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Abstract: In December 2019, the novel coronavirus disease 2019 (COVID-19) appeared. Being highly
contagious and with no effective treatment available, the only solution was to detect and isolate
infected patients to further break the chain of infection. The shortage of test kits and other drawbacks
of lab tests motivated researchers to build an automated diagnosis system using chest X-rays and CT
scanning. The reviewed works in this study use AI coupled with the radiological image processing
of raw chest X-rays and CT images to train various CNN models. They use transfer learning and
numerous types of binary and multi-class classifications. The models are trained and validated on
several datasets, the attributes of which are also discussed. The obtained results of various algorithms
are later compared using performance metrics such as accuracy, F1 score, and AUC. Major challenges
faced in this research domain are the limited availability of COVID image data and the high accuracy
of the prediction of the severity of patients using deep learning compared to well-known methods of
COVID-19 detection such as PCR tests. These automated detection systems using CXR technology
are reliable enough to help radiologists in the initial screening and in the immediate diagnosis of
infected individuals. They are preferred because of their low cost, availability, and fast results.

Keywords: COVID-19; radiology; deep learning; CT scanning; chest X-rays; transfer learning

1. Introduction

Coronavirus disease (COVID-19), caused by SARS-CoV-2, is one of the biggest chal-
lenges of the 21st century. The entire world is battling against this virus, which has affected
182,302,122 persons and has taken the lives of 3,947,958 individuals worldwide as of 29 June
2021 [1]. The source of its origin still remains undiscovered. The WHO (World Health
Organization) declared it as a pandemic on 11 February 2020 because of the widespread
infection rate across China and other countries within a span of a few months.

It is a respiratory disease and is highly contagious in all age groups. Fever, sore throat,
headache, cough, fatigue, and body pain are some of the known symptoms. The period
between infection and the onset of symptoms may range from 2 to 14 days. It spreads
via airborne droplet, and infection is caused by coming into contact, directly or indirectly,
with infected individuals. Despite the fact that vaccines are now being developed and
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distributed, for countries with large populations such as India, the challenge still ongoing.
It would take years to vaccinate every individual in the country twice. Until then, social
distancing and the isolation of infected patients is the only preventive way to break the
chain of infection.

The most widely used diagnosis method is RT-PCR (Reverse Transcription-Polymerase
Chain Reaction) tests. These testing kits are expensive and take 6 to 8 h to test a single sam-
ple. They also have high false-negative and false-positive rate due to their low sensitivity.
Therefore, chest radiography consisting of chest X-rays (CXRs) and chest tomography (CT)
scans can be further possible solutions for the detection of COVID-19 in early stages. The
wide availability of already-installed X-ray machines and CT rooms in hospitals provides
an added advantage. In this study, CXRs were preferred over CT scans to avoid CT room
disinfection. Moreover, X-rays have lower ionizing radiation and are cheaper than CT scans.
Studies show that COVID-19 leaves traces of some radiological signatures which can be
identified in chest X-rays. However, these signatures can only be interpreted and analyzed
by expert radiologists. This increases the chances of error and delays the process of COVID
detection. Hence, there is a need for an automated diagnosis system that processes CXR
and CT scan images and produces good COVID-19 detection results.

Clinical cases claim that ultrasound and chest CT perform better in excluding COVID-
19 infection than in differentiating it from other respiratory diseases. Thoracic CT imaging is
characterized by high specificity and low detection sensitivity to asymptomatic individuals.

Indeed, instead of the known quantitative CT values, the distinction of COVID-19 from
non-COVID-19 cases can be based on radiomic characteristics since the latter performs
better than the classical quantitative CT with high values of precision, specificity, and
sensitivity metrics [2].

Chest radiography involves transmitting X-rays through a patient’s chest which are
reconstructed into medical images by transmitting them into radiation detectors. Figure 1
shows the CXR findings of an infected chest. These infected images are then examined
and interpreted by expert radiologists. This manual process is prone to error and thus
does not give high sensitivity. Indeed, according to [3], for several reasons, the accuracy
of reports of radiologists when interpreting CXRs may not always be perfect due to some
unavoidable errors. These errors are sometimes systemic and sometimes human. Artificial
intelligence has proved itself worthy because of its high accuracy and prediction rates. In
medical imaging, AI (artificial intelligence) is used to analyze and group similar patterns
based on their characteristic features in image data. Recent studies proved that this can be
used to detect COVID-19 and other similar lung diseases such as pneumonia.
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The entire medical community is focused on the diagnosis, effective treatment, and
containment strategies. This study focuses on advancing the technological tools and
solutions with the contribution of various deep learning methodologies. Deep learning is
advancing very rapidly and is capable of solving a wide variety of problems in all sectors.
It is thus used in the healthcare sector to train CNN (convolutional neural network)-based
models for the detection of COVID-19.

This study revolves around the detection of COVID-19 by applying deep learning
techniques to CXR images. The remaining paper is organized as follows: Section 2 lists
recent related works. Section 3 illustrates materials and methodologies used by researchers
to produce classification results. Section 4 discusses the results with various performance
metrics. Finally, the studies are concluded and summarized in Section 5.

2. Literature Review

Due to the required time (six to eight hours) for the traditional PCR method used to
identify COVID-19 infection, the aim of different recent studies proposing image classifier
systems has been to provide medical professionals with another rapid and low-cost method
to identify COVID-19 and other pneumonia infections.

CT scanning is a technique applied to symptomatic patients. This technique is con-
ditioned by determining the necessary period, after the appearance of symptoms, for the
realization of CT or PCR. Indeed, if the symptoms indicate an infection while the genetic
test for the coronavirus is negative, CT scanning can be used as an additional procedure [4].

According to [4], the sensitivity of RT-PCR is lower than that of CT. However, this
sensitivity is strongly proportional to the type of material and the method used to carry out
the genetic tests. Hence, under certain conditions, the CT test can be properly included in
the COVID-19 diagnostic guidelines.

A CT scan is an imaging diagnostic procedure that involves a combination of X-rays
and computer technology to produce images. Hence, CT scanning, despite being more
expensive than X-ray imaging, is more accurate and can be useful in providing more details
in some cases.

Table 1 illustrates the relevant recent studies using deep learning models to detect
COVID-19.

In what follows, we further investigate the studies mentioned in Table 1 to illustrate
their advantages and drawbacks:

In [5], the authors introduce five transfer learning models to detect COVID-19 in
lung CT scans. The study assesses the use of standard and contrast adaptive histogram
equalization in lung scans. However, this study does not demonstrate the efficiency and
impact of using histogram equalization methods on different learning models.

In [6], the authors establish an X-ray image dataset and suggest a pre-processing
semi-automated model to pre-train deep learning models to detect COVID-19 and other
diseases with known features. The model used allows noise from the X-ray images to be
reduced. The experimental tests indicate that even simple network models such as VGG19
become more accurate (by 83%).

The study in [7] introduces a 2D convolution technique to classify CXR lung images
to detect COVID-19. The dataset used is composed of 224 normal and COVID-19 images.
Although the results found show good computational speed, they are performed in a small
dataset with a limited number of features.

In [8], a ResNet-50 transfer learning model is used to classify COVID-19 CXR images.
The high obtained classification accuracy (99.5%) can be used in clinical practice. However,
this accuracy is obtained using a small dataset. More successful deep learning models can
be used with larger datasets.
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Table 1. Recent studies proposing learning model for classifying images to detect COVID-19.

Study Application Learning Method Model Features

Dataset Specifications Results (Accuracy,
Specificity,
Sensitivity)Accessibility Type/Structure Size

Structure

(Lawton and
Viriri, 2021) [5] CT lung scans

Different transfer
learning

architectures:
DenseNet-201,

ResNet-101,
VGG-19,

fficientNet-B4, and
MobileNet-V2

Fully connected
artificial neural
network: single

256-node hidden
layer

using the ReLU
activation function

and a two-node
softmax

output layer.

Peripheral and
bilateral

predominant
ground-glass

opacities

Publicly available

2482
images of São
Paulo patients:

1252
COVID-19-positive

and 1230 normal

Best performance is on
VGG-19:

accuracy = 95.75%
recall = 97.13%

F1 score of 95.75, and
ROC-AUC of 99.30%.
Specificity = 94.42%

(Horry et al.,
2021) [6]

X-ray-image-based
COVID-19
detection

Convolutional
neural network

models

VGG, Inception,
Xception, and

Resnet

Patchy infiltration
or

opacities
Publicly available X-ray images

200 × normal
vs.100 ×

COVID-19100 ×
pneumonia

Both VGG16 and
VGG19 classifiers

provided good results
within the

experimental
constraints of the small

number of X-ray
images.

Around 80% for both
recalls, and simpler
networks such as
VGG19 performs

relatively better with
up to 83% precision.

(Padma et al.,
2020) [7]

Illustrates the
severity of

coronavirus in
lung using

radiology images

Convolution 2D technique Binary classes

Open-source
datasets of
COVID-19
available at
GitHub and

Kaggle

Images of Chest
X-ray and CT scan

60 images where
30 are

normal and 30
COVID-positive

images

Accuracy for training
set of 99.2%, validation

accuracy of 98.3%,
loss 0.3%,

sensitivity of 99.1%,
specificity of 98.8%,

and precision of 100%
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Table 1. Cont.

Study Application Learning Method Model Features

Dataset Specifications Results (Accuracy,
Specificity,
Sensitivity)Accessibility Type/Structure Size

Structure

(Karhan et al.,
2020) [8]

Radiological
images of the chest

Convolutional
neural networks

ResNet-18
(Residual
Network)

Two different
classes in the

dataset (COVID-19
and

non-COVID-19)

Hybrid: Italian
Society of Medical
Radiology (SIRM)

dataset,
coronavirus
open-source

shared dataset, and
dataset

created by
compiling

diagnosed images

COVID-19-positive and -negative CXR
images Accuracy rate of 99.5%

(Hilmizen
et al., 2020) [9]

Diagnosing
COVID-19

pneumonia from
chest CT scan and

X-ray images

Multimodal deep
learning:

concatenation of
DenseNet121-

MobileNet

The input data for
the feed of the
network were
normalized,
resized to

150 × 150 pixels,
and the number of
channels was set to

3 (RGB images).

Two open-source
datasets, and the

allocation for each
class was balanced

Public

1750 data for each
dataset in the

trainingset that has
750 data on the

validation set for
each dataset

The concatenation of
DenseNet121-

MobileNet gives
accuracy of 99.87%,

sensitivity of 99.74%,
and specificity of 100%

(Santoso and
Purnomo,
2020) [10]

COVID-19
detection based on

the CXR images

Deep neural
network

Modification of
deep neural

network based on
Xception model

618 images with
256 × 256 in size.

The data are
categorized into
normal people,
pneumonia and

pneumonia caused
by COVID-19

The dataset is
divided into data

training
(72.3%), data

validation (18.0%),
and data testing

(7.7%)

Xception accuracy of
90.09

and loss of 0.6458

(Darapaneni
et al., 2020) [11]

Analysis of
severity of

COVID-19 from
chest X-ray images

Segmentation
mask prediction Mask RCNN

4668 trained
images and 1500

tested images

Mean average
precision is 90 (89,) on
training set (test set)
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Table 1. Cont.

Study Application Learning Method Model Features

Dataset Specifications Results (Accuracy,
Specificity,
Sensitivity)Accessibility Type/Structure Size

Structure

(Kandhari
et al., 2021) [12]

Detecting
COVID-19
from CXR

Deep learning
models

ResNet, DenseNet,
VGG 16 and VGG

19
Open source Dataset of 2727 images

VGG-16 model
achievedan impressive
classification accuracy

of 98.9% and
F1 score of

0.984 with high
sensitivity and

specificity as well

(Yamac et al.,
2021) [13]

COVID-19
recognition

approach directly
from X-ray images

Convolution
support estimation

network (CSEN)

CSEN that can be
seen as a bridge
between deep

learning models
and representation-

based
methods

Different publicly
available datasets

A benchmark
X-ray dataset, namely

QaTa-Cov19,
containing over 6200

X-ray
images is created. The

dataset covers 462
X-ray images from
COVID-19 patients

along with three other
classes; bacterial
pneumonia, viral
pneumonia, and

normal

Over 98%
sensitivity and over

95% specificity

(Calderon-
Ramirez et al.,

2021) [14]

Scarce labeled data
classification CNN models

Semi-supervised
deep learning with

Mix Match

Accuracies higher than
90%
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Table 1. Cont.

Study Application Learning Method Model Features

Dataset Specifications Results (Accuracy,
Specificity,
Sensitivity)Accessibility Type/Structure Size

Structure

(Alam et al.,
2021) [15]

Earlier detection of
the COVID-19

through accurate
diagnosis

CNN (VGGNet)

Feature fusion
using

histogram-oriented
gradient (HOG)

and convolutional
neural network

(CNN)

Normal (1900)
images. The

confusion metrics
of the

generalization
results are

presented in Fi

Testing accuracy of
99.49%, specificity of
95.7%, and sensitivity

of 93.65%.
(98.36%) provided

higher accuracy than
the individual

feature extraction
methods, such as HOG

(87.34%) or CNN
(93.64%)

(Gilanie et al.,
2021) [16]

Coronavirus
(COVID-19)

detection from
chest radiology

images

Convolutional
neural networks

Three publicly
available and a

locally developed
dataset, obtained
from Department

of Radiology
(Diagnostics),

Bahawal Victoria
Hospital,

Bahawalpur
(BVHB), Pakistan

The proposed method
achieved average

accuracy of 96.68%,
specificity of 95.65%,

and sensitivity of
96.24%.

(Amin et al.,
2021) [17]

Classification of
COVID-19 X-ray

images

Deep learning
model

Transfer Learning
InceptionV3

Three different
classes:

pneumonia,
normal, and
COVID-19

Public CXR images
(pneumonia) from

Kaggle +
COVID-19 images

dataset from
GitHub

299 × 299 pixels

194 images from
the original

pneumonia dataset
+ 163 images from

the
COVID-19 dataset

98% accuracy,
precision and recall. F1
scores all are equal to
0.97 for pneumonia
and normal images
and are equal to 1 in
COVID-19 images

(Panwar et al.,
2020) [18]

Fast detection of
COVID-19 in

X-rays
Deep learning

Transfer learning
model with five
different layers

VGG as a model
for feature
extraction

Public

All images
converted to a
standard size

(224 × 224 pixels)

142 for COVID-19
images;

5863 Kaggle CXR
healthy images

97.62% of true positive
rate;

accuracy up to 99%
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Table 1. Cont.

Study Application Learning Method Model Features

Dataset Specifications Results (Accuracy,
Specificity,
Sensitivity)Accessibility Type/Structure Size

Structure

(Wang et al.,
2020) [19]

COVID-19
detection in chest

CT images

Multiple-way data
augmentation

Offline
multiple-way data

augmentation

Pre-trained models
(PTMs) to learn
features, and a

novel (L, 2)
transfer feature

learning algorithm
was proposed to
extract features

Private dataset
from local
hospitals

284 COVID-19
images, 281
community-

acquired
pneumonia images,

293 secondary
pulmonary
tuberculosis

images, and 306
healthy control

images.

On the test set,
CCSHNet achieved
sensitivities of four
classes of 95.61%,

96.25%, 98.30%, and
97.86%. The precision
values of four classes
were 97.32%, 96.42%,
96.99%, and 97.38%.
TheF1 scores of four
classes were 96.46%,
96.33%, 97.64%, and
97.62%. The MA F1
score was 97.04%

(Demir et al.,
2021) [20]

Automatic
detection of

COVID-19 from
X-ray images

Deep LTSM

Marker-controlled
watershed

segmentation
(MCWS)

20 convolutional
layers Public

Three classes:
pneumonia,
normal, and
COVID-19.

MCWS images
were sized to

100 × 100 for the
input layer

1061 CX images
(361 COVID-19,
200 normal, and
500 pneumonia)

In 80% of tests, 100%
performance was

achieved for all aspects
(accuracy, sensitivity,

precision, and F-score)

(Sheykhivand
et al., 2021) [21]

Automatic
detection of

COVID-19 from
Chest images

Deep neural
network

Generative Adversarial Networks
(GANs) were used together with a fusion

of the deep transfer learning and Long
Short-Term Memory (LSTM) networks,

without involving feature
extraction/selection for classification of

pneumonia.

Public
four classes

(healthy,
COVID-19,

bacterial, and viral)

Healthy: 2923
images;

COVID-19:371;
bacterial = 2778;

viral = 2840

90% accuracy for all
scenarios except one
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In [9], a concatenation of features extracted from two transfer learning models are
used to detect COVID-19 with X-rays, CT scans, and two biomarkers. With the same results,
the introduced concatenation gives a better computational time than the VGG16-ResNet50
concatenation. However, the introduced concatenation has a high number of parameters.
In addition, the introduced concatenation can truly predict positive and negative cases
from only two positive or negative images, respectively.

In [10], a two-dense-layer model is proposed to detect COVID-19 from CXR images.
Batch normalization is introduced in the second layer to avoid the overfitting of the model.
Three data types are used in the proposed dataset: normal images, pneumonia images, and
COVID-19 pneumonia images. This dataset is used to assess the efficiency of the introduced
model compared with Xception, Inception V3, and Resnet50 models. The introduced model
has lower loss and higher accuracy than other models in both validation and training
data. However, one of the drawbacks of the introduced model is that it takes considerable
computational time to obtain important features. Moreover, adding layers in the model can
mean training takes longer.

In [11], the authors collect a set of X-ray lung images to evaluate the severity of
COVID-19 pneumonia. Bounded boxes are used to identify the diseased area. An RCNN
mask can be added to the model used to enhance the accuracy of the detection of the
diseased area.

The study in [12] aims to detect COVID-19 from a dataset of 2727 chest radio open-
source images using different pre-trained convolutional neural networks as learning models.
As a result, the VGG-16 model achieves better classification than the F1 score and gives
less false positives and false negatives compared to DenseNet and VGG-19. However, the
dataset used should contain more variated images from different groups of geographical
regions, races, and ages. Moreover, more training models should be tested to gain a
comprehensive comparative analysis between the different models.

In [13], a CSEN recognition model, combining the advantages of representation-based
techniques and deep learning models, is used to detect COVID-19 pneumonia. Using
training samples and a dictionary, the CSEN establishes mapping from the sparse support
coefficients to the query samples. In terms of memory and speed, the proposed CSEN-
based system is computationally efficient, but the main issue with it is that its performance
rapidly degrades due to the scarcity of data.

In [14], a Mix-Match-based semi-supervised learning system is used to identify the
positive cases of COVID-19. The advantage of such a semi-supervised system is the use of
unlabeled data which are more available.

In [22], four pre-trained models are used to detect COVID-19 from a dataset composed
of 5000 non-COVID X-ray images and 200 COVID X-ray images. However, a larger set
of labeled COVID-19 images is needed to accurately estimate the performance of the
tested models.

The authors of [23] address the problem of the classification and recognition of
COVID-19 images using different CNN pre-trained models. The study concludes that
ResNet-34 is better than other networks. However, this study relies on a binary classifica-
tion (normal or infected by COVID-19) and does not address a multi-class classification for
more detection accuracy.

The study in [15] aims to identify COVID-19 using a feature fusion deep learning
model. Using K-fold cross-validation tests, the efficiency of the latter introduced model
is confirmed to be more accurate than other classification methods (CNN, SVM, KNN,
and ANN). The idea of the method is to combine the features extracted by CNNs and
those extracted by histogram-oriented gradients (HOGs). The study deduces that choosing
appropriate classification and selection features is necessary for COVID-19 detection from
X-ray images.

In [16], the authors use a local dataset of X-ray and CT images. The introduced
method, based on a deep learning model, achieves good results, but the dataset used is
relatively small.
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The authors of [17] suggest a three-class (namely: normal, pneumonia, and COVID-19)
classification model to detect and classify X-ray images. A transfer learning InceptionV3
model is used. Additional layers are added to enhance the model. The experimental tests
indicate the high performance of the three used classes.

In [18], the authors propose a deep multi-layer neural network system named nCOVnet
to detect the presence of COVID-19 from X-ray images. Despite the reported high accuracy
of the introduced system, the latter relies on a limited training set.

The study in [19] introduces an (L, 2) transfer learning system to classify COVID-19
CT images. The measuring indicator used relies on a micro-averaged F1 score. Despite
the fact that the results show that the proposed system is efficient in detecting COVID-19
images, it has some drawbacks: data from different sources such as CT data combined
with CXR and historical data are not easily handled. In addition, the used dataset is not
clinically verified and is category-limited.

In [20], a three-classes-deep LSTM system is introduced to detect COVID-19 from
MCWS images. The dataset used is public, and the comparison with the introduced system
with other learning methods gives excellent results. According to the authors, the accuracy
of the results can reach 100%.

The study in [21] suggests a DNN X-ray image classifier. Four classes (COVID-19,
bacterial, viral, and healthy) and seven scenarios are considered. The results are promis-
ing compared to other deep transfer learning systems such as MobileNet, VGG16, and
InceptionV4. The resistance of the introduced model to the noise of images is good.

To sum up, the main drawbacks of the previous investigations and recent studies
regarding the classification and detection of COVID-19 from images are:

• The absence of scalability evaluation, which is important in estimating the model
performance under real-world operation settings.

• Complexity and statistical tests are not given to investigate the robustness of the
results.

• The small sizes of datasets and non-variability of data in datasets.
• The absence of the consideration of multi-class classification: only binary (normal vs.

infected) classifications are taken into consideration in most studies.
• The absence of hybridizations of deep learning models with other techniques such as

evolutionary multi-objective optimization for more accuracy in detection.

Further investigations and discussions of the interest in the use of learning models for
COVID-19 detection from images have been given in recent surveys [24,25].

3. Materials and Methods

Machine learning, like optimization and other artificial intelligence methods, has been
proven to be very useful in resolving real-word complex problems related to engineering
issues [26–29] or medical ones [30,31], as in the case of COVID-19 detection. Figure 2
illustrates the principally used machine learning techniques for CXRs.

To understand and study the relationship between CXR and other deep learning
frameworks for COVID-19 diagnosis, this paper reviews various publications and research
articles published from March 2020 onwards. The sources used included ScienceDirect,
Google Scholar, ArXiv, IEEE, Springer, ACM, etc. and some of the keywords used for the
search were “coronaviruses”, “COVID-19 Diagnosis”, “Deep Learning”, “transfer learning”,
“Chest Radiography”, and “CNN”. While this study mostly focuses on diagnosis using
CXR images, some overlapping techniques used for diagnosis based on chest CT images
were also considered. The majority of the research works used deep transfer learning on
the ImageNet dataset. CNN architectures were trained with the different tuning of their
hyperparameters. The following subsections provide an overview of various state-of-the-art
approaches and datasets used to review this survey.
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3.1. Types of Classification

The COVID-19 detection task was carried out by classifying the X-ray images using
either binary classification, i.e., 2 classes or multi-class classification, i.e., 3 or 4 classes. Each
class was labeled by one of the following—“COVID-19”, “healthy”, “no-findings”, “viral
pneumonia”, or “bacterial pneumonia”. The binary classification consisted of “COVID-19”
as one of the classes, and the other class could be either of the other four, i.e., “non-
COVID”. The three-class classification labels were “COVID-19”, “pneumonia”, and “no-
findings”. Most studies used binary or triple-class classification. However, some other
studies suggested a classification into four classes: “COVID-19”, “viral pneumonia”, “bacte-
rial pneumonia”, and “no-findings or healthy”. Indeed, binary classification represents the
dichotomization of a practical situation of a problem using classification rule to decompose
the elements of a set into two classes (groups). On the other hand, if there are more than
two classes, the classification process is qualified as multi-class classification [32]. It is
worth mentioning that binary classification may be customized in several ways to handle
multiple classes [33].

Among the issues of binary classification, there is a limited number of classes where
only two values for the outcomes are possible: “yes” or “no”. The binary classification can
misinterpret the patient’s infections which can lead to errors such as false negative and
false positive. False negative occurs if an infected person is categorized as healthy. False
positive occurs if a healthy person is categorized as infected.

Among the issues of multi-class classification is the problem of imbalanced datasets.
Imbalanced data indicates a problem with a set of inequal representations of classes. The
inequal repartition of data can lead to the lower performance of conventional machine
learning techniques in the prediction of minority classes. Indeed, multi-class problems with
imbalanced datasets are more challenging than binary problems with imbalanced datasets.

Regarding the studies completed, most of them are interested in the binary classifi-
cation of COVID-19 [34–36], and very few studies suggest the multi-class classification
of COVID-19 [37,38]. Actually, the performance of multi-class techniques should be im-
proved more.

3.2. Deep Learning Architectures

The operation of deep learning architectures can be explained as follows: One of the
deep learning techniques is artificial neural networks, which involve massive amounts of
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data for computation. This type of learning automatically learns from instances of data.
One of the classic architectures of convolutional neural networks is the VGG. To increase
the depth of the network layers, VGG, for example, uses a filter analyzer, a connected layer,
and a set of shared layers.

Deep transfer learning and CNNs are widely used in medical imaging applications.
Transfer learning is used for those models where the training set is inadequate and training
the model from scratch is not feasible. In transfer learning, pre-trained networks are used
with the fine-tuning of parameters that performed other traditionally trained networks
from scratch for COVID-19 diagnosis. Figure 3 contains a block diagram representing the
steps involved in classifying COVID-19 cases from CXR using transfer learning deep CNN
architectures.
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CNN architectures consist of convolution layers and other pooling layers. They per-
form well in classification tasks related to computer vision and hence also in assessing
medical images. In the further subsections, various CNN architectures and their method-
ologies are reviewed to identify COVID-19 patients from raw X-ray images.

3.2.1. VGG

This neural network performed very well in the ImagNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) in 2014 and was proposed by the Visual Geometry Group (VGG).
It mainly consists of 16 or 19 convolution layers and is capable of achieving good accuracy.

VGG16 is a classification and detection technique widely used in the field of image
processing. Known for its ease of use for transfer learning, VGG16 can efficiently classify
(with an accuracy up to 92.7%) a thousand of images having distinct types.

As far as VGG-19 is concerned, it is 19 layers of depth brought together in a convolu-
tional neural network. In the same previous imaging application context, a database called
ImageNet [39] contains over a million images and uses VGG-19 to provide a pre-trained
version of the network that can differentiate a thousand types of image objects.

However, due to the large width of convolution layers, its deployment has high
computational requirements both in terms of time and memory. For CXR images, VGG-16
extracts features at a low level due to its small kernel size. An attention-based VGG-16
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model [40] proposed four main modules—an attention module, convolution module, fully
connected layers, and Softmax classifier.

This was implemented using a fine-tuning approach on other pre-trained networks.
Three different datasets were used to train the model—D1 for triple-class, D2 for four-class,
and D3 for five-class classification. The classification accuracy obtained for 18 parameters
was 79.58%, 85.43%, and 87.49%, respectively.

Rahaman [41] evaluated the VGG-19 model and obtained the highest testing accuracy
of 89.3% among other CNN architectures. Another study in [42] used the VGG-16 and
VGG-19 models for the feature extraction of COVID-19 with SVM with 92.7% and 92.9%
accuracy, respectively.

3.2.2. GoogleNet

GoogleNet or Inception V1 [43] was the winner of the ILSVRC 2014 image classifica-
tion challenge and has a lower error rate than VGG. This consists of 1 × 1 convolution, an
inception module (IM), and a global average pooling. The convolution size is the same in
each layer. These inception modules learn spatial correlations and cross-channel correla-
tions. The IM reduces dimensionality as its output is smaller than the input in terms of
feature maps. Moreover, significantly deeper models could be trained using IM by reducing
the trainable parameters by up to 10 times. Other variations of GoogleNet such as Inception
V2, Inception-ResNet, Inception V3 [44], and Inception V4 [45] have been developed by
slightly varying the inception module.

The authors of [46] performed binary and multi-class classification using GoogleNet
and achieved an accuracy of 98.15% for the binary and 75.51% for the multi-class classifica-
tion of COVID-19 cases. Similarly, the authors of [42] also used GoogleNet with an SVM
classifier to obtain an accuracy of 93%.

3.2.3. AlexNet

This architecture requires less training time and fewer eras compared to other previ-
ously trained transfer learning models. It also gives outstanding results in the recognition
and classification of images. This network is also known to give the highest accuracy on the
ImageNet dataset. The network consists of 5 convolutions, 2 hidden, and 1 fully connected
layer, making the depth size 8. The input image size was 227 × 227 with 61 million param-
eters fine-tuned. The dropout method was used to deal with overfitting, and it enabled the
network to learn more features. The ReLU activation function was used.

The study in [47] reduced the original 1000 classes in AlexNet to 3 classes—COVID-
19, normal, and abnormal. The model was trained on three sets of datasets obtained
from various open-source networks and radiological society websites. Researchers further
modified the original architecture and proposed four effective AlexNet models that detected
and classified CXR images accurately [48]. In [46], the obtained accuracy was 97.04% in
binary classification and 63.27% for multi-class classification using AlexNet. The study
in [35] used AlexNet for feature extraction and achieved 95.12% accuracy for three classes—
COVID-19, SARS, and normal—in their project DeTraC. Each class was divided into
separate subclasses and reassembled to give the final prediction outcomes.

3.2.4. MobileNet

This architecture uses separate convolutions depthwise to create lightweight neural
networks for embedded and mobile system applications. Balance is maintained by a
tradeoff between the hyperparameters for accuracy and latency. It has 53 layers and about
3.4 million trainable parameters [49]. It consists of depthwise convolutions, expansion, and
projection convolutions.

For COVID-19 detection, MobileNet was used to achieve accuracies of 60% [50] and
96.30% [46]. However, for distinguishing COVID-19 from normal cases, the mean accuracy
using MobileNet-V2 was 87.61%, and for COVID-19 and pneumonia, the mean accuracy
was 97.87%. For three-class experiments, it resulted in 92.85% accuracy.
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3.2.5. ResNet

On increasing the depth of the network in CNNs, the training error increases. ResNet
solves this problem by introducing a residual unit. ResNet-18 and ResNet-34 consist of
two deep layers, and ResNet-50/101/152 has three deep layers. The residual learning
component reuses the activation from previous layers and skips the layers that do not
contribute to the solution. It uses batch normalization and identity connection to mitigate
the vanishing gradient problem and improve performance.

It was observed that ResNet is one of the most widely used CNNs in COVID diagnosis
studies [51]. The authors of [52] used three variants of this—ResNet-18 for 91% accuracy,
ResNet-50 for 95%, and ResNet-101 for 89.2% classification accuracy. ResNet-18 and ResNet-
50 were also trained on an imbalanced dataset that had 3000 normal and 100 COVID-
positive CXR images. A 89.2% detection accuracy rate in ResNet-50 and a 98% sensitivity
rate were obtained in both variants [22].

3.2.6. Xception

Xception [53] stands for an extreme version of Inception, and it also uses depthwise
separable convolutions like ResNet instead of traditional convolution. It outperformed
Inception V3 on the ImageNet dataset of 17,000 classes and 350 million images. It enables
the learning of spatial patterns and cross channels separately. The depthwise separable
convolutions lower the number of operations and hence the computational cost by a
huge factor.

Inception V3 gave an accuracy of 78.2%, which was increased to 79% on the ImageNet
dataset. The authors of [50] diagnosed COVID-19 using the Xception model, and it resulted
in the highest precision in detecting COVID-positive cases among the rest of the deep
learning classifiers. However, it did not perform well in classifying normal cases. It
resulted in a sensitivity rate of 0.894 and 0.830 precision.

CoroNet [38] is another CNN model based on the Xception architecture with two fully
connected layers and a dropout layer at the end. It has 33,969,964 trainable parameters.
Four-class, three-class, and two-class variants of the CoroNet model were proposed and
pre-trained on the ImageNet dataset. In [49], an optimizer with a batch size of 10 and
80 epochs was used for re-training. The mean accuracy values were 89.6%, 95%, and 99%
for 4-class, 3-class, and 2-class, respectively.

3.2.7. DenseNet

DenseNet is somewhat similar to ResNet with a few differences. It connects the
previous layer to the forward layer by concatenation. Therefore, in a network of n layers,
it has n(n + 1)/2 connections. DenseNet is more efficient than other state-of-the-art CNN
architectures such as ResNet in image classification parameters and computational terms.
The convolution in the network generates fewer feature maps as the layers are densely
connected. Redundancy is lower as layers reuse the features and propagate them.

DenseNet was built to resolve the vanishing gradient problem in neural networks, that
is, the loss of information before reaching the final output layer because of longer paths.
The different versions of DenseNet based on the number of layers computed are DenseNet-
121, DenseNet-160, and DenseNet-201. This was the second most used architecture in the
previously reviewed studies.

The study in [50] used DenseNet-201 to achieve an accuracy of 90% which was later
improved in [42] to 93.8%. A specificity rate of 75.1% was obtained in another application of
DenseNet [22]. The authors of [46] used this to achieve a multi-class classification accuracy
of 93.46% and binary classification accuracy of 98.75% using DenseNet. DenseNet is also
used as a backbone in developing other COVID-19 diagnosis systems using chest CT [54].

3.2.8. SENet

In 2017, the authors of [55] proposed the Squeeze and Excitation Network, which was
also the winner of the ILSVRC Challenge 2017. It reduced the top-5 error rate to 2.251%
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and surpassed the winning entry of the previous year. It was based on the relationship
and interdependencies between the channels in a convolution network. It introduces an
additional computation known as the SE block and integrates it with other CNNs such
as ResNet. This block is added to every residual unit in ResNet to improve performance.
This new merger is called SE-Inception-ResNet-v2 and SE-ResNet-50. Though this resulted
in increased complexity in computation, it yielded consistent good returns compared to
increasing the depths of ResNet architectures. Experiments with non-residual networks
such as VGG were also conducted, which also resulted in improved performance.

The SE block is the main building component which comprises three layers—the dense
layer, squeeze dense layer, and global average pooling layer. The SE block emphasizes
cross-channel patterns rather than spatial patterns and it learns the image objects that are
bundled together. The output of the block retains the essential features and downscales the
irrelevant feature maps.

The authors of [46] used SENet for the binary classification and multi-class classifica-
tion of COVID-19 cases and obtained an accuracy of 98.89% and 94.39%, respectively. The
study in [22] used this in place of ResNet and obtained 98% sensitivity and 92.9% specificity.
The dataset used was highly imbalanced, and the specificity and sensitivity values for
ResNet were 89.6% and 90.7%, respectively.

3.2.9. ShuffleNet

Other CNN architectures used were CapsNet, autoencoder, and ShuffleNet [56]. For
the ImageNet classification task, these performed better than MobileNet. ShuffleNet was
approximately 13 times faster than AlexNet with comparable accuracy values. It has
pointwise group convolution operations and channel shuffles to reduce the computations.
This enables the flow of information across various channels.

The authors of [57] used feature extraction automatically which was then given to
different classifiers—KNN, random forest, SVM, and Softmax. The accuracies obtained
with these four classifiers were 99.35%, 80%, 95.81%, and 99.35%, respectively.

3.2.10. DarkCovidNet

DarkNet-19 is the model that is based on a real-time object detection system—YOLO
(You only look once) [58]. Rather than designing the entire model from scratch, it is picked
as the starting point. The successful architecture of the DarkNet classifier makes it more
efficient. Fewer layers and different filter sizes were used compared with the original
DarkNet architectures [59]. Filters were gradually increased from 8 to 16 to 32.

DarkNet-19 comprises 19 layers of convolution and five of pooling—Maxpool. These
layers are standard CNN layers with varying sizes, filter numbers, and stride parameters.

The modified DarkCovidNet layout has 21 convolution layers and 6 pooling layers.
This is a modification of the DarkNet model. It consists of 21 convolution layers. Each
DarkNet (DN) layer has one convolution layer with a block size = 3 and stride value = 1.
It is followed by batch normalization and the Leaky ReLU activation function. Each
triple convolution (tri Conv.) consists of three similar sequential DarkNet layers. The
batch normalization is used to reduce the training time and stabilize the model. Leaky
ReLU is used as a modification of ReLU with a negative slope of 0.1. Other activation
functions such as sigmoid and ReLU could also be used, but they give zero values in their
negative side of derivatives. Leaky ReLU overcomes this problem of vanishing gradients
and dying neurons. The optimizer in [49] is used to update the weights and loss entropy
functions, and the learning rate is taken as 1 × 10−3. This model was evaluated using
various performance metrics and resulted in 97.6% binary classification accuracy and 88%
triple-class classification accuracy.

3.3. Comparing the Binary and Multi-Class Classification for COVID-19 Detection

So, which type of classification is more suitable for COVID-19 detection?
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The study in [60] suggests diagnosing COVID-19 using a system called ECG-BiCoNet
which combines deep bi-layers and ECG data to distinguish COVID-19 cases from other
cardiac ones. Both binary and multi-class classification were proposed for the ECG-BiCoNet
with an accuracy of 98.8% and 91.73%, respectively. The results for numerous classifiers
such as RF, SVM, and LDA indicate that:

- The binary classification detects the cardiac variations in ECG images caused by
COVID-19 and differentiates it from healthy ECG images. However, binary classifica-
tion increased the computation load of the training models.

- The multi-class classification properly achieved the detection of COVID-19 cases.
However, it has less ability, compared to binary classification, to detect other car-
diac diseases and normal ECG images. The computation cost is slightly enhanced
compared to the binary classification.

Another study [61] suggested a binary classification (COVID-19 infected or healthy)
and multiple classification (pneumonia, COVID-19 infection, or healthy). A 17-layered
CNN model with numerous sizes of filters was proposed for the training of CXR images.
The accuracy of the model was 98.08% (87.02%, respectively) for binary classification
(multi-class, respectively).

4. Results and Discussion

The previous section lists some of the famous works and CNN architectures proposed
for the detection of the COVID-19 virus from CXR images. This section provides in-depth
analysis and insights into the studies reviewed.

4.1. Datasets

The articles reviewed experimented with 13 different datasets. Table 2 summarizes
these datasets with their respective names, the number of images, the resolution of each
image, and references. Most of the images are in JPG, JPEG, or PNG format. The Cohen
Image Collection [62] is known to be the most cited dataset and was used in almost 85%
of the works. This may have resulted in lower image quality as it was collected from
online publications rather than original medical reports. It consists of images obtained
from various websites and online publications which could assist researchers in developing
AI-based deep learning models. The Cohen Image Collection [62], accessible from [63], is a
dataset that defines the first initiative to collect clinical cases and public data for COVID-19
as images. Representing the largest prognostic dataset on COVID-19, this dataset involves
hundreds of X-ray images in frontal views. It is a reference for the development of decision
support and machine learning systems via COVID-19 image processing. The aim of
such systems is the prediction of patient survival and the interpretation of their disease
development cycle. The images in the Cohen dataset, in both lateral and frontal views,
reflect metadata such as survival status, incubation status, time to onset of initial symptoms,
and hospital location.

Table 2. Different COVID-19 CXR datasets used in the investigated works.

No Ref. Dataset Name Nbr of Images Resolution
of Images

Include CT
Images? Observations

1. [62] Cohen Image
Collection 315 4248 × 3480 No Proposed image data are

linked with clinical attributes

2. [64]
COVIDx

(COVID-19 CXR
Dataset Initiative)

48 Various - -

3. [65] ActualMed
COVID-19 CXR

13,975 CXR
images Various No

Proposed COVID-Net
improves the decision making

of clinicians
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Table 2. Cont.

No Ref. Dataset Name Nbr of Images Resolution
of Images

Include CT
Images? Observations

4. [66]
COVID-19

Radiography
Database

2905 - No
Specificity: 98.8%; sensitivity:

97.9%; precision: 97.95%;
accuracy: 97.9%

5. [67]
Japanese Society of

Radiological
Technology

105 4020 × 4892 No ROC analysis gives Az values
between 0.57 and 0.99

6. [68] CXR-8 112,120 1024 × 1024 No High number of images gives
better reults in ML algorithms

7. [69] SIRM COVID-19
Database 68 Various Yes -

8. [70] Radiopaedia.org - Various Yes Open dataset with increasing
number of images

9. [71] ChexPert Dataset 224,316 320 × 320 No
Expert comparisons and

uncertainty labels are
considered

10. [72] Twitter COVID-19
CXR Dataset 135 2012 × 2012 No -

11. [73] Pediatric
Pneumonia CXR 5856 Various No Eight codes were proposed to

evaluate this dataset

12. [74,75] OCT and Kaggle
CXR images 5863 Various Yes

OCT data are divided into
training and testing sets with

different patients

13. [76] Open-I Repository - Various Yes Statistical analysis of data
is given

The COVID-19 Image Data Collection is named the “Montreal database” in some of the
studies. The COVIDx dataset consists of 48 COVID images and is updated constantly [64].
The COVID-19 Dataset Award was won by the COVID-19 Radiography Database, which
is a composition of different datasets: the SIRM (Italian Society of Medical and Interven-
tional Radiology) Database, Twitter COVID-19 CXR Dataset, RSNA Pneumonia Detection
Challenge Dataset, Kaggle, and other online sources.

The Open-I repository is an open-access biomedical search engine maintained by the
US National Library of Medicine in which CXR images can be found with the relevant
publication [76]. The Twitter CXR Dataset [72] was shared by a cardiothoracic radiologist
in Spain on his Twitter account and it consists of 135 images having SARS-Cov-2 viral
infection. The CXR-8 [68] contains frontal-view CXR images of more than 30,000 patients
infected with 14 thoracic diseases. This is also known as the RSNA Pneumonia Detection
Challenge dataset. Most of these studies combined datasets to increase the training data
so redundant data can also be found. The above-stated datasets are publicly available
from various online repositories and platforms. However, the rest are obtained from local
hospitals. The latter datasets cannot be accessed publicly. GitHub and Kaggle are the most
used portals to store and access these datasets.

4.2. Performance Comparison

Despite numerous studies using deep learning models on various datasets, identifying
the most efficient architecture is still a difficult task. The variation in testing and training
data also added to the differences and complications in comparing the CNN models on
standard performance metrics. Most works evaluated their models based on accuracy, F1
scores, specificity and sensitivity rates, the area under the ROC curve, and Kappa statistics.
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The differences between the COVID-19 datasets are still unresolved. Thus, a standard
COVID-19 dataset should be maintained by the research community with which every
researcher could validate their respective models. Standard evaluation metrics should also
be specified to ease the comparison among them and test their efficacy. Table 3 contains
the summary of results in terms of mean accuracy, F1 score, and AUC score. Specificity,
sensitivity, precision, and recall could also be taken for comparison, but they are bound to
differ for two-class, three-class, and four-class classification.

Table 3. Performance of reviewed detection models.

S.No. Research Accuracy (%) F1 Score AUC

1. Covid-AID [77] 90.5 0.9230 0.99
2. Deep Covid [78] 83 0.83 0.90
3. Covid Caps [79] 95.7 - 0.97
4. COVID Net [65] 93.3 - -
5. DeTrac [35] 95.12 - -
6. CheXNet [80] 97.8 97.8 -
7. COVID-DA [81] - 0.9298 0.985
8. CoroNet [82] 93.5 93.51 -
9. DenseNet-121 [54] 96.3 0.96 0.88
10. ResNet-50 [83] 97.4 0.96 0.86
11. Inception-V4 [45] 91.68 0.76 0.87
12. Inception-ResNet-V2 89.45 0.84 0.86
13. Xception [53] 81 0.80 0.88
14. EfficientNet-B2 79 0.80 0.87
15. ResNet-50 [8] 99.5 - -
16. ResNet50 and VGG16 [9] 99.87 - 0.83
17. Transfer learning InceptionV3 [17] 99.49 0.85 -

What follows is the signification of the metrics used:

- Accuracy is the most natural measure of performance. It is defined by the percentage
of correct predictions compared to the total number of observations. The efficiency
of the model is then proportionally linked to the value of its accuracy. In general, an
accuracy A is defined by A = TP + TN/TP + FP + FN + TN (knowing that TP = true
positives, TN = true negatives, FP = false positives and FN = false negatives). A model
having A = 0.76, for example, indicates that this model is approximately 76% accurate.
On the other hand, the precision effectively measures the performance only if the
data are symmetric (values of the FN are comparable to those of the FP). Hence, other
performance metrics should be tested alongside the accuracy.

- Precision: This metric defines the relationship between the total number of predicted
positive observations and correctly predicted positive predictions. A typical example
of using this metric is, in a disaster, how many people actually survived among those
described as having survived? The good performance of this metric is inversely
related to the rate of false positives. The precision formula is generally described by
TP/TP + FP.

- Sensitivity (recall) is another metric that describes the relationship between the real
actual class observations and the correctly predicted positive observations. Sensitivity
tries to answer the question: how many passengers did we tagged out of all the
passengers who actually survived? Sensitivity is usually defined by the formula
TP/TP + FN.

- F1 score is a metric that reflects the weighted average value of sensitivity and precision.
This means that the F1 score considers false negatives and false positives simultane-
ously. In the case where the cost of false negatives is very different from false positives,
we must use precision and recall at the same time. If the class distribution is unequal,
the F1 score is more useful than the precision. The latter performs better if we have a
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similar cost of false negatives and false positives. The general formula of the F1 score
is as follows: 2 × (Precision × Sensitivity)/(Precision + Sensitivity) [84].

The CXR image databases are used in [85,86], and the accuracy is presented as 98.70%,
88.80%, 95.70%, and 99.90%, respectively.

4.3. Class Imbalance Problem

The major challenge faced in studies on COVID-19 is the limited availability of COVID-
positive image datasets. As is evident from the above statistics, the number of COVID-19
images is very small compared to the normal and pneumonia classes. This uneven distri-
bution leads to the class imbalance problem. Some studies focus on data augmentation to
enlarge the COVID dataset [87]. Another solution is to take an equal number of images
in each class. However, deep models such as ResNet do not perform well with a lower
amount of training data.

A study proposed the use of the SMOTE (Synthetic Minority Oversampling Technique)
which is a kind of data augmentation technique for minority classes [52].

The number of COVID images varies widely in numbers compared to total data
samples. Some studies were simulated with as few as 11, and others took as many as 1536
COVID-19 images, whereas the total number of images was in the range of 50 to 224,316.
Thus, AI researchers used different techniques to tackle this problem [88]. The authors
of [57] fixed the number of image samples to 310 in each class. The authors of [46,51] also
used a fixed number of samples in each class. Both studies [82,89] used a class-weighted
entropy loss function. Others emphasized cost-sensitive learning.

4.4. COVID-19 Severity Prediction

Another challenge faced in containing this pandemic is the inability to predict the
severity of a patient diagnosed as COVID-positive. Based on symptom period analysis and
past CXR records, researchers are working to predict the severity of patients in terms of
COVID score.

Assessing the progression of the disease and its effect on the lungs could identify
patients at high risk. They could then be treated with extra attention and care from the
medical personnel. Deep learning techniques developed on CXR images of patients could
assist doctors in tracking, assessing, and monitoring severity and progress and hence aid in
efficiently triaging patients. One study [89] monitored patients and predicted whether their
condition would improve or worsen in the coming days with an accuracy of 82.7%. The
more deadly L- and H-type strains were also identified using DL architectures. Categorizing
multiple scans of the same patient, extracting features using DL, and using embedded
machine learning algorithms on these features were also used to monitor the condition and
recovery of patients. GANs (Generative Adversarial Networks) have also given promising
results in severity prediction.

5. Conclusions and Future Scope

This study investigated the diagnosis of COVID-19 cases using AI and deep learning
techniques with CXR images given as input. An automated diagnosis system is needed to
overcome the shortage of testing kits and speed up the screening process with the limited
involvement of medical professionals. Numerous deep learning architectures proposed by
researchers were reviewed and discussed.

The proposed models were validated on different datasets, especially by Cohen Image
Collection data, which is the most cited dataset. The attributes and descriptions of different
datasets used were discussed. The models were later evaluated and compared based on
performance metrics such as accuracy, F1 score, and AUC values. However, due to limited
instances and the availability of COVID-19 CXR images, almost all datasets are highly
imbalanced. So, classification accuracy cannot be the only metric to evaluate and compare
the efficiency of these models. Additionally, less training time, a reduced error rate, and
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good performance with the limited amount of training data are also considered important
in developing these models.

Transfer learning produced improved results as the models are pre-trained rather than
built from scratch. Different studies used several numbers of classes to identify COVID-19
cases. Binary classification consisted of COVID-19 and normal classes, whereas multi-class
classification was further divided as three-class, four-class, and five-class classification.
Viral and bacterial pneumonia cases were also segregated along with COVID-19 and
no-findings classes.

These proposed methodologies need to be validated on larger datasets with specified
standards and evaluation metrics before they come to practice. AI researchers should work
closely with expert radiologists to analyze the results and find a tradeoff between the deep
features learned automatically and the features extracted by domain knowledge to obtain
an accurate diagnosis. Additionally, most of the reviewed works used data augmentation
to overcome the problem of a lack of COVID data. GAN network implementation could be
used to generate new data as well as predict the severity of patients based on symptom
period analysis.

The detection of COVID-19 using radio images and deep learning techniques seems
to be a very promising method because of the actual issues encountered by the vaccines
regarding the non-acceptation of vaccination by people and regarding the newly appearing
COVID-19 variants threatening the efficiency of vaccines.

These techniques could also be used to detect other chest-related illnesses such as
pneumonia, tuberculosis, etc., in the near future. More diverse datasets could be used to
increase the robustness and accuracy of the model. Mobile applications could be developed
via the cloud to assist the initial screening of patients. Radiological screening for COVID-19
diagnosis is an active research area, and sooner or later, the medical community will have to
rely on these methods as the pandemic progresses. Furthermore, deep learning techniques
can be combined with other intelligent AI methods such as optimization algorithms [90,91]
for a better manipulation of radiological imaging for COVID-19 detection.
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