOCK6 genes, respectively (Figures 2A
& Figure 3A), which encode guanine nucleotide exchange factors and displayed an inverse relationship between
the ANGPTL and host DOCK gene expression in liver. ANGPTL3 and 8 were significantly overexpressed and
DOCK7 and 6 significantly underexpressed relative to the set of 38 other tissues considered (Table 1). The other
studied genes-within-genes, which are expressed in multiple tissues, showed either a positive association of their
expression with that of the host gene (ANGPT2 /MCPH1, correlation 0.6) or no significant association (ANGPTL1
/RALGPS2 and ANGPTL2 /RALGPS1) in analyses across 39 tissues.
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Figure 1. Expression of ANGPT and ANGPTL genes in different tissues. RNA-seq data are from GTEx [32] for ten of
the available tissue types and are given as median TPM for ANGPT1 and ANGPT2 (A) and five of the ANGPTL genes
(B). Note difference scales of the y-axis in (A) and (B). For quantitative data from more tissue types and related genes,
see Supplementary Table 1.
Adipose-visc: Adipose from visceral tissue; Skel muscle: Skeletal muscle; TPM: Transcripts per million.

Table 1. Liver-specific over- or underexpression of ANGPT/ANGPTL genes that are embedded in larger host genes†.
Gene pair Significance of over- and under-expression in liver: p-value

Overexpression Underexpression

1a. ANGPTL3 6.0 × 10-8 NS

1b. DOCK7 NS 2.9 × 10-7

2a. ANGPTL8 7.9 × 10-7 NS

2b. DOCK6 NS 4.3 × 10-7

3a. ANGPTL1 NS 1.2 × 10−9

3b. RALGPS2 NS NS

4a. ANGPTL2 NS 1.0 × 10−9

4b. RALGPS1 NS 8.0 × 10-8

5a. ANGPT2 NS 1.4 × 10-7

5b. MCPH1 NS 1.0 × 10-7

†Expression analysis of five intronic gene/host gene pairs was done by comparing median expression levels for the indicated genes among 39 tissues in the GTEx RNA-seq database.
NS: Not significant.

Liver-specific enhancer & promoter chromatin & DNA hypomethylation at ANGPTL3
Consistent with its liver-specific expression, ANGPTL3 exhibited liver-specific hypomethylation that overlaps the
gene body and the vicinity of the transcription start point (TSS). In liver, strong promoter chromatin (enriched in
H3 lysine-4 trimethylation, H3K4me3, and H3 lysine-27 acetylation, H3K27ac) extended from 0.9 kb upstream
to 4.5 kb downstream of the TSS for ANGPTL3 (Figure 2B, dotted box), and, therefore, overlapped almost half
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Figure 2. ANGPTL3 displays liver-specific enhancer and promoter chromatin and DNA hypomethylation that
correlates with its liver-specific expression. (A) ANGPTL3 resides in an intron of DOCK7, a guanine nucleotide
exchange factor-encoding gene (chr1:63,047,768–63,160,178). Blue, RefSeq gene isoforms; dark red, an additional
Ensembl transcript-encoding isoform. (B) The color code indicates predicted chromatin states [28]: strong, weak, or
bivalent promoter or enhancer; transcribed; repressed (H3K27me3 strong or weak, H3K9me3 or H3K9me3 plus
H3K36me3); or low-signal chromatin. (C) TF binding in HepG2 cells as determined by TF ChIP-seq is indicated by the
given color code. (D) CpG islands [30] and bisulfite-seq tracks, which are plotted as average % methylation at CpGs;
blue horizontal bars, regions that display statistically significant hypomethylation relative to the rest of the same
genome [36]. The dotted boxes indicate the large region exhibiting liver-specific DNA hypomethylation in (D). Black
dots indicate additional regions of hypomethylation overlapping enhancer chromatin. (E) RNA-seq data from
ENCODE for individual samples [29,30] with the vertical viewing range set at 0–10 instead of 0–30 as in subsequent
figures. (F) Bar graph of RNA-seq data from multiple samples in the GTEx database [32]; see Supplementary Table 1 for
quantitative data. (G) Zoomed-in view of chromatin segmentation tracks from panel (B) showing just ANGPTL3 and
the liver-specific enhancer regions around it (chr1:63,049,440–63,091,060). All tracks are aligned and derived from the
UCSC Genome Browser with hg19 coordinates in this and subsequent figures.
ESC: Embryonic stem cell; fib: Fibroblast; HepG2: Hepatocarcinoma cell; HMEC: Human mammary epithelial cell;
HUVEC: Human umbilical vein endothelial cell; K562: Myelogenous leukemia cells; Myob: Myoblast; PBMC: Peripheral
blood mononuclear cells; Sk muscle: Skeletal muscle; TF: Transcription factor.
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Figure 3. ANGPTL8 exhibits intragenic enhancer chromatin overlapping DNA hypomethylation specifically in liver,
which has the highest expression. (A) ANGPTL8 is embedded in intron 14 of 47 introns of DOCK6
(chr19:11,339,832–11,363,081). (B–D) Predicted chromatin states, TF binding sites and DNA methylation profile from
bisulfite-seq as in Figure 2. Dotted boxes in (B) and (C) indicate regions where liver-associated DNA hypomethylation
was seen. (E) DNA methylation profiling by RRBS (with an 11-color gradient) including cell cultures for which
bisulfite-seq DNA are not available. (F) and (G), RNA seq data as in Figure 2. MCF-7 and LNCaP, breast and prostate
cancer cell lines, respectively; blue highlighting in panel (C), two neighboring RXRA sites and a HNF4A site that
overlaps one of them.
ESC: Embryonic stem cell; Expr: Expression; fib: Fibroblast; HepG2: Hepatocarcinoma cell; HMEC: Human mammary
epithelial cell; HUVEC: Human umbilical vein endothelial cell; K562: Myelogenous leukemia cells; LCL: Lymphoblastoid
cell line; Myob: Myoblast; PBMC: Peripheral blood mononuclear cells; RRBS: Reduced representation bisulfite
sequencing; Sk muscle: Skeletal muscle; TF: Transcription factor.
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of the 8.8-kb gene (Figure 2G). Liver-specific enhancer chromatin (enriched in H3 lysine-4 monomethylation,
H3K4me1, and H3K27ac) was found upstream of the ANGPTL3 promoter region, immediately downstream
of the 3′ end of the gene and 15 kb downstream of the 3′ end of the gene. These enhancer chromatin regions
were all inside the body of the oppositely oriented DOCK7, the host gene for ANGPTL3. Small regions of low
methylation overlapped these enhancer chromatin segments specifically in liver (Figure 2D, black dots). At the
enhancer chromatin immediately downstream of ANGPTL3 there was an overlapping gene (AL138847.1) aligned
with a small single-exon transcript (ENST00000593719) (Figure 2A) [37]. This gene, which was not previously
described as being associated with enhancer chromatin, is expressed almost exclusively in liver, like ANGPTL3
(Figure 2F), and therefore might help upregulate ANGPTL3 in liver in cis or trans, like many other ncRNA genes
very close to coding genes [38].

HepG2, a hepatocellular carcinoma cell line often used as a model for human hepatocytes [31], displayed enhancer
chromatin upstream and downstream of ANGPTL3 (Figure 2B). It was the only examined cell line that expressed
this gene (Figure 2E). However, the steady-state levels of ANGPTL3 RNA in HepG2 cells are <1% those of
liver. Consistent with this difference in expression, HepG2 had enhancer chromatin near the TSS instead of
promoter chromatin and had less enhancer chromatin in its vicinity than did liver. Transcription factor (TF)
chromatin immunoprecipitation/DNA sequencing (ChIP-seq) profiles of HepG2 indicated that liver/HepG2
enhancer chromatin regions downstream of ANGPTL3 were bound by broadly expressed and enhancer-related
TFs, EP300 and CEBPB; the liver-associated TF HNF4A; and RXRA, which codes for an activator of the liver-
associated LXRA/NR1H2 TF (Figure 2C). In addition, HNF4A, RXRA, EP300 and CEBPB were bound within
4 kb of the DOCK7 TSS in promoter or enhancer chromatin (Figure 2C) and also 44 kb upstream of the DOCK7
TSS in enhancer chromatin seen preferentially in liver (data not shown).

In a study of dyslipidemia patients, a blood lipid-linked Genome-Wide Association Study (GWAS) identified
a single nucleotide polymorphism (SNP, rs4240705) that was associated with RXRA and exhibited a significant
gene–gene genetic interaction with only one other gene, ANGPTL3 [39]. Interestingly, when we looked at the
chromatin state of that SNP, which we found to have no high linkage disequilibrium (LD) proxies, we found that
this SNP was embedded in intron 5 of RXRA in enhancer chromatin seen in liver (data not shown). Additionally,
we noticed that the ANGPTL3 /DOCK7-related lead SNP (rs12130333) in that study was associated with eight
LD proxies (R2 >0.8), two of which (rs12401837 and rs12403212) overlap an enhancer chromatin segment that
is 44-kb upstream of the DOCK7 TSS and is found preferentially in liver and HepG2 (data not shown). Therefore,
yet another liver-associated enhancer chromatin segment might help regulate ANGPTL3, this one in an intergenic
region 127 kb downstream of ANGPTL3 and much closer to the DOCK7 TSS than to the ANGPTL3 TSS. The
significant underexpression of DOCK7 in liver (Table 1) and the lack of liver specificity for ATG4C, the nearest
upstream gene to DOCK7 (95 kb upstream; data not shown), make it likely that this is another ANGPTL3-distal
enhancer that regulates ANGPTL3.

Liver-specific DNA hypomethylation in a 15-kb liver super-enhancer overlapping ANGPTL8
The largest amount of both enhancer and promoter chromatin overlapping or adjacent to ANGPTL8 was seen
in liver (Figure 3B), which is consistent with liver being the predominant tissue expressing this gene (Figure 1B).
Although a database for super-enhancers (dbSuper [40]), does not list liver as having a super-enhancer in this region,
this 14.6-kb enhancer/promoter region should qualify as one according to the definition of super-enhancers as
>3 kb regions consisting mostly of strong enhancer chromatin [41,42]. Much of this ANGPTL8 super-enhancer
exhibited liver-specific DNA hypomethylation, which overlapped ANGPTL8’s host DOCK6 gene. Adipose, the
second highest-expressing tissue also displayed a super-enhancer in this region although adipose tissue expresses
this gene at much lower levels than liver (Figure 1B). However, adipose lacked the promoter and enhancer DNA
hypomethylation of liver and had enhancer chromatin rather than promoter chromatin near the TSS (Figure 3B &
D), which suggests the importance of these epigenetic features for regulating the levels of expression of ANGPTL8.

Aorta and heart, which have very low or negligible expression of ANGPTL8, exhibited DNA hypomethylation
overlapping part of the far-downstream region of the liver super-enhancer. This subregion exhibited high DNA
methylation in liver (Figure 3D, pink highlighting), which we propose might favor ANGPTL8 expression. Enhancers
and super-enhancers are generally associated with DNA hypomethylation and increased DNA methylation at
enhancers is implicated in negatively regulating their activity [43,44], Nonetheless, high DNA methylation of
subregions within enhancers has also been correlated with enhancer activity [45,46].
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Like liver, HepG2 cells had promoter chromatin immediately upstream of the ANGPTL8 TSS as well as much
enhancer chromatin in and around ANGPTL8. These chromatin marks correlate with high levels of expression of
this gene in HepG2 cultures (Figure 3B & F). According to ChIP-seq profiles, the liver-associated TF HNF4A
and RXRA bound to promoter or enhancer chromatin near or adjacent to ANGPTL8 in HepG2 (Figure 3C).
The ChIP-seq evidence for in vivo binding of RXRA to a region ∼2.8 kb upstream of the ANGPTL8 TSS in
HepG2 cells matches the in vitro evidence for this binding [47]. RXRA and HNF4A were bound to another HepG2
enhancer chromatin region ∼1 kb further upstream (blue highlighting, Figure 3C). Additional HepG2 ChIP-
seq profiles showed that RNA polymerase II (which often catalyzes low-level transcription from enhancers [48])
and enhancer-associated CEBPB and EP300 were bound nearby while the chromatin looping associated protein
CCCTC-binding factor (CTCF), which is involved in enhancer-promoter looping, and MAFK, a broadly expressed
enhancer-associated TF, were bound to the ANGPTL8-downstream putative enhancer region. Although bisulfite-
seq data for HepG2 cells are not available for evaluating DNA methylation around this gene, RRBS profiles
(which provide much lower-coverage than bisulfite-seq) are publicly available for these cells [31]. RRBS revealed
DNA hypomethylation in the proximal portion of this enhancer chromatin specifically in HepG2 as well as in
hepatocytes and liver (dotted box, Figure 3E).

In HepG2 cells, a predicted insulator is ∼7 kb downstream of the DOCK6 TSS and ∼11 kb downstream of
the HepG2 enhancer region according to ENCODE chromatin segmentation tracks (data not shown, [29,49]).
Similar DOCK6 RNA levels were found in HepG2, lung fibroblasts (NHLF), epidermal keratinocytes (NHEK),
embryonic stem cells (H1 ESC), myoblasts, LCL and erythroleukemia (K562) cell cultures (data not shown [29])
even though only HepG2 cells had ANGPTL8-linked enhancer chromatin. The predicted insulator could minimize
the interaction of the ANGPTL8-associated enhancer chromatin with the DOCK6 promoter thereby preventing
overexpression of DOCK6 (Table 1).

Tissue-specific enhancer chromatin & DNA hypomethylation associated with ANGPTL1, ANGPTL2,
ANGPTL4 & ANGPT1
Four other ANGPT/ANGPTL genes, ANGPTL1, ANGPTL2, ANGPTL4 and ANGPT1, exhibited enhancer
and promoter chromatin preferentially in tissues and cell cultures in which these genes are most highly expressed
(Supplementary Figures S1–S4). Complicating the analysis of enhancer chromatin is that ANGPTL1 and ANGPTL2
(like ANGPTL3 and ANGPTL8) are expressed as transcripts antisense to their host genes, RALGPS2 and RALGPS1,
respectively. Differences in tissue-specific expression (Supplementary Table 1) of these two intronic-gene/host-gene
pairs allow the probable assignment of many of the enhancer chromatin segments to one or the other genes of
these gene pairs. For example, the presence of enhancer chromatin far upstream of ANGPTL1 and downstream of
its host gene correlated much better with expression of ANGPTL1 than with that of the host gene (Supplementary
Figure 1). However, there was not always a strict correlation between the amount of enhancer chromatin and
the level of gene expression. For example, some of the liver/HepG2-specific enhancer chromatin associated with
ANGPTL4 (Supplementary Figure S3B, [yellow dotted boxes]) was not observed in adipose tissue and normal
human epidermal keratinocyte (NHEK) cell cultures despite the higher expression of this gene in adipose and
NHEK than in liver and HepG2 cells (Figure 1 & Supplementary Figure S3D & E).

ANGPT1/ANGPTL1, 2 and 4 expression also correlated with tissue-specific DNA hypomethylation in enhancer
or promoter chromatin (Supplementary Figures S1–4). In the middle of the long intron 1 of ANGPT1 were two
short hypomethylated DMRs (0.6 and 2 kb) that overlap short enhancer or intragenic promoter chromatin regions
in aorta and ovary; both tissues moderately express this gene (arrows, Supplementary Figure S4B and C). In contrast,
ANGPTL1, ANGPTL2 and ANGPTL4 displayed hypomethylated DMRs that cover just a small portion of their
tissue-specific enhancer chromatin (Supplementary Figures S1–3). The DMRs’ enhancer subregion specificity could
not be explained just by different intensities of H3K27ac or H3K4me1 signals (data not shown).

Atherosclerosis-associated changes in DNA methylation at ANGPT2 & the host gene for miR-145
that probably affect ANGPT2 RNA levels
ANGPT2 resides in antisense orientation within intron 12 of the long isoform (237 kb) of MCPH1, a broadly
expressed, DNA damage-response gene (Figure 4A). Aorta has higher levels of RNA from this gene than most
other tissues although the levels are still only moderate (Figures 1A & 4F). ANGPT2 regulates normal angiogenesis.
Its encoded protein also affects the progression of various diseases but through complex mechanisms that involve
regulation of vascular homeostasis and inflammation as well as angiogenesis [9,50]. Tissue-specific differences in
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Figure 4. ANGPT2 displays atherosclerosis-associated changes in DNA methylation in aorta. (A) ANGPT2 resides in
an intron of long isoforms of Microcephalin 1, MCPH1 (chr8:6,258,632-6,509,865). (B) Chromatin state segmentation
as in Figure 2. (C) Statistically significant DMRs (hypermethylated in red or hypomethylated in blue) in an
atherosclerotic aorta sample versus control aorta from the same individual or vs three control aorta samples as
determined from analysis of bisulfite-seq profiles. (D) CpG islands and bisulfite-seq profiles; green arrow, exon-1
subregion previously found to be hypomethylated in cancers [51]. (E) and (F), RNA-seq profiles as described for
Figure 2. (G) Zoomed-in view of chromatin segmentation tracks from panel (B) showing just ANGPT2 and most of the
aorta-specific enhancer regions around it (chr8 : 6, 340, 035–6, 456, 867). Dotted boxes, regions of aorta-specific DNA
hypomethylation and enhancer chromatin; green arrows, previously studied exon 1 region described in the text.
DMR: Differentially methylated region; fib: Fibroblast; HepG2: Hepatocarcinoma cell; HUVEC: Human umbilical vein
endothelial cell; LCL: Lymphoblastoid cell line; Myob: Myoblast; PBMC: Peripheral blood mononuclear cells; RRBS:
Reduced representation bisulfite sequencing; Sk muscle: Skeletal muscle; RPKM: Reads per kilobase million.
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promoter and enhancer chromatin profiles around ANGPT2 generally correlated with the gene’s tissue-dependent
differences in steady-state levels of its mRNA (Figure 4B, E–G). The major exception was that aorta had more
enhancer chromatin and hypomethylated DMRs in this region than did adipose, which, surprisingly, had higher
steady-state levels of ANGPT2 RNA (Figure 4F; Supplementary Table 1). This is likely due to differential mRNA
stability (see description of miR-145 below).

Using published DNA methylation profiles [20,28], we determined statistically significant atherosclerosis-
associated DMRs in aorta (9220 total DMRs [35]). Remarkably, ANGPT2 had nine atherosclerosis-related DMRs
in its vicinity. Seven of these were hypermethylated DMRs and overlapped ANGPT2 aorta-specific enhancer
chromatin within the body of the long isoform of MCPH1 (Figure 4C, red bars). In addition, we found an
atherosclerosis-associated hypomethylated DMR immediately downstream of the ANGPT2 TSS in a region of
weak promoter chromatin in aorta (Figure 4C, blue bars). The hypomethylation was ∼1 kb downstream of a
65-bp exon-1 subregion (green arrow, Figure 4D) that had been studied by Martinelli et al. [51] and found to be
hypomethylated in the subset of chronic lymphocytic leukemias that had features of poorer prognosis and exhibited
higher expression of ANGPT2.

MicroRNAs play critical roles in atherosclerosis [52]. A microRNA, miR-145, is expressed at extraordinarily high
levels in aorta and other smooth muscle-rich tissues (Supplementary Table 1) and targets ANGPT2, among other
genes, in breast cancer cells [53,54] and in brain microvascular endothelial cells [55]. We found many statistically
significant atherosclerosis-associated hypermethylated DMRs near miR-145-encoding sequences in aorta (Figure
5C); however, the coordinates of the gene encoding this miRNA are uncertain. Most of these DMRs are embedded
in CARMN, the long non-coding RNA (lncRNA) gene that overlaps DNA sequences coding for miR-145 (hsa-
miR-145-5p) and multiple lncRNA isoforms (Ensembl isoforms in Figure 5A) necessary for differentiation of
cardiac precursor cells [56]. These atherosclerosis-linked hypermethylated DMRs are located in enhancer chromatin
regions that were hypomethylated in normal aorta relative to other normal tissues (Figure 5C & D). There was no
evidence for atherosclerosis-linked DNA hypermethylation in the putative MIR145 promoter region (green arrow,
Figure 5G) described in many studies of cancer-associated ‘promoter’ methylation of MIR145 often coupled with
lower levels of miR-145 [53,57,58]. This putative promoter region extends from −1.4 kb to the beginning of the
miR-145-encoding sequences and was shown to drive expression of a reporter gene in transfection experiments [59].

Cancer-associated DNA hypermethylation in this subregion might actually be acting on enhancer chromatin
(both overlapping CARMN and a distinct region starting ∼10 kb downstream of the gene) rather than on the
promoter(s) for MIR145. The main promoter region of the 26-kb CARMN is 22–23 kb upstream of the 88
bp RefSeq MIR145 and the 2.5 kb Ensembl MIR145 (ENSEMBL00000602315). In addition, none of the ten
CARMN-overlapping Ensembl transcript isoforms that were found to be expressed in adult cardiac precursor
cells [60] overlap sequences encoding miR-143, which, like miR-145, is very highly expressed in aorta (Figure 5A &
H). Nonetheless, several of these Ensembl isoforms have been mapped to an ∼17.5-kb Ensembl gene that is named
MIR143HG (Figure 5H). As shown in Figure 5, strong promoter chromatin for the examined miR-145 and/or
miR-143 expressing tissues and cell cultures is seen only at the 5′ end of CARMN, with the exception of heart,
which also displays promoter chromatin 4.3 kb upstream of miR-145-encoding sequences. Examination of RNA-
seq intensities across CARMN and evaluation of 5′ cap analysis of gene expression (CAGE) profiles of cell cultures
(Figure 5F & G and data not shown) suggest a TSS only at the 5′ end of CARMN for osteoblasts, myoblasts and
an LCL. However, lung fibroblasts may use a TSS for MIR145 or MIR143 closer to the sequences encoding these
miRNAs or have different stability of precursors to these miRNAs (Figure 5G). We found that the tissue expression
profiles for the Ensembl 106-bp MIR143, 2.5 kb MIR145 and the composite 17.5 kb Ensembl MIR143HG are
very similar (Figure 5H). Our analysis suggests that the aorta/ovary/heart super-enhancer spanning the 26-kb
CARMN region upregulates MIR143 and MIR45 whatever the exact locations of the probably alternate TSS for
these miRNA genes, and is likely to be susceptible to disease-related downregulation by DNA hypermethylation.

Discussion
In this study we describe positive correlations between tissue-specific expression, enhancer chromatin and DNA hy-
pomethylation for the atherosclerosis-related genes ANGPTL3, ANGPTL8, ANGPT2, ANGPTL1 and ANGPTL2,
which are embedded within introns of larger genes, and for the stand-alone ANGPT1 and ANGPTL4 genes
(Figure 6). The intricate tissue-specific epigenetic profiles for these genes and their surrounding sequences can
reflect their multiple regulatory roles in normal tissues. For example, we found that the liver-specific expression of
ANGPTL3 and ANGPTL8 is accompanied by liver-specific DNA hypomethylation overlapping some (ANGPTL3)
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Figure 5. The gene encoding miR-145 is embedded in an aorta/ovary/heart/osteoblast/lung fibroblast
super-enhancer that overlays atherosclerosis-associated hypermethylated regions. (A) Two RefSeq isoforms (CARMN)
that overlap the miR-145- and miR-143-encoding sequences and six of the ten Ensembl isoforms in this region,
including the only Ensembl isoform that overlaps miR-143-encoding DNA (chr5 : 148, 781, 015–148, 839, 604). (B)
Chromatin state segmentation as in Figure 2. (C) Atherosclerosis-associated DMRs as in Figure 4. (D) Bisulfite-seq as in
Figure 2. (E) Short RNA-seq (<0.20 kb); the position of the sequences encoding the pre-miRNAs is indicated. (F),
RNA-seq (‘Long’ RNA-seq for RNAs >0.2 kb) as in Figure 2 except that the vertical viewing range was 0–300 instead of
0–30 as in other figures. (G) CAGE (TSS from Hidden Markov Modeling for pooled replicates; [29]); green arrow, the
position of the putative 1.4-kb MIR145 promoter region mentioned in the text. (H) Median RPKM values from
RNA-seq for tissues. The CpG islands are not shown because there were none in this region that fit the definition used
by the UCSC Genome Browser [30].
CAGE: 5´ cap analysis of gene expression; DMR: Differentially methylated region; HUVEC: Human umbilical vein
endothelial cell; PBMC: Peripheral blood mononuclear cells; Sk muscle: Skeletal muscle; RPKM: Reads per kilobase
million.
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Figure 6. A cartoon summarizing correlations of tissue-specific DNA hypomethylation, active promoter or enhancer
chromatin with tissue-specific expression of the studied ANGPT or ANGPTL genes. 2, L1, L2, L3, L4 and L8 denote
ANGPT2, ANGPTL1, ANGPTL2, ANGPTL3, ANGPTL4 and ANGPTL8.
Assoc: Associated.

or much (ANGPTL8) liver-specific enhancer chromatin inside their host genes. The nonuniform distribution
of DNA hypomethylation along their enhancer chromatin segments suggests functionally important subregions
of these enhancers [44,45,61]. Moreover, our comparisons of the tissue-and cell type-specificity of the epigenetics
and transcriptomics in gene neighborhoods helps assign enhancers to their target genes in vivo in cases of genes-
within-genes like the ANGPTL3 /DOCK7 gene pair. The liver- and HepG2-specific enhancer chromatin seen
downstream of ANGPTL3 and within the body of the DOCK7 gene is probably upregulating only ANGPTL3,
given the liver-preferential expression of this gene and the underexpression of DOCK7 in liver. Similar findings
for the ANGPTL8/DOCK6 gene pair suggest that increases in host gene expression for such inversely expressed
intronic–gene/host–gene pairs might be a mechanism to down-modulate expression of their intronic genes.

In contrast, some of the enhancer chromatin near or at ANGPT2 and its oppositely oriented host gene MCPH1
might represent enhancers shared between these two genes because we found a significant positive correlation
between the presence of this enhancer chromatin and expression of both of these genes among different tissues. Our
finding that there is a negative correlation between ANGPTL3 and DOCK7 expression is consistent with results
from a previous study of pluripotent cells [62]. Unlike the directly correlated ANGPT2 and MCPH1 expression
that we described in Results, Kopparapu et al. [24] reported an inverse relationship between expression of these
two overlapping genes in chronic lymphocytic leukemia blood samples. Such an inverse relationship might exist
only in cancers, given the extensive epigenetic derangements that accompany oncogenesis and tumor progression.
Moreover, we observed that blood had the lowest expression of both ANGPT2 and host gene MCPH1 relative
to other tissues (Supplementary Table 1) and exhibited tissue-specific hypermethylation at the promoter region
of ANGPT2 (Figure 4). These findings are also inconsistent (at least in normal tissues) with the hypothesis of
Kopparapu et al. [24] that MCPH1 protein is involved in recruiting DNA methyltransferases for establishing such
hypermethylation.
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Comparisons of the DNA or chromatin epigenetics of many different normal tissues and cell types, like those
made in the present study, provide insights into transcription regulatory elements that can be difficult to obtain
from analysis of expression quantitative trait loci (eQTLs) or GWAS SNPs. For example, ANGPTL3 has hundreds
of SNPs throughout the DOCK7 host gene that are associated with coronary artery disease and in very strong
LD [63]. In a study of adipose eQTLs and GWAS SNPs for high-density lipoprotein cholesterol that was focused
on the neighborhood of ANGPTL8 [47], only a minority of the ∼20 index SNPs or their LD proxies overlapped
enhancer chromatin in liver, and these were all immediately upstream of the ANGPTL8 promoter. Our analysis of
epigenetic profiles indicates that the enhancer chromatin segments located within the ANGPTL8 gene body and
far downstream of the gene also need to be considered for their possible contribution to upregulation of ANGPTL8
expression in liver. Moreover, the ∼15-kb enhancer chromatin region that spans ANGPTL8 intragenic, upstream
and downstream sequences and that overlaps three liver-specific subregions of DNA hypomethylation (Figure 3)
probably functions as a super-enhancer [41,42]. Enhancer chromatin segments within the super-enhancer may be
involved in interactions potentiating their especially strong enhancer activity and making them highly responsive
to various types of cell signaling [64].

Much of the relevance of ANGPTL8 protein to atherosclerosis involves its interaction with full-length ANGPTL3
or the biologically active C-terminal ANGPTL3 fragment, which it helps to generate [6,14,18]. ANGPTL3, which
is specifically expressed in liver, plays critical roles in determining the levels of cholesterol and triglycerides in
circulating blood [15]. It has also been reported to induce endothelial cell adhesion and migration, which are
correlated with angiogenesis [65]. The association of a cardiovascular phenotype (significant reduction in plasma
lipids and coronary artery disease) with heterozygous loss-of-function from ANGPTL3 mutations [16] suggests that
normal expression of this gene is especially closely regulated. Both ANGPTL8 and ANGPTL3 enhancer chromatin
displayed binding of RXRA and the liver-associated TF HNF4A in HepG2 cells. RXRA heterodimerizes with the
liver-associated TF LXRA to give a ligand-dependent TF that is sensitive to lipid levels [66]. Despite these TFs also
binding near the DOCK7 TSS, DOCK7 is underexpressed in liver relative to other tissues (Table 1). Therefore,
these liver-associated transcription regulatory elements far from ANGPTL3 and closer to the 5′ end of DOCK7
probably upregulate transcription from ANGPTL3 and not from DOCK7. Moreover, the evidence for binding
of a RXRA:LXRA heterodimer to liver-specific enhancer chromatin in the neighborhood of ANGPTL3/DOCK7
suggests that the previously demonstrated induction of ANGPTL3 by LXR-selective agonists likely involves binding
to the ANGPTL3 enhancer as well as to the promoter [15,66].

Using publicly available DNA methylation profiles [20] and our own more stringently determined atherosclerosis-
related DMRs [35], we found that ANGPT2 was the only ANGPT/ANGPTL gene that contains multiple and
statistically significant atherosclerosis-associated DMRs. ANGPT2 protein, which is implicated in various diseases
including atherosclerosis, has been related to endothelial cell-directed vascular remodeling and angiogenesis as well
as to increasing plasma triglyceride levels and formation of fatty streaks in aorta [7]. However, unlike ANGPT1,
ANGPT2 can destabilize vascular endothelial monolayers as well as stabilize them depending on whether or not
the surrounding tissue is inflamed [7]. Studies of cancer and brain microvascular endothelial cells indicate that
ANGPT2 expression can be regulated at the post-transcriptional level by miR-145 [26,55]. Furthermore, miR-145 is
important in atherosclerosis because of its role in controlling genes involved in SMC phenotype-switching [67,68].
The approximately eightfold higher levels of miR-145 in aorta than in adipose tissue could explain the twofold
lower steady-state levels of ANGPT2 RNA in aorta despite the presence of much more enhancer chromatin at or
near ANGPT2 in aorta than in adipose tissue.

The large lncRNA gene CARMN, which overlaps the sequences encoding miR-145 and miR-143 and a smooth
muscle/cardiac muscle super-enhancer, had many atherosclerosis-associated hypermethylated DMRs (Figure 5).
This atherosclerosis-linked hypermethylation at the super-enhancer is predicted to decrease enhancer activity
because extensive DNA hypermethylation at enhancers is generally associated with lower expression of their
associated genes [43–45]. Less miR-145/143 in SMCs [69], the main cell type in aorta, could mean less of these
miRNAs in the neighboring endothelial aorta cells because SMCs can transfer miR-145/143 to endothelial cells to
modulate their phenotype [70]. Therefore, atherosclerosis-linked CARMN hypermethylation and ANGPT2 intron
1 hypomethylation (Figure 4) [71] could act at the translational and transcriptional levels respectively to increase
ANGPT2 protein levels. In contrast, the hypermethylation of ANGPT2 at multiple atherosclerosis-associated
DMRs overlapping aorta enhancer chromatin is predicted to decrease expression of this gene in atherosclerotic
aorta. These seemingly opposite results might reflect the varied functions of ANGPT2 at different stages of
atherosclerosis [10] and the cellular heterogeneity in the samples. Indeed, a caveat in many of our epigenetic analyses
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is that tissue heterogeneity can lead to underestimation of specific epigenetic differences within the tissues, which
seems to be the case for tissue-specific DNA methylation changes in several of the studied genes at enhancer or
promoter chromatin in adipose tissue (Figure 4 & Supplementary Figures 1, 2 & 4).

The central role of enhancers in the regulation of tissue-specific and disease-related transcription [72] is illustrated
for ANGPT/ANGPTL genes by a study of zebrafish angptl4 [73]. This gene’s mammalian counterpart is implicated in
the regulation of lipid and glucose metabolism, energy homeostasis, redox regulation, angiogenesis, inflammation,
endothelial cell integrity, cancer and obesity [6,74]. Intestine-specific expression of a reporter transgene in zebrafish
is driven by the intronic angptl4 enhancer but not by this gene’s promoter [73]. This intestine-specific enhancer
appears to be the most important cis-regulatory angptl4 element for microbiota-associated peripheral fat-storage in
zebrafish. In HepG2 cells, enhancer chromatin in the last exon of ANGPTL4 was demonstrated to form a stable
higher order chromatin structure with the promoter of the gene in response to glucocorticoid treatment [75], which
suggests, along with the current study (Supplementary Figure S4), that gene-body enhancer chromatin is important
for expression of this gene in humans too.

Nonetheless, most studies of cancer-linked changes in gene expression and epigenetics at ANGPT/ANGPT and
the ANGPT2 mRNA-targeting MIR145 examine just sequences in their known or presumptive promoter region or
sequences immediately downstream of the 5′ end of the gene [51,57]. Examining only promoter region methylation
at cancer-related genes such as ANGPTL4 and ANGPTL2 in tumors [25,76] overlooks possible oncogenic DNA
hypermethylation at enhancer sequences. Such a limited approach to cancer epigenetics at ANGPT/ANGPTL
genes is commonly used although it also misses detection of possible oncogenic enhancer DNA hypomethylation
that might upregulate neoangiogenesis in stromal tissues near solid cancers. Lack of attention to enhancers also
presents a problem in disease-associated DNA methylation studies focusing on reactivation of a hypermethylated
promoter by treatment with a global DNA methylation inhibitor. Among the many genes examined in that type
of study are MIR145 and ANGPTL2 [51,53,58]. Global demethylating agents can affect the gene of interest not only
by trans effects due to methylation changes at other genes but also by cis effects at unexamined enhancers as well
as at promoters. An additional complication for MIR145 is the uncertainty as to whether the sequences tested for
cancer-linked DNA methylation changes were acting as part of promoter or enhancer elements for the gene. Our
findings from evaluating the relationships between tissue-specific gene expression and epigenetics can help to more
systematically guide the development of diagnostic and prognostic tools and of DNA or RNA-based therapies
for cancers, cardiovascular diseases, and other diseases that are critically affected by ANGPT/ANGPTL-encoded
proteins or the ANGPT2-regulatory miR-145 [6,7,77–79].

Conclusion
The many roles of ANGPT/ANGPTL proteins in development are reflected in their tissue-specific expression.
Here, we have shown that these expression profiles can be correlated with tissue-specific epigenetics. Frequent
DNA hypomethylation associated with ANGPT or ANGPTL family genes was seen specifically in subregions of
tissue-specific enhancer chromatin as well as at promoter chromatin. We have identified likely intragenic and
intergenic proximal or distal enhancers that could upregulate transcription of ANGPT /ANGPTL genes, including
distal enhancers residing in host genes harboring five of the ANGPT /ANGPTL genes. These enhancer chromatin
regions and their DNA methylation status should be considered in future studies of the many relationships of
ANGPT /ANGPTL genes to vascular, neoplastic, immunological and metabolic diseases.

Future perspective
Our research indicates the importance of examining changes in enhancers and DNA methylation associated
with ANGPT and ANGPTL genes in future studies of atherosclerosis. In addition, our findings demonstrate
the need for future experiments on disease-relevant cell culture and mouse models to test directly for postu-
lated enhancer/promoter interactions, especially for the genes-within-genes that we analyzed, and for proposed
microRNA–mRNA interactions. Moreover, it is compelling to extend studies of atherosclerosis-associated changes
in DNA methylation in aorta to multiple samples of disease and control aortic arch tissue from different individuals
and to include single-cell analysis of both chromatin and DNA epigenetics in aortic SMCs and endothelial cells.
Optimally, such epigenetic changes should be documented with single-nucleotide resolution. Given the critical roles
ascribed to many of the studied ANGPT/ANGPTL genes in cancer, the proposed future studies of their chromatin
and DNA epigenetics compared with their expression in disease models should include examining cancer formation
and metastasis as well as atherosclerosis.
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Summary points

• ANGPT1 and 2 and ANGPTL1, 2, 3, 4 and 8 regulate vascular permeability and remodeling, inflammatory
responses and lipid and glucose metabolism. All display tissue-specific enhancer and promoter chromatin that
correlates with their expression.

• Five of the small genes encoding these proteins are located in an intron of a large gene and display distal
tissue-specific enhancer chromatin that is likely to upregulate the ANGPT/ANGPTL gene rather than the host
gene.

• Two of the genes-within-genes (ANGPTL3 /DOCK7 and ANGPTL8 /DOCK6) showed a negative association of
expression of the intronic gene and that of the host gene; the other three displayed either a positive association
(ANGPT2 /MCPH1) or no significant association (ANGPTL1 /RALGPS2 and ANGPTL2 /RALGPS1).

• Enhancer chromatin that probably regulates ANGPT/ANGPTL genes is newly described for the following gene
regions: gene-downstream for ANGPTL3 (at the 1.8-kb AL138847 gene), ANGPTL8, ANGPT2 and ANGPTL2 ;
gene-upstream for ANGPTL3, ANGPT2, ANGPTL1, ANGPTL4 and ANGPT1 ; and intragenic for all seven studied
ANGPT/ANGPTL genes.

• Tissue-specific DNA hypomethylation was seen in subregions of the enhancer chromatin for all the genes and also
at the promoter region for many of the genes.

• Disease-related changes in the epigenetics of ANGPT/ANGPTL genes were evidenced by the
atherosclerosis-associated changes in DNA methylation in enhancer and promoter region sequences at ANGPT2.

• Atherosclerosis-linked changes in DNA methylation were also seen near the DNA sequences encoding miR-145, a
miRNA that was previously implicated in regulating ANGPT2 mRNA translation in cancer.

• The loss of normal fine-tuning of expression of ANGPT /ANGPTL genes in atherosclerosis, inflammatory and
metabolic diseases, and cancer is likely to include often overlooked changes in enhancer activity.
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