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Introduction: Hepatocyte nuclear factor 1-beta (HNF1B) gene variants or the chromosome 17q12 deletion

(17q12del) represent the most common monogenic cause of developmental kidney disease. Although

neurodevelopmental disorders have been associated with the 17q12del, specific genotype-phenotype

associations with respect to kidney function evolution have not yet been fully defined. Here, we aimed

to determine whether 17q12del or specific HNF1B variants were associated with kidney survival in a large

patient population with HNF1B disease.

Methods: This was a retrospective observational study involving 521 patients with HNF1B disease from 14

countries using the European Reference Network for rare kidney diseases with detailed information on the

HNF1B genotype (HNF1B variants or the 17q12del). Median follow-up time was 11 years with 6 visits per

patient. The primary end point was progression to chronic kidney disease (CKD) stage 3 (estimated

glomerular filtration rate [eGFR] < 60 ml/min per 1.73 m2). Secondary end points were the development of

hypomagnesemia or extrarenal disorders, including hyperuricemia and hyperglycemia.

Results: Progression toward CKD stage 3 was significantly delayed in patients with the 17q12del

compared to patients with HNF1B variants (hazard ratio [HR]: 0.29, 95% confidence interval [CI]: 0.19–

0.44, P < 0.001). Progression toward CKD stage 3 was also significantly delayed when HNF1B variants

involved the HNF1B Pit-1, Oct-1, and Unc-86 homeodomain (POUh) DNA-binding and transactivation

domains rather than the POU-specific domain (POUs) DNA-binding domain (HR: 0.15 [95% CI: 0.06–0.37),

P < 0.001 and HR: 0.25 (95% CI: 0.11–0.57), P ¼ 0.001, respectively). Finally, the 17q12del was positively

associated with hypomagnesemia and negatively associated with hyperuricemia, but not with

hyperglycemia.

Conclusion: Patients with the 17q12del display a significantly better kidney survival than patients with

other HNF1B variants; and for the latter, variants in the POUs DNA-binding domain lead to the poorest

kidney survival. These are clinically relevant HNF1B kidney genotype-phenotype correlations that inform

genetic counseling.

Kidney Int Rep (2024) 9, 2514–2526; https://doi.org/10.1016/j.ekir.2024.05.007

KEYWORDS: chronic kidney disease; genotype-phenotype correlation; HNF1B disease; outcome
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H NF1B-related disease is identified in 20% to 30%
of fetuses with renal abnormalities. HNF1B dis-

ease, initially described as the renal cysts and diabetes
syndrome (OMIM # 137920), has evolved to a much
wider phenotype. Indeed, variants or whole gene de-
letions of HNF1B are the most common prenatal cause
of hyperechogenic kidneys with or without cysts.1

When detected in the postnatal period, HNF1B dis-
ease is the most common cause of isolated renal hypo-
dysplasia.2,3 Other renal manifestations associated with
HNF1B disease include multicystic dysplastic kidneys,
International Reports (2024) 9, 2514–2526
glomerulocystic kidney disease, oligomeganephronia,
renal agenesis, renal hypoplasia, urinary tract defects,
familial juvenile hyperuricemic nephropathy, and renal
interstitial fibrosis.4-6 This wide variety of kidney
phenotypes is probably due to the fact that the HNF1B
protein is involved in the majority of the stages of
kidney development, from the outgrowth of the uretic
bud and its early branching7 to the elongation of the
renal tubules,8 and is still expressed in the mature
kidney. Individuals with HNF1B disease may also
suffer from electrolyte disturbances such as
2515

https://doi.org/10.1016/j.ekir.2024.05.007
http://creativecommons.org/licenses/by-nc-nd/4.0/


TRANSLATIONAL RESEARCH B Buffin-Meyer et al.: HNF1B Genotype and Kidney Survival
hypomagnesemia and hyperuricemia, pancreatic hy-
poplasia, early-onset diabetes mellitus, as well as liver
and genital defects.9

HNF1B is a transcription factor that controls key
cystic disease genes during kidney development,10

where it controls the expression of genes required
for kidney metabolism and solute transport by tubular
epithelial cells in the adult kidney.11,12 HNF1B con-
tains a dimerization domain located at the N-terminus
of the protein which mediates the formation of HNF1B
homodimers or heterodimers with the related protein
HNF-1a.13 The protein also contains a homeo DNA-
binding domain, consisting of a Pit-1, Oct-1, and
Unc-86 (POU) homeodomain (POUh) and POU-specific
domain (POUs). POUh is a classic homeodomain
which recognizes DNA, whereas POUs cooperates with
POUh to enhance the affinity and specificity of DNA
binding.14 Finally, the C-terminal region of HNF1B
contains a transactivation domain that is responsible
for coactivator recruitment and transcriptional
regulation.15

HNF1B disease transmission follows a dominant
pattern, however, de novo variants are very common.
Genetic alterations in HNF1B disease can be broadly
divided into two categories.9 One category comprises
base substitutions and small insertions and/or dupli-
cations and/or deletions, leading to missense, nonsense,
frameshift, and splicing variants, most of which are
described to be located in the DNA-binding and N-
terminal dimerization domain of the protein.9 These
HNF1B variants account for approximately 41% to
44% of patients with HNF1B disease.9 The other
category is represented by the so-called 17q12del,
which spans a region of approximately 1.5 Mb in
which are located 14 genes, including HNF1B.9

The 17q12del compared to the HNF1B variants,16-19

has already been shown to be associated with an
increased risk of neurodevelopmental disorders in the
pediatric population. Furthermore, in adults, the
17q12del has been suggested to be associated with
improved kidney function, as demonstrated in a small
subset of 169 adult patients.20 However, no clear kid-
ney genotype-phenotype correlation has been estab-
lished; though nowadays, HNF1B genetic testing is
routinely obtained in most clinics for patients with
developmental kidney abnormalities. Improved insight
into this relationship would further inform the man-
agement and counseling of patients with HNF1B dis-
ease. We therefore aimed to investigate the association
of HNF1B variants and the 17q12del with the devel-
opment of CKD in a large multicenter European cohort
of 521 individuals with genetically well-characterized
HNF1B disease.
2516
METHODS

Patients and Data Collection

Observational anonymized data on patients with
HNF1B disease were retrospectively collected from
different European registries under the European
Reference Network for rare kidney diseases (www.
erknet.org) umbrella. Minimal data necessary for the
study included the following: (i) the pathogenic HNF1B
variant, specifically whether it was either the 17q12del
or single nucleotide variants (missense, nonsense), small
deletions or duplications (HNF1B variants were identi-
fied for 27% with Sanger sequencing, for 23% with
multiplex ligation-dependent probe amplification, for
9% with quantitative multiplex polymerase chain re-
action of short fluorescent fragments, for 8% with
comparative genomic hybridization array and for 3%
with fluorescence in situ hybridization); (ii) information
on the inheritance of HNF1B genotype (the de novo
status was determined by targeted analysis in parents,
by trio-based exosome sequencing and by consulting
family history or sonography of parents in 78%, 19%,
and 3% of the cases, respectively); (iii) the prenatal or
postnatal sonomorphologic kidney phenotype at diag-
nosis (multicystic dysplastic kidneys, cortical cystic
kidneys, hyperechogenic kidneys, hypoplastic kidneys,
agenesis, and “other”) and whether structural anomalies
were unilateral or bilateral. Development of hypomag-
nesemia, hyperuricemia, and hyperglycemia was recor-
ded. Maximum follow-up of patients was requested,
preferably with new ultrasound (every 2–3 years) and
biochemical-data (every 1–2 years, blood magnesium,
potassium, uric acid, serum creatinine with associated
method used [Jaffe or enzymatic]). We did not collect
information on whether all patients were index patients
or kindreds of index patients. Nonpaternity was not
ruled out. Data were retrospectively collected from 53
centers in 14 European countries according to local
standard-of-care. Given that HNF1B related disease is
congenital, we considered the start of patient follow-up
being birth.
Clinical Parameters

The CKD-Epidemiology Collaboration equation21 for
eGFR calculation was used for patients aged $15 years.
For patients aged <15 years, the eGFR was calculated
using the Schwartz formula.22 In the particular case of
eGFR estimation in the neonatal period (#1 month), the
Schwartz coefficient used was 0.31 and eGFR ¼ 0.31 �
(height/serum creatinine).23 CKD stage 3 was defined by
an eGFR <60 ml/min per 1.73 m2 for patients aged $15
years. For patients aged 2 to 15 years, CKD stage 3 was
defined by an eGFR <60 ml/min per 1.73 m2 in at least 2
Kidney International Reports (2024) 9, 2514–2526
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consecutive visits. The thresholds for the definitions of
hypomagnesemia, hyperuricemia, or hyperglycemia
were <0.6 mmol/l, >320 mmol/l or >1.26 g/l (fasting),
respectively, on at least 1 measurement.

Ethics

The data were fully anonymized. Approval was ob-
tained from the medical ethical committees or institu-
tional review boards for all participating countries and
written informed consent was obtained from all par-
ticipants or parents in adherence to the declaration of
Helsinki.

Statistical Analysis

Patient characteristics were reported as number (per-
centage) or median (25%–75%) for qualitative and
quantitative variables, respectively. They were
compared according to theHNF1B genotype using a Chi-
square test (N> 5) or a Fisher test (N# 5) for categorical
variables and a Wilcoxon rank sum test for continuous
variables ((gtsummary package in R statistical software,
V4.0.1)).

In the specific case of kidney ultrasound character-
istics, where a global significant effect (P < 0.05) of the
HNF1B genotype was observed, additional analysis
was performed according to an approach based on
calculating adjusted standardized residuals,24 in order
identify features making the greatest contribution to
the Chi-square test result: adjusted standardized
residual $ 3 or # �3 indicated that there were more or
less patients, respectively, with the considered feature
than would be expected by chance. Univariate and
multivariate Cox proportional HR models were built to
estimate the impact of HNF1B genotype on CKD stage 3
development (proportional hazard assumption was
verified for each model using Schoenfeld residuals
method) (survdiff package in R, V4.0.1). Progression to
CKD was not evaluated in children aged <2 years, due
to changes in eGFR in early life. HRs are reported with
95% CIs and P-value to assess whether the HR is sta-
tistically significantly different from 1 (survival pack-
age of R, V4.0.1). The equality of survival distributions
was compared using log-rank test (survdiff package of
R, V4.0.1). Considering that HNF1B disease is a
congenital disease, the start of the follow-up was birth.
Survival curves only used data from children aged $2
years. Odd ratios for hypomagnesemia, hyperuricemia,
and hyperglycemia were obtained using logistic
regression and reported with 95% CIs and P-value to
assess whether the odd ratios is statistically signifi-
cantly different from 1 (stats package of R, V4.0.1).

For analysis of eGFR evolution after birth, the first
week was excluded, considering that creatinine levels
reflected that of the mother. Changes in eGFR were
Kidney International Reports (2024) 9, 2514–2526
assessed using a generalized linear mixed model with a
negative binomial distribution, considering the HNF1B
genotype (17q12del or HNF1B variant) as random effect
(lme4 package in R, V4.0.1). For each period analyzed (1
week–2 years and 2–18 years) 4 models were analyzed as
follows: (i) 1 model without random effect, (ii) a mixed-
effect model with a random effect for the intercept and a
fixed slope, (iii) a mixed-effect model with a random
effect for the slope and a fixed intercept, and (iv) a
mixed-effect model with both a random intercept and a
random slope. These 4 models were compared among
each other using Akaike’s information criterion cor-
rected for small samples.25 The model with the lowest
Akaike’s information criterion and with a value of at
least 2 Akaike’s information criterion units from the
other models was considered the model best fitting the
data. Patients with <3 eGFR measurements during the
period of interest were excluded from the generalized
linear mixed model analysis.
RESULTS

Cohort Description

Retrospective data were initially collected from regis-
tries via ERKNet for 536 patients with suspectedHNF1B
disease from 53 centers in 14 European countries
(Supplementary Figure S1). Fifteen patients were
excluded because no clear information on the HNF1B
variant was obtained leading to 340 patients with the
17q12del and 181 patients with HNF1B variants
(Figure 1). Next, 13 additional patients were excluded in
theHNF1B variants group because they were described
as benign HNF1B variants (p.Val61Gly, p.Gly76Cys,
p.Asp82Asn, p.Asn228Lys and p.His336Asp, Figure 1
and Supplementary Table S1 [lower grey section]). This
led to a total of 168 patients with HNF1B variants
(Supplementary Table S1). These HNF1B variants were
mainly found in the DNA-binding domains POUs and
POUh (67%, 88/132) and, to a lesser extent, in the
transactivating domain (19%, 25/132) (Figure 2). The
majority of the HNF1B variants were nucleotide sub-
stitutions (74%, Supplementary Figure S2a) leading to
47% of missense and 20% of nonsense variants at the
protein level (Supplementary Figure S2b).

Patients had a predominant antenatal diagnosis
(58%, Table 1), a median of 6 visits and 11 years of
follow-up with no difference between the 17q12del and
the HNF1B variants (Supplementary Table S2). A
17q12del was identified in 67% (340/508) of the pa-
tients and occurred de novo in 53% of the cases
(Table 1); 74% of the HNF1B variants were inherited.

At diagnosis, main kidney malformations observed
with ultrasound were cortical cystic disease or hyper-
echogenic kidneys, which together affected >80% of
2517



536 patients with suspected 
HNF1B disease were recruited in 

53 centers in 14 European countries 

15 Excluded
Patients without genetic information

340 patients with
a 17q12 deletion

(17q12del)

13 Excluded
Patients with a known benign HNF1B variant

181 patients with a
HNF1B variant

168 patients
with a HNF1B variant considered 

as pathogenic* or VUS*

Figure 1. Overview of patient recruitment and patient exclusion. *Definition of pathogenicity or variant of unknown significance (VUS) was
based on the merger of the 3 following databases. ClinVar (https://www.ncbi.nlm.nih.gov/clinvar (db accessed July 11, 2023); LOVD (https://
databases.lovd.nl/shared/variants/HNF1B#object_id¼VariantOnTranscript%2CVariantOnGenome&id¼HNF1B&order¼VariantOnTranscript
%2FDNA%2CASC&search_transcriptid¼00009498&search_VariantOnTranscript/DNA¼c.738G%3ET&page_size¼100&page¼1 (db accessed
July 11, 2023)) and Leipzig_University (https://www.hnf1b.org (db accessed July 11, 2023).26 A variant was marked as pathogenic if in at least 1
database the variant was labelled “pathogenic”. In all other cases a variant was labelled “VUS.”
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the patients (Figure 3). A single functional kidney due
to unilateral multicystic dysplastic kidney or agenesis
was observed in 18% of the patients (Table 1). The risk
Figure 2. Position of molecular modifications on the HNF1B gene and HNF1
protein were positioned according to.27

2518
of having hypoplasia was significantly lower in pa-
tients with the 17q12del than in patients with HNF1B
variants (1.2% vs. 5.5%, Figure 3).
B protein in 508 patients with HNF1B disease. Domains in the HNF1B

Kidney International Reports (2024) 9, 2514–2526
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Table 1. Patients characteristics at inclusion

Patient characteristics n

HNF1B

P-valuea Q-valuebHNF1B variants 17q12del

All 508 168 340

Sex 507 0.503 0.575

Female 208 (41%)c 72 (43%) 136 (40%)

Male 299 (59%) 95 (57%) 204 (60%)

Origin 286 <0.001 <0.001

De novo 123 (43%) 28 (26%) 95 (53%)

Inherited 163 (57%) 80 (74%) 83 (47%)

Transmission mode (in case of inherited variants) 156 0.036 0.097

Mother 100 (64%) 44 (55%) 56 (73%)

Father 55 (35%) 34 (43%) 21 (27%)

Mother þ father 1 (0.6%) 1 (1.3%) 0 (0%)

Diagnosis 309 0.023 0.090

Antenatal 180 (58%) 49 (49%) 131 (63%)

Postnatal 129 (42%) 51 (51%) 78 (37%)

Age at antenatal diagnosis (wa) 70 24 (20–30)d 24 (20–27) 24 (21–31) 0.311 0.575

Age at postnatal diagnosis (y) 109 3 (0–17) 4 (1–17) 3 (0–16) 0.454 0.575

Number of kidneys with US lesions 474 0.405 0.575

No 3 (0.6%) 2 (1.3%) 1 (0.3%)

1 48 (10%) 16 (10%) 32 (10.0%)

2 423 (89%) 135 (88%) 288 (90%)

Number of functional kidneys 479 0.895 0.895

2 391 (82%) 126 (81%) 265 (82%)

1 88 (18%) 29 (19%) 59 (18%)

aPearson’s Chi-square test; Fisher exact test; Wilcoxon rank sum test.
bFalse discovery rate correction for multiple testing.
cn (%)
dMedian (25%–75%).
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Progression to Chronic Kidney Failure

Twenty-one percent of the patients progressed toward
the primary kidney end point (CKD stage 3, eGFR < 60
ml/min per 1.73 m2) during follow-up. This was less
frequent in the population with the 17q12del than with
Figure 3. Kidney ultrasound characteristics at diagnosis in the 521 patien
HNF1B genotype was observed. The adjusted standardized residual was e
indicating ($3, see statistical analysis) that there were more patients w
adjusted standardized residual was equal to �6.99 for hypoplasia in pa
analysis) that there were less patients with hypoplasia than would be e
hypoplasia was significantly lower in patients with the 17q12del than in p
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HNF1B variants (12% vs. 39%, P < 0.001,
Supplementary Table S2). In addition, progression to-
ward CKD-stage 3 was significantly delayed in patients
with the 17q12del compared to patients with HNF1B
variants (Figure 4, HR: 0.29 [95% CI: 0.19–0.44], P <
ts with HNF1B variants. A global significant effect (P ¼ 0.005) of the
qual to 4.80 for hypoplasia in patients with HNF1B variants, thereby
ith hypoplasia than would be expected by chance. In contrast, the
tients with the 17q12del, thereby indicating (# �3, see statistical
xpected by chance. This strongly suggests that the risk of having
atients with HNF1B variants (*).
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Figure 4. Progression to CKD stage 3 of patients the 17q12del compared to HNF1B variants. Progression to CKD is significantly delayed in
patients with the 17q12del compared to patients with HNF1B variants (HR: 0.29 [95% CI: 0.19–0.44], P < 0.001). The survival curve was generated
using data from children aged$ 2 years to dismiss changes in eGFR in early life. The point in time of progression to CKD stage 3 (eGFR < 60 ml/
min per 1.73 m2) was entered as the chronological age of each patient. We considered that patients entered the study (baseline) at birth given
the fact the HNF1B disease is a congenital nephropathy. The log-rank test for difference in survival yielded a P-value < 0.0001, indicating that
the patients with 17q12del and HNF1B variants differed significantly in progression toward CKD stage 3. CI, confidence interval; CKD, chronic
kidney disease; eGFR, estimated glomerular filtration rate; HR, hazard ratio.
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0.001) with CKD-free survival of 87% (95% CI: 81–93)
for the 17q12del versus 63% (95% CI: 54–73) for
HNF1B variants at the age of 18 years. The association
of HNF1B genotype with progression toward CKD
stage 3 was still observed after adjustment for known
CKD risk factors, including sex or hyperglycemia (HR:
0.30 [95% CI: 0.19–0.45], P < 0.001).

Patients with the 17q12del also developed end-stage
kidney failure (ESKF) less frequently (Supplementary
Table S2, P < 0.001) and displayed a delayed pro-
gression to ESKF (Supplementary Figure S3a, P <
0.001) with ESKF-free survival of 97% (95% CI: 95–
100) for the 17q12del versus 86% (95% CI: 79–94) for
HNF1B variants at the age of 18 years. Even after
2520
reaching CKD stage 3, a tendency for a slower pro-
gression to ESKF for the 17q12del was observed
(Supplementary Figure S3b, P ¼ 0.14).

Individuals with the 17q12del had higher eGFR
early in life (68 ml/min per 1.73 m2 [95% CI: 60–76] vs.
46 ml/min per 1.73 m2 [95% CI: 39–55] at 1 week, as
defined by generalized linear mixed model analysis,
Figure 5a). These higher eGFR values persisted
throughout childhood (1 week–2 years, Figure 5a) and
adolescence (2–18 years, Figure 5b). However, no dif-
ference between the 2 groups with respect to evolution
of eGFR could be demonstrated (Figure 5a and b).

In case of the 17q12del, patients with a single
functional kidney (due to 1 multicystic dysplastic
Kidney International Reports (2024) 9, 2514–2526



Figure 5. Impact of the HNF1B genotype on eGFR trajectories in the pediatric period. Comparison of eGFR trajectories between the HNF1B
variants and the 17q12del (a) before 2 years (10 and 21 patients for HNF1B variants and the 17q12del, respectively) and (b) between 2 and 18
years (91 and 175 patients for HNF1B variants and the 17q12del, respectively). Patients with<3 eGFR measurements during the period of interest
were excluded. Individual and mean (bold) trajectories are plotted. The arrows and values indicate the mean (95% CI) eGFR at 1 week after
birth. CI, confidence interval; eGFR, estimated glomerular filtration rate.
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kidney or unilateral agenesis) displayed accelerated
CKD progression compared to patients with 2 func-
tional kidneys (Supplementary Figure S4a, HR: 2.32
[95% CI: 1.04–5.17), P ¼ 0.04). In contrast, in the
group with HNF1B variants, the number of functional
kidneys was not associated with CKD progression (HR:
0.92 [95% CI: 0.43–1.98), P ¼ 0.836, Supplementary
Figure S4b).

As observed in other studies,9 the majority of the
patients had HNF1B variants located in the POU do-
mains followed by variants in the transactivation
domain. Patients with variants located in the POUh or
transactivation domains progressed slower toward CKD
stage 3 than patients with variants in the POUs domain
(Figure 6, HR: 0.15 [95% CI: 0.06–0.37], P < 0.001 and
HR: 0.25 [95% CI: 0.11–0.57], P ¼ 0.001, respectively).
Adjustment by sex or hyperglycemia did not impact
progression (HR: 0.14 [95%CI: 0.05–0.35],P< 0.001 and
HR 0.22 [95% CI: 0.08–0.58], P ¼ 0.002, respectively).

In contrast, the type of variants (missense, nonsense,
splicing or frameshift) were not specifically associated
with kidney survival (Supplementary Figure S5).

Hypomagnesemia or Extrarenal Disorders

We next investigated whether there was a difference
between the 17q12del and HNF1B variants in the
development of hypomagnesemia or extrarenal disor-
ders. Hypomagnesemia (defined as plasma
magnesium <0.6 mmol/l) was observed in 29% of the
patients during follow-up (Supplementary Table S2)
Kidney International Reports (2024) 9, 2514–2526
and was significantly more frequent in patients with
the 17q12del (HR: 2.12 [95% CI: 1.32–3.50], P ¼ 0.002,
Figure 7a). However, onset of hypomagnesemia was
independent of the affected (POU or transactivation)
protein domains (Figure 7d).

Overall, 65% of the patients developed hyperurice-
mia (defined by plasma uric acid >320 mmol/l,
Supplementary Table S2) and was significantly less
frequent in patients with the 17q12del compared to the
HNF1B variants (HR: 0.57 [95% CI: 0.36–0.87), P ¼
0.011, Figure 7b). Among the HNF1B variants, patients
with variants in the POUh domain, but not those with
variants in the transactivation domain, developed
significantly less frequent hyperuricemia than patients
with variants in the POUs (HR: 0.30 [95% CI: 0.11–0.79],
P ¼ 0.018, Figure 7e). Finally, only 12% of the patients
developed hyperglycemia (blood glucose > 1.26 g/l,
Supplementary Table S2), which did not correlate with a
specific HNF1B genotype even though a tendency to be
less frequent in the population with the 17q12del was
observed (HR: 0.60 [95% CI: 0.35–1.05), P ¼ 0.069,
Figure 7c). No significant difference for the development
of hyperglycemia was observed between variants in the
POU or transactivation domains (Figure 7f).
DISCUSSION

Genotype-kidney survival phenotype correlations in
patients with HNF1B disease have long been sought to
improve genetic counseling. For a long time, there was
2521



Figure 6. Impact of variants in the different HNF1B domains on the progression to CKD stage 3. Variants located in the POUh and transactivation
domains displayed a significantly delayed progression toward CKD stage 3 compared to patients with variants in the POUs domain (HR: 0.15
[95% CI: 0.06–0.37], P < 0.001 and HR: 0.25 [95% CI: 0.11–0.57], P ¼ 0.001, respectively). The survival curve was generated using data from
children aged $2 years to dismiss changes in eGFR in early life. The point in time of progression to CKD stage 3 (eGFR < 60 ml/min per 1.73 m2)
was entered as the chronological age of each patient. We considered that patients entered the study (baseline) at birth given that HNF1B
disease is a congenital nephropathy. CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; HR, hazard
ratio; Trans, transactivation domain. The log rank test for difference in survival yielded a P-value < 0.0001, indicating that the patients with
variants in the 3 HNF1B domains differed significantly in progression toward CKD stage 3.
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no demonstrated correlation between genotype and
kidney phenotype in HNF1B disease.9 However, a first
small scale study in 2010, including 70 pediatric pa-
tients, showed a lower proportion of patients with
renal failure in individuals with the 17q12del than in
individuals with nonsense, splice, or frameshift
HNF1B variants.4 Subsequently, a study in 2016 with
38 pediatric and adult individuals with HNF1B disease
showed that patients with the 17q12del displayed
higher eGFR compared to patients with HNF1B vari-
ants.18 Finally in 2018, Dubois-Lafforgue et al.20

showed in a larger population of 169 adult patients
2522
with HNF1B disease, primarily selected for HNF1B
disease screening due the presence of maturity-onset
diabetes of the young, that individuals with the
17q12del less often had CKD3–4/ESKF at diagnosis and
at long-term follow-up (12–14.5 years). This present
report clearly confirms in a large cohort of 521 patients
with HNF1B disease that the 17q12del is associated
with significantly better kidney survival than the
HNF1B variants across all ages, including pediatric and
adult patients. Moreover, this study identified for the
first time that variants located in the POUs DNA
binding domain of HNF1B had a significantly worse
Kidney International Reports (2024) 9, 2514–2526



Figure 7. The 17q12del and HNF1B variants in hypomagnesemia or extrarenal disorders. (a) Hypomagnesemia (magnesium < 0.6 mmol/l) was
more frequent in patients with the 17q12del compared to patients with HNF1B variants. (b) Hyperuricemia (uric acid > 320 mmol/l) was less
frequent in patients with the 17q12del compared to patients with HNF1B variants. (c) Hyperglycemia (fasting blood glucose > 1.26 g/l) was not
different in the patient groups. (d) Hypomagnesemia was not different between patients with variants in the POUs, POUh, and transactivation
domains. (e) Hyperuricemia was less frequent in patients with variants in the POUh than in the POUs and transactivation domains. (f) Hy-
perglycemia was not different between patients with variants in the POUs, POUh, and transactivation domains.
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kidney survival than variants located in the POUh or
transactivation domains.

The identification in childhood of a 17q12del and
the presence of 2 functional kidneys will allow to
reassure the parents with the information that their
child has a low probability of developing CKD stage 3
before the age of 18 years. In contrast, it has been
clearly documented that the 17q12del is associated
with an increased risk of developing neuro-
developmental disorders.16-19 Therefore, this impor-
tant aspect should be considered and included in
parental counseling. The presence of an HNF1B
variant instead of the 17q12del would be an argument
for early-in-life monitoring of signs of kidney failure
and adopt conservative management. In addition, if
the other HNF1B variant is located in the POUs DNA
binding domain of the HNF1B protein, this monitoring
should be further reinforced because variants in this
domain compared to the POUh and transactivation
domains led to a particularly high risk of progression
to CKD stage 3 in our study.

The difference in terms of renal function between
patients with the 17q12del and those with the HNF1B
variants appears to be already present in the neonatal
period, however, without differentially impacting
eGFR evolution at least up to 18 years of age.
Kidney International Reports (2024) 9, 2514–2526
On a molecular level, the fact that the 17q12del
resulted in a less severe kidney phenotype compared to
the HNF1B variants is surprising. Such a difference has
also been observed in mice. Hnf1bþ/� mice were
phenotypically normal28 with increased rather than
decreased29 kidney HNF1B protein abundance,
whereas mice carrying a heterozygous HNF1B splice
variant lead presence of bilateral cystic kidneys with
low kidney HNF1B protein levels.29 A possible expla-
nation may be the fact that missense HNF1B variants
might lead to a dominant negative effect because the
variants are for the greater part located in the DNA-
binding and N-terminal dimerization domain of the
HNF1B protein9 and analysis of a Leu168Pro HNF1B
variant located in the POUs domain clearly demon-
strated a dominant effect on HNF1B activity when
coexpressing the wild type and Leu168Pro HNF1B
variant in vitro.30

The observation that variants in the POUs domain
led to a more severe kidney outcome than variations in
the POUh and transactivation domains is intriguing. It
is thought that on the molecular level, the POUs domain
cooperates with POUh to enhance the binding affinity
and specificity of DNA binding and is not the initial
DNA binding site.14 However, in vitro, missense vari-
ants in the POUs domain lead in general to a more
2523
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pronounced reduction in HNF1B protein stability,
transcriptional activity, and DNA binding than
missense variants in the POUh domain.14

Hypomagnesemia developed in 29% of the patients
with HNF1B disease. Hypomagnesemia is a common
feature due to renal magnesium wasting in patients
with HNF1B disease.9 However, we report for the first
time a higher risk for this disorder in patients with the
17q12del. In contrast the risk of hyperuricemia,
observed 65% of the patients during follow-up, was
lower in patients with the 17q12del and in patients
with a variant in the POUh compared to the POUs and
transactivation domains.

The main strength of this study is the large number
(>500) of patients enrolled for a rare disease. Patients
were enrolled in a variety of >50 clinics, representing a
diversity of health care systems across 14 European
countries. In addition, the frequency of the 17q12del in
our large cohort is close to what has been reported in
the literature, 67% in the current study versus 56% to
59% in the literature.9 Therefore, the patient popula-
tion studied is similar to routine clinical care.

Limitations of this study were the fact that this is a
relatively young cohort with few patients aged over 20
years (59/521) at the end of the follow-up. This probably
explains the low percentage (12%) of patients who
developed hyperglycemia during follow-up in our
cohort. Itwould therefore be interesting to reanalyze this
cohort with an additional decade of follow-up. We also
did not study the aforementioned development of psy-
chiatric and autism spectrumdisorders in our cohort16-19

due to the trade-off of focusing on the kidney to maxi-
mize the number of patients included. Only 2 variants
were located in the dimerization domain. Finally, this
was a retrospective study.

In conclusion, our study has identified clinically
relevant genotype-phenotype correlations in patients
with HNF1B disease predicting kidney survival that
inform genetic counseling.
APPENDIX

List of Additional Collaborators of the HNF1B
Variant Study Group

Gema Ariceta, MD, PhD (Pediatric Nephrology, University

Hospital Vall d’Hebron, Barcelona, Spain); Elisa Benetti,

MD, PhD (Pediatric Nephrology, Dialysis and Transplant

Unit, Department of Women’s and Children’s Health,

Padua University Hospital, Padua, Italy); Marcus R Benz,

MD (Pediatric Nephrology Dachau, Dachau, Germany);

Anna Bjerre, MD, PhD (Division of Pediatric and Adoles-

cent Medicine, Oslo University Hospital, Oslo, Norway);

Bernard R Boudailliez, MD (Service de Néphrologie
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Pédiatrique, Département de Pédiatrie, CHU Amiens,

Amiens, France); Antonia Bouts, MD, PhD (Emma Chil-

dren’s Hospital, Amsterdam University Medical Centers,

Department of Pediatric Nephrology, Amsterdam Repro-

duction & Development, Amsterdam, the Netherlands);

Jens Drube, (Department of Pediatric Kidney, Liver and

Metabolic Diseases, Hannover Medical School Children’s

Hospital, Hannover, Germany); Ann Christin Gjerstad, MD,

PhD (Division of Pediatric and Adolescent Medicine, Oslo

University Hospital, Oslo, Norway); Augustina Jankaus-

kiene, MD, PhD (Pediatric Center, Institute of Clinical

Medicine, Vilnius University, Vilnius, Lithuania); Eszter

Jávorszky, PhD (MTA -SE Lendület Nephrogenetic Labo-

ratory, Budapest, Hungary); Nadine Jay, MD (Service de

Pédiatrie, CHU de Brest, Brest, France); Martin Kirschstein,

MD, PhD (Department of Pediatrics, General Hospital,

Celle, Germany); Nata�sa Mar�cun Varda, MD, PhD (Uni-

versity Medical Centre Maribor, Department of Paediatrics,

Maribor, Slovenia); Olivier Niel, MD, PhD (Pediatric

Nephrology, Centre Hospitalier de Luxembourg,

Luxembourg, Luxembourg); François Nobili, MD (Service

de Pédiatrie 2, CHU Besancon, Besancon, France); Chris-

tine Pietrement, MD, PhD (Unité de Néphrologie Pédiatri-

que CHU Reims, Reims, France); Dovile Ruzgiene, MD

(Pediatric Center, Institute of Clinical Medicine, Vilnius

University, Vilnius, Lithuania); Raphael Schild, MD (Uni-

versity Children’s Hospital, University Medical Center

Hamburg Eppendorf, Hamburg, Germany); Hagen Staude,

MD (Department of Pediatric Nephrology, University Chil-

dren’s Hospital, Rostock, Germany); Kálmán Tory, MD,

PhD (MTA -SE Lendület Nephrogenetic Laboratory, Buda-

pest, Hungary); Michel Tsimaratos, MD, PhD (Pédiatrie

Multidisciplinaire Timone, Aix -Marseille Université, Mar-

seille, France); Ulrike Walden, MD (Paediatric and Adoles-

cent Medicine, University Medical Center, Augsburg,

Germany); and Hildegard Zappel, MD (University Chil-

dren’s Hospital Göttingen, Göttingen, Germany).
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Figure S1. An international multicenter study. (a) 14

European countries participated in the study. A total of (b)

22 centers from France and (c) 14 centers from Germany,

the 2 major participating countries, were involved.

Figure S2. Distribution of HNF1B variants other than the

17q12del. (a) Nature of variants and (b) resulting variants.

Figure S3. Progression to ESKF of patients with HNF1B
disease. (a) Progression to ESKF is significantly delayed

in patients with the 17q12del compared to patients with

HNF1B variants. (b) Progression to ESKF after developing

CKD is not different between the 62 patients with HNF1B
variants and 33 patients with the 17q12del. The survival

curves were generated using data from children aged $2

years to dismiss changes in eGFR evolution in early life.

The point in time of progression to ESKF was entered as

the chronological age of each patient. We considered

that patients entered the study (baseline) at birth given

that HNF1B disease is a congenital nephropathy. In (a),

the log-rank test for difference in survival yielded a P-
value < 0.0001, indicating that the patients with 17q12del

and HNF1B variants differed significantly in progression

toward ESKF. CKD, chronic kidney disease, eGFR, esti-

mated glomerular filtration rate; ESKF, end-stage kidney

failure.

Figure S4. Impact of 1 or 2 functional kidneys in patients

with HNF1B disease on progression to CKD stage 3. (a)

Kidney survival of patients with the 17q12del is worse in

patients with 1 functional kidney. (b) Kidney survival of

patients with HNF1B variants is similar irrespective of the

number of functional kidneys. The survival curves were

generated using data from children aged $2 years to

dismiss changes in eGFR in early life. The point in time

of progression to CKD stage 3 (eGFR < 60 ml/min per

1.73 m2) was entered as the chronological age of each

patient. We considered that patients entered the study

(baseline) at birth given that HNF1B disease is a

congenital nephropathy. In (a) The log-rank test for differ-

ence in survival yielded a P-value of 0.034, indicating that

the patients with 17q12del with 1 functional kidney differed

significantly in progression toward CKD stage 3. CKD,

chronic kidney disease, eGFR, estimated glomerular

filtration rate.

Figure S5. Impact of the nature of the change at the HNF1B

protein level on progression to CKD stage 3. Kidney

survival of patients is not different between missense,

nonsense, splicing, or frameshift HNF1B variants. The

survival curves were generated using data from children

aged >2 years to dismiss changes in eGFR in early life.

The point in time of progression to CKD stage 3 (eGFR <

60 ml/min per 1.73 m2) was entered as the chronological

age of each patient. We considered that patients entered
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the study (baseline) at birth given that HNF1B disease is

a congenital nephropathy. CKD, chronic kidney disease,

eGFR, estimated glomerular filtration rate.

Table S1. Characteristics of HNF1B gene variants.

Table S2. Follow-up data of patients with HNF1B disease.

Table S3. Individual patient data. (Excel)

STROBE Statement.
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