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CD4 Tregs are involved in the regulation of various autoimmune diseases but believed to
be highly heterogeneous. Studies have indicated that Helios controls a distinct subset of
functional Tregs. However, the immunological changes in circulating Helios+ and Helios−

Tregs are not fully explored in type 1 diabetes (T1D). Here, we elucidated the differences in
maturation status and immune regulatory phenotypes of Helios+ and Helios− Tregs and
their correlations with monocyte subsets in T1D individuals. As CD25−/low FOXP3+ Tregs
also represent a subset of functional Tregs, we defined Tregs as FOXP3+CD127−/low and
examined circulating Helios+ and Helios− Treg subpopulations in 68 autoantibody-positive
T1D individuals and 68 age-matched healthy controls. We found that expression of both
FOXP3 and CTLA4 diminished in Helios− Tregs, while the proportion of CD25−/low Tregs
increased in Helios+ Tregs of T1D individuals. Although the frequencies of neither Helios+

nor Helios− Tregs were affected by investigated T1D genetic risk loci, Helios+ Tregs
correlated with age at T1D diagnosis negatively and disease duration positively. Moreover,
the negative correlation between central and effector memory proportions of Helios+ Tregs
in healthy controls was disrupted in T1D individuals. Finally, regulatory non-classical and
intermediate monocytes also decreased in T1D individuals, and positive correlations
between these regulatory monocytes and Helios+/Helios− Treg subsets in healthy controls
disappeared in T1D individuals. In conclusion, we demonstrated the alternations in
maturation status and immune phenotypes in Helios+ and Helios− Treg subsets and
revealed the missing association between these Treg subsets and monocyte subsets in
T1D individuals, which might point out another option for elucidating T1D mechanisms.
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INTRODUCTION

Regulatory T cells (Tregs) are a subset of CD4 T cells that
maintain tolerance by exerting the suppression of conventional T
cells (1, 2). Forkhead box protein 3 (FOXP3) is the critical
transcription factor for the development and suppressive
function of Tregs in both human and mouse (3–5). Tregs are
also characterized by high expression of the interleukin-2 a-
chain receptor (IL-2RA, also named as CD25) (6, 7) and low
expression of interleukin-7 receptor (IL-7R, also named as
CD127) (8). Numerous studies have indicated that the
numeric, phenotypic, and functional abnormalities of Tregs
are important in the pathogenesis of many autoimmune
diseases (9).

Type 1 diabetes (T1D) is an organ-specific autoimmune
disease characterized by severe autoimmune destruction of
insulin-secreting pancreatic beta cells (10), especially by the
combined actions of different immune cells, such as CD4 and
CD8 conventional T cells with specificity for islet autoantigens
(11). The compromised number and function of Tregs result in
the imbalance between Tregs and conventional T cells in T1D
individuals, which lead to abnormal immune responses and
subsequently T1D development (2, 9). Although multiple lines
of evidence suggest a defective function of Tregs and decreased
suppression of T effector cells by Tregs in T1D individuals (12–
14), the results for the frequency of circulating Tregs were
inconsistent in T1D individuals (9). The probable explanation
might be that different studies define Tregs with diverse
combinations of markers (e.g. FOXP3, CD25, and CD127). It
is becoming apparent that Tregs are a heterogeneous mixture of
cellular phenotypic subtypes that reflect different states of
maturation, differentiation, and activation (15–17). Thus, an
alteration in frequencies and immune phenotypes of Treg
subsets or a shift in the balance between Treg subsets and
other immune cells might be present in T1D individuals.

Helios, a member of the Ikaros zinc finger transcription factor
family, is selectively expressed in human Tregs, which binds to
the FOXP3 promoter, stabilizing FOXP3 expression and
increasing Treg suppressive function (18–21). Although Helios
is not a biomarker for distinguishing thymic derived Treg (tTreg)
and peripherally induced Treg (pTreg) cells (22), studies have
indicated that Helios+ and Helios− Tregs are two distinct
subpopulations in terms of epigenetic changes at the FOXP3
locus, differences in their phenotype and function, and their
stability of FOXP3 expression, etc (16, 19, 23). However, the
immunological changes of either Helios+ or Helios− Tregs in
T1D individuals are not well clarified in T1D individuals.

In this scenario, we aimed to unravel the differences in
frequencies, maturation status, and immune phenotypes of
both Helios+ and Helios− Tregs in autoantibody-positive T1D
compared to age-matched healthy individuals. We also assessed
the potential contributing factors affecting these two Treg
subpopulations, including T1D genetic risk loci and disease
status. Moreover, Helios+ and Helios− Treg development may
be controlled by differential monocyte subsets with distinct
inflammatory cytokines in healthy individuals (24). Therefore,
we also investigated the alterations of regulatory monocyte
Frontiers in Immunology | www.frontiersin.org 2
subsets and their correlations with these two Treg
subpopulations in T1D individuals.
MATERIALS AND METHODS

Study Participants
This study included the following subjects: 68 unrelated T1D
individuals were recruited from the First Affiliated Hospital of
Nanjing Medical University. T1D was diagnosed according to
the WHO criteria. T1D individuals were enrolled with at least
one positive islet-specific autoantibody, including Zinc
transporter-8 autoantibody (ZnT8A), glutamic acid
decarboxylase autoantibody (GADA), insulinoma-associated-2
autoantibody (IA-2A) or insulin antibody (IAA). ZnT8A,
GADA, and IA-2A were measured by radio-binding assays
described previously (25), and IAA was measured by ELISA
(Biomerica). Sixty-eight age-matched healthy controls were
enrolled from the same geographical region without diabetes
or overt autoimmune diseases, which were negative for islet-
specific autoantibodies. Study size provides sufficient (80%)
statistical power to detect a difference between groups at the
p = 0.05 level. The clinical characteristics of all the subjects are
listed in Table S1. All samples were collected with appropriate
informed consent from all participants and/or their guardians
in a written way. The study was approved by the Ethics
Committee from the First Affiliated Hospital of Nanjing
Medical University and conducted according to the principles
of the Declaration of Helsinki.

Cell Staining and Multicolor Flow
Cytometry
Peripheral mononuclear blood cells (PBMCs) were isolated from
whole blood by density gradient centrifugation on Ficoll at study
entry and frozen at a core facility. Thawed PBMCs were stained
with aqua for live/dead cells, divided equally for the different
panels. For Treg panel, thawed cells were stained with surface
monoclonal antibodies: CD3 (SK7), CD4 (SK3), CD8 (SK1),
CD25 (M-A251), CD127 (A019D5), CD45RA (HI100), CCR7
(GO43H7), and CD28 (CD28.2), then these cells were fixed and
permeabilized according to the manufacturer’s instructions
(eBioscience) and stained for intracellular FOXP3 (259D/C7),
Helios (22F6), and CTLA-4 (BNI3). For monocyte panel, thawed
cells were stained with surface monoclonal antibodies: CD14
(HCD14), CD16 (3G8), and HLA-DR (L243). Fluorochrome-
conjugated human monoclonal antibodies were purchased from
Biolegend or BD Biosciences. Fluorescence Minus One for CD25
was set for Treg panel. Fourteen separate flow cytometry
experiments were performed to obtain the data, and one
sample from the same healthy individual drawn at the same
time was set as a panel control for different experiments. PBMCs
were run on FACS Aria II or FACSCalibur (BD Biosciences) and
analyzed by FlowJo v10 software (TreeStar, Ashland, OR).

Genotyping
Genomic DNA was extracted from isolated PBMCs using the
DNeasy Blood and Tissue Kit (Qiagen). Genome-wide
May 2021 | Volume 12 | Article 628504
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association studies on T1D have revealed risk loci in/near
candidate genes related to Tregs, including rs2104286 in
IL2RA, rs6897932 in IL-7R and rs478582 and rs1893217 in
PTPN2 (from www.t1dbase.org). Here, we assessed these T1D
risk loci by TaqMan genotyping assays according to the
manufacturer’s protocol. PCR was performed and analyzed on
an ABI 7900HT.

Statistical Analysis
Comparisons between the two groups were evaluated by the
Wilcoxon test or Mann–Whitney test for paired or unpaired
samples respectively. Correlations were determined using
Spearman’s rank test. Statistical analyses were conducted using
GraphPad Prism version 7.0, except that multicomponent
distributions were performed by partial permutation test using
SPICE v5.1. For all comparisons, a P value <0.05 was
considered significant.
RESULTS

A Decreased Expression of FOXP3
in Helios− Tregs, While an Increased
Proportion of CD25−/low in Helios+ Tregs
of T1D Individuals
In humans, CD25−/low FOXP3+ Tregs represent a subset of
functional Tregs (26, 27), and differential expression of CD127
enables distinction between Tregs (CD127−/low) and activated
effector T cells (CD127+) (8, 28). Therefore, we defined CD4
Tregs as FOXP3+CD127−/low, and we performed a phenotypic
subtype analysis stratified by Helios (16) in T1D individuals.
Representative dot plots gating Treg subsets are shown in Figure
1A. Compared with age-matched healthy controls, we did not
find any difference in the frequencies of total Tregs, Helios+, or
Helios− Treg subpopulations in autoantibody-positive T1D
individuals (Figures 1B, C). However, when compared to
Helios+ Tregs, we observed Helios− Tregs showed much lower
expression of FOXP3 (in terms of mean fluorescence intensity,
MFI), but much higher proportion of CD25−/low Tregs in both
T1D and healthy individuals (Figures 1D, E), suggesting reduced
stability in Helios− Tregs similar to previous results (16, 21).
Interestingly, when compared to healthy individuals, we found a
significant decrease in FOXP3+ expression (MFI) of Helios−

Tregs (P = 0.0264) (Figure 1D) and an increased frequency of
CD25−/low in Helios+ Tregs (P = 0.0109) (Figure 1E) in
T1D individuals.

Frequency of Helios+ Tregs in CD4
T Cells Correlated Negatively With Age
at T1D Diagnosis and Positively With
Disease Duration
As disease status and genetic risk loci may affect Treg subsets, we
investigated the effect of these contributing factors on both Helios+

and Helios− Tregs. The results showed no correlation with age at
time of blood donation in either Helios+ or Helios− Tregs of healthy
individuals (Figures 2A, B), suggesting they were not affected by
Frontiers in Immunology | www.frontiersin.org 3
age. Interestingly, the percentage of Helios+ Tregs in CD4 T cells
was positively correlated with T1D disease duration (Spearman r =
0.461, P = 0.0001) and negatively correlated with age at T1D
diagnosis (Spearman r = −0.288, P = 0.0209) (Figures 2C, D).
These correlations were not observed in Helios− Tregs of T1D
individuals (Figures 2E, F). These suggested that the expansion of
Helios+, but not of Helios− Tregs in CD4 T cells may be related to
T1D onset and progression. However, to discern the contributions
of four investigated T1D genetic risk loci related to Tregs, we found
that none of them affected the frequencies of these two Treg subsets,
neither in the absence nor in the presence of T1D disease status
(Figures S1A, B).

A Distinct Effector/Memory
Differentiation Path Occurs in Helios+

Tregs of T1D Individuals
The memory/effector characterization might define effector T cell
memory pools. Similar to conventional T cells, Treg suppressive
capacity may also rely on specific TCR-dependent activation (29).
Therefore, Tregs may modify their phenotype, activation, or
expansion, which exert different suppressor capacities among
distinct Treg differentiation stages. CD45RA does not identify a
pure FOXP3+Helios+ population (30). To explore this issue, we
phenotypically discriminatedHelios+ andHelios−Tregs in terms of
CD45RA/CCR7 expression as naïve (N), central memory (CM),
effectormemory (EM), and terminal effector (TE)Tregs (31–33).As
shown in Figures S2A–D, compared with Helios− Tregs, Helios+

Tregs showed significant differences in memory/effector
distributions by a partial permutation test, and increased
percentages of EM and diminished proportions of CM subsets
irrespective ofT1D status (P<0.0001). These data suggested amore
differentiated phenotype in Helios+ Tregs than in Helios− Tregs.
When compared to healthy controls, T1D individuals evinced
similar memory/effector distribution by partial permutation test
(Figures 3A, B) and similar proportions of N, CM, EM and TE
subsets (Figures 3C,D) in bothHelios+ andHelios−Tregs, but CM
subsets of Helios+ Tregs had a tendency to be lower in T1D
(P = 0.076).

Differences in circulating effector/memory subset proportions
may occur due to variations in their differentiation path (34).
Therefore, we evaluated transitions between effector and memory
populations by analyzing correlations between subset proportions.
As shown in Figure 4A, we observed a strong negative correlation
between CM and EM subset proportions for Helios+ Tregs in
healthy controls (Spearman r = 0.405, P = 0.0007). However, this
correlation was not evident for Helios+ Tregs of T1D individuals
(Figure 4B). In addition, we did not observe any correlation
between CM and EM subset proportions for Helios− Tregs in
either T1D or healthy individuals (Figures 4C, D). These results
suggested that transitions of CM and EM Helios+ Treg
differentiation path are prone to occur in healthy controls, but
such a transition in Helios+ Tregs disrupted in T1D individuals.

A Lower Expression of CTLA4 in Helios−,
but Not Helios+ Tregs of T1D Individuals
We performed a comparative phenotypic analysis for Helios+

and Helios− Tregs by evaluating the ex vivo expression of CTLA4
May 2021 | Volume 12 | Article 628504
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A

B

D E

C

FIGURE 1 | The frequencies of Helios+ and Helios− Treg subsets and their expression of FoxP3 and proportions of CD25−/low Tregs in T1D individuals, compared to
healthy controls. (A) A representative dot plot for gating CD25 and FoxP3 expression in Helios+ and Helios− Treg subsets of a healthy donor. (B) Evaluation of the
percentage of total, Helios+ and Helios− Tregs in CD4 T cells between T1D and healthy controls. (C) Evaluation of the percentage of Helios+ and Helios− Tregs in
total Tregs between T1D and healthy controls. (D) Differences in mean fluorescence intensity (MFI) of FoxP3 in Helios+ and Helios− Tregs of T1D and healthy
controls. MFI of FoxP3 was measured to compare the level of expression of this molecule. (E) Differences in frequency of CD25−/low in Helios+ and Helios− Tregs of
T1D and healthy controls. HD, healthy controls. Wilcoxon test was used for statistical comparison between the two different subsets. The results were from 68
autoantibody-positive T1D individuals and 68 age-matched autoantibody-negative healthy controls. Samples from T1D individuals and healthy controls were
randomly divided to each independent experiment. One biological sample (from the same healthy donor and drawn at the same time) was performed as control for
the experimental reproducibility. Comparisons between T1D and healthy controls were performed by unpaired t test with Welch’s correction. A p value below 0.05
indicates a significant difference between groups.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6285044
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and CD28, since they had been associated with regulatory
function in Tregs (35). Representative expression of CTLA4
and CD28 in Treg subsets is shown in Figure 5A, C. We
observed that expression of CTLA4 and CD28 (MFI) was
higher in Helios− Tregs compared to Helios+ Tregs in both
T1D and healthy individuals (P < 0.0001) (Figures 5B, D),
suggesting Helios+ and Helios− Tregs are two distinct
subpopulations. Continuing our analysis, CTLA4 expression in
Helios−, but not Helios+ Tregs decreased in T1D individuals (P =
0.0371) (Figure 5D). CD28 expression in Helios+ or Helios−

Tregs did not differ in T1D individuals compared to healthy
controls (Figure 5C). These results implicated that Helios− Tregs
may display a diminished inhibitory capacity in T1D individuals
due to the lower expression of CTLA4.
Frontiers in Immunology | www.frontiersin.org 5
Regulatory Monocyte Subsets Balance
Are Also Altered in T1D Individuals
To address this issue, we gated monocytes with the combination
of CD14, CD16, and HLA-DR, which could discriminate
monocytes from the CD16+HLA-DR− NK-cells and
neutrophils (36, 37). Representative dot plots for three
monocyte subsets are shown in Figure 6A, including non-
classical (CD14+CD16++), intermediate (CD14++CD16++), and
classical monocytes (CD14++CD16+). Our results indicated that
age at time of blood donation significantly correlated with the
frequencies of these monocyte subsets in both T1D and
healthy controls (Figures S3A–F); thus it is important to
measure the distributions of monocyte subsets in an age-
matched manner.
A B

D

E F

C

FIGURE 2 | Correlation between frequency of Helios+ or Helios− Tregs in CD4 T cells and age at time of blood donation and T1D disease status. (A, B) Correlation
between frequency of Helios+ or Helios− Tregs in CD4 T cells and age at time of blood donation in healthy controls respectively. (C, D) Correlation between
frequency of Helios+ or Helios− Tregs in CD4 T cells and age at T1D diagnosis in T1D individuals respectively. (E, F) Correlation between frequency of Helios+ or
Helios− Tregs in CD4 T cells and T1D duration in T1D individuals respectively. HD, healthy controls. The results were from 68 healthy controls and 68 autoantibody-
positive T1D individuals. Samples from T1D individuals and healthy controls were randomly divided to each independent experiment. One biological sample (from the
same healthy donor and drawn at the same time) was performed as control for the experimental reproducibility. Spearman correlation was performed for these
correlations. A p value below 0.05 indicates a significant difference between groups.
May 2021 | Volume 12 | Article 628504
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Compared with age-matched healthy controls, we observed
decreased proportions of both non-classical and intermediate
subsets (P < 0.0001 and = 0.0055 respectively) of total circulating
monocytes in T1D individuals (Figure 6B). We also found that
HLA-DR expression (MFI) in intermediate monocytes was
significantly higher than in the other two subsets in both T1D
and healthy controls, as shown in Figure 6C. In addition, HLA-
DR expression in classic monocytes, but not intermediate or
non-classical monocytes, was significantly increased in T1D
individuals (P = 0.005). These suggested higher antigen
processing and presentation capability of classic monocytes in
T1D individuals.

Correlations Between Regulatory
Monocytes and Treg Subsets Disappear in
T1D Individuals
In the non-infectious setting of chronic autoimmune diseases,
cell contact with regulatory T cells is likely to contribute to the
Frontiers in Immunology | www.frontiersin.org 6
regulation of circulating monocytes (24). Therefore, we
performed a correlation analysis to investigate the relationship
between the absolute numbers of monocyte subsets and Treg
subsets. As shown in Figures 7A, B, we observe positive
correlations between classic monocytes and Treg subsets in
both healthy controls (for Helios+ subsets, Spearman r = 0.613,
P = 2.87E-06; for Helios− subsets, Spearman r = 0.643, P = 2.68E-
06) and T1D individuals (for Helios+ subsets, Spearman r =
0.380, P = 0.0035; for Helios− subsets, Spearman r = 0.307, P =
0.020) (Figures 7C, D). Moreover, positive correlations between
intermediate monocytes and Treg subsets were observed in
healthy controls (for Helios+ subsets, Spearman r = 0.535, P =
3.74E-06; for Helios− subsets, Spearman r = 0.552, P = 3.48E-06)
(Figures 7E, F). Similar correlations were also found between
non-classical monocytes and Treg subsets in healthy controls
(for Helios+ subsets, Spearman r = 0.535, P = 3.74E-06; for
Helios− subsets, Spearman r = 0.550, P = 3.52E-06) (Figures 7I,
J). However, such correlations between intermediate or non-
A B

DC

FIGURE 3 | Similar maturation status of both Helios+ and Helios− Tregs in T1D individuals, compared with healthy donors (HD). The expression of CD45RA and
CCR7 on CD4+ T cells from T1D and HD was analyzed by flow cytometry. (A, C) Pie charts summarize the data and each slice corresponds to the mean proportion
of Helios+ and Helios− Tregs for each phenotype. (B, D) Possible phenotypes are shown on the x-axis, whereas percentages of distinct T-cell subsets within Helios+

and Helios− Tregs are shown on the y-axis. Each point represents a single individual. The results were from 68 autoantibody-positive T1D individuals and 68 age-
matched autoantibody-negative healthy controls. Samples from T1D individuals and healthy controls were randomly divided to each independent experiment. One
biological sample (from the same healthy donor and drawn at the same time) was performed as control for the experimental reproducibility. Comparisons between
phenotype distributions were performed using the partial permutation test, and unpaired t test with Welch’s correction for each phenotype. A p value below 0.05
indicates a significant difference between groups.
May 2021 | Volume 12 | Article 628504
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classic monocytes and Treg subsets were not observed in T1D
individuals (Figures 7G, H, K, L). Furthermore, the positive
correlation between intermediate or non-classic monocytes and
total Tregs in healthy controls also disappeared in T1D
individuals (data not shown). Interestingly, although these
monocyte subsets had no correlation with T1D disease
duration, a positive correlation for intermediate monocytes,
and a negative correlation for classical monocytes was
observed with age at T1D diagnosis respectively (Figures S3D–
F), which might contribute to the imbalance between regulatory
monocytes and Tregs in T1D individuals.
DISCUSSION

Studies have indicated that Helios+ and Helios− Tregs are two
distinct functional subpopulations (16, 19, 23), and our results
revealed that the frequencies of Helios+ and Helios− Tregs were
not altered in T1D individuals, which were consistent with those
from Du et al. (38). However, other studies indicated that Helios+

Tregs were associated with other autoimmune diseases (e.g.
systemic lupus erythematosus, SLE) (39–41). Furthermore,
Zoka et al. did not observe any change in FOXP3 expression in
Tregs of T1D individuals (42), but other studies indicated that
the stability of FOXP3 in Tregs decreased in T1D individuals (13,
43), and more Tregs from T1D individuals tend to lose Helios
expression during the expansion in vitro (38). Our results found
Frontiers in Immunology | www.frontiersin.org 7
that decreased expression of FOXP3 only occurred in Helios−,
but not Helios+ Tregs of T1D individuals. Taken together, these
results suggested that Helios in Tregs may regulate the
development of autoimmune diseases in different orientations,
and that FOXP3 expression in Helios− Tregs were more unstable
in T1D individuals.

In humans, T1D risk loci are present in key elements of the
IL2RA and molecules/phosphatases modulating downstream
signaling of IL-2 (e.g. PTPN2), which were associated with
reduced Treg fitness and/or function in the absence of disease
(43–45). Helios regulates IL-2 production in Tregs by silencing
IL-2 gene transcription and maintains Treg suppressive function
(46). However, we did not find that any of these risk loci affected
the frequencies of Helios+ or Helios+ Tregs in either healthy
controls or T1D individuals. As C-peptide levels were influenced
by age at T1D diagnosis and disease duration (47), we speculated
that an imbalance of Helios+ Treg/effector T cells may lead to
altered immune attack to islet beta cells, which subsequently
influence T1D onset and residual C-peptide levels.

Recent studies have shown that circulating CD25−/low Tregs
increased in SLE individuals (26, 48, 49), a finding that was later
expanded to T1D (27, 42). Our results revealed that compared to
Helios+ Tregs, the proportion of CD25−/low Tregs in Helios−

Tregs significantly increased in both T1D and healthy controls.
We also noted a strikingly significant increase of CD25−/low Tregs
in Helios+, but not Helios− Treg subsets in T1D individuals. In
accordance with our results, increased CD25−/low Treg
A B

C D

FIGURE 4 | A distinct effector/memory differentiation path occurs in Helios+ Tregs from T1D individuals. Correlation analysis between the percentages of CM and
EM Treg subsets (Helios+ or Helios−) from healthy donors (HD) (A, C) and T1D (B, D) individuals. Spearman rank test was used for the evaluation of the correlation.
The results were from 68 healthy controls and 40 autoantibody-positive T1D individuals. Samples from T1D individuals and healthy controls were randomly divided to
each independent experiment. One biological sample (from the same healthy donor and drawn at the same time) was performed as control for the experimental
reproducibility. Spearman correlation was performed for these correlations. A p value <0.05 was considered as significant. ns, not significant.
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proportions in CD4+FOXP3+ or FOXP3+Helios+ Tregs were also
observed in T1D individuals by other authors (42, 50). Moreover,
CD25−/low Tregs were derived from CD25high Tregs and were a
peripheral marker of recent Treg expansion in response to an
autoimmune reaction in tissues (27). Low CD25 expression was
also associated with impaired STAT5 phosphorylation upon IL-2
stimulation (50). Taken together, an impaired balance of
CD25high and CD25−/low in Helios+ Tregs might reflect a
decreased late-phase activation of circulating Tregs in
T1D individuals.

Similar to conventional T cells, TCR activation induces Tregs
differentiation resulting in dissimilar memory populations (51).
Mailloux et al. found that most Helios− Tregs were of CM type,
while Helios+ Tregs are prevalently EM cells, which display a
more potent inhibition capacity compared to CM or TE cells
(34). However, our results showed that CM cells were the main
type for both Helios+ and Helios− Tregs irrespective of T1D
status. Our results further demonstrated that increases in naive
and CM Tregs and a reduction in EM Tregs occurred in both
healthy controls and T1D individuals. When compared to
Frontiers in Immunology | www.frontiersin.org 8
healthy controls, we found similarities in memory/effector
distribution for Helios+ Tregs of T1D individuals, which
exhibited a less differentiated phenotype with a decline of high
suppressor EM Tregs, probably resulting in increased
autoimmune responses. Moreover, a distinct transition
between CM and EM Helios+ Treg differentiation path
occurred in T1D individuals. These differences may lead to
dysregulation of Tregs in T1D individuals, which deserves
further confirmation in other autoimmune diseases.

Another important issue is the phenotypic differences in Treg
subsets. CTLA-4, a critical immunosuppressive regulator of T
cell responses, is constitutively expressed on Tregs, and its
intracellular domain is very important for Treg biology (35).
Dysregulated expression of CTLA-4 leads to immune
homeostasis imbalance and autoimmune diseases (52).
However, expression of CTLA-4 in Tregs was inconsistent in
T1D individuals. Zóka et al. found that CTLA-4 expression in
Tregs did not alter (42), while Lindley et al. indicated a
significant increase of intracellular CTLA-4 in Tregs of T1D
individuals (53). Our results demonstrated a significant decrease
A B

DC

FIGURE 5 | Helios+ Tregs differ in CTLA4 and CD28 expression levels with Helios− Tregs. Comparison of CTLA4 (A, B) and CD28 (C, D) expression between
Helios+ Tregs and Helios− Tregs from T1D individuals and healthy donors (HD). Wilcoxon rank test was used for paired statistical analysis. The results were from 68
autoantibody-positive T1D individuals and 68 age-matched autoantibody-negative healthy controls. Samples from T1D individuals and healthy controls were
randomly divided to each independent experiment. One biological sample (from the same healthy donor and drawn at the same time) was performed as control for
the experimental reproducibility. Comparisons between T1D and healthy controls were performed by unpaired t test with Welch’s correction. A p value <0.05 was
considered as significant.
May 2021 | Volume 12 | Article 628504

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Treg Subsets in T1D Individuals
of intracellularCTLA-4 inHelios−Tregs, but not inHelios+Tregs of
T1D individuals. Combined with the decreased expression of
FOXP3, Helios− Tregs tended to be in an unstable status and
were easier to lose their immunosuppressive function in
T1D individuals.

Although Himmel et al. did not find any significant difference
in CTLA-4 expression between Helios+ and Helios− nTregs (54),
our results revealed that compared to Helios+ Tregs, expression
of CTLA-4 in Helios− Tregs was strikingly higher in both T1D
and healthy individuals. In addition, CD28 is also vital for the
activation, homeostasis, or survival of Tregs (55). Similar to the
results of CTLA-4 expression, we also found strikingly higher
expression of CD28 in Helios− Tregs in both T1D and healthy
individuals. As CD28 is the primary driver of Treg proliferation
and CTLA-4 functions as the main brake (56), it implied that
although the function of Helios− Tregs was unstable and
decreased in autoimmune disease status, they might have more
immunosuppressive function compared to Helios+ Tregs.

Skewed circulating monocytes are also recognized as a
heterogeneous population with potentially diverse immune
regulatory properties (36, 37). Alternations in monocyte
subsets have been described in several autoimmune diseases,
including T1D, but different studies yielded contrary results.
Irvine et al. reported that the proportions of intermediate
monocytes were decreased, while non-classical monocytes
increased in total monocytes of both recent-onset and long-
standing T1D individuals (57). In comparison, Ren et al. found
Frontiers in Immunology | www.frontiersin.org 9
that the frequencies of classical monocytes decreased, and those
of both non-classical and intermediate monocytes increased in
T1D individuals (58). However, contrary to their results, we
found a significant increase in the proportions of both non-
classical and intermediate monocytes in T1D individuals. The
explanations for this difference might be as follows. Firstly,
unlike previous studies only used the combination of CD14
and CD16, we identified monocyte subsets expressing HLA-DR,
which could exclude neutrophils and NK-cells gated with
CD14+HLA-DRlow/neg (37). Secondly, patient risk factors may
affect monocyte subsets. For instance, changes in non-classical
monocytes were dependent on the age of the patients (59). Our
results further revealed that all monocyte subsets are affected by
age at time of blood donation in healthy individuals. Thus, it is
vital to assess monocyte subsets with age-matched healthy
controls. In addition, different from Ren et al. (58), we also
found that classical, but not the other two regulatory monocyte
subsets in T1D individuals expressed higher levels of HLA-DR,
which suggested better antigen presentation capability and led to
more autoimmune responses in T1D disease status. The
frequencies, immune phenotypes, and function of these
monocyte subsets deserve further confirmation by other studies.

Recent studies also followed with interest in the relevance
between Tregs and monocyte subsets. Zhang et al. found that the
development of Helios+ and Helios− Tregs was controlled by
CD16+ and CD16- monocytes respectively (58). RA subjects had
altered Helios+ Treg numbers (60), which may be explained by
A

B C

FIGURE 6 | Differences in HLA-DR expression and distribution in circulating monocyte subsets and in T1D compared to age-matched healthy donors (HD).
(A) Gating strategy for the determination of peripheral monocyte subsets by flow cytometry with the combination of CD14, CD16 and HLA-DR. Three monocyte
subsets were defined: non-classical monocytes (CD14+CD16++), intermediate monocytes (CD14++CD16++), and classical monocytes (CD14++CD16+). (B) Distribution of
monocyte subsets in T1D cases compared to age-matched healthy donors (HD). (C) HLA-DR expression in different monocyte subsets of T1D cases compared to age-
matched healthy donors (HD). The results were from 68 autoantibody-positive T1D individuals and 68 age-matched autoantibody-negative healthy controls. Samples from
T1D individuals and healthy controls were randomly divided to each independent experiment. One biological sample (from the same healthy donor and drawn at the same
time) was performed as control for the experimental reproducibility. Comparisons between T1D and healthy controls were performed by unpaired t test with Welch’s
correction. A p value <0.05 was considered as significant.
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changes in their monocyte subsets (61). In HIV-infected
individuals, the frequency of intermediate monocytes was
inversely correlated with the frequency of CD45RA+ Tregs,
especially FOXP3+Helios+CD45RA+ Tregs (62, 63). Different
from previous studies, our results demonstrated that the
absolute number of the three monocyte subsets had a positive
correlation with both Helios+ and Helios− Tregs in healthy
controls, but such relevance was disrupted in T1D individuals,
especially that the correlations disappeared in intermediate and
non-classical monocyte subsets. We speculated that such
disruption might contribute to T1D pathogenesis, and it points
out another option for elucidating T1D mechanisms.

Our studyhas some limitations. Several studies inmousemodels
have indicated that the number/percentage/phenotype of pancreas-
residentTreg subsets isdifferent fromthe spleen (64, 65), potentially
suggesting that the findings in circulating PBMCs may not
represent what happens in the pancreas. This limitation is
intrinsic to human studies for ethical reasons. Another limitation
is that the study evaluates the expression of two markers only
(CTLA-4 and CD28) in the considered Treg subsets.

In conclusion, combined with the decreased expression of
FOXP3, Helios− Tregs tend to be unstable and might be easier to
lose their immunosuppressive function in T1D individuals. But
they might have more immunosuppressive function compared to
Helios+ Tregs. AndHelios+ Tregs tended to have a distinct effector/
memory differentiation path in T1D individuals. Furthermore, we
Frontiers in Immunology | www.frontiersin.org 10
speculate that the missing association of Treg subsets and
monocytes might contribute to T1D pathogenesis, and it points
out another option for elucidating T1D mechanisms.
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Supplementary Figure 1 | The effect of T1D risk loci on the frequencies of
Helios+ and Helios− Tregs in both healthy controls and T1D individuals, including
rs2104286 in IL2RA, rs6897932 in IL-7R and rs478582 and rs1893217 in PTPN2.
Con represents healthy controls. A total of 40 T1D individuals and 40 healthy
controls were enrolled for the analysis. For both healthy controls and T1D
individuals, comparisons between wild genotype and homozygote+ heterozygote
and were performed by unpaired t test with Welch’s correction. A p value below
0.05 indicates a significant difference for a different genotype in each groups.

Supplementary Figure 2 | Differing maturation status of Helios+ and Helios−

Tregs in healthy donors (HD) (A, B) and T1D (C, D) individuals. Pie charts
summarize the data and each slice corresponds to the mean proportion of Helios+

and Helios− Tregs for each phenotype. Each point represents a single individual.
Possible phenotypes are shown on the x-axis whereas percentages of distinct T-
cell subsets within Helios+ and Helios− Tregs are shown on the y-axis. The results
were from 68 autoantibody-positive T1D individuals and 68 age-matched
autoantibody-negative healthy controls. Comparisons between phenotype
distributions were performed using the partial permutation test followed by Kruskal–
Wallis test and the Dunn’s multiple comparisons post-test, and unpaired t test with
Welch’s correction for each phenotype. A p value below 0.05 indicates a significant
difference between groups.

Supplementary Figure 3 | Correlation between frequency of monocyte subsets
and age at time of blood donation and T1D disease status. (A–C), Correlation
between frequency of monocyte subsets and age at time of blood donation in
healthy controls respectively. (D–F), Correlation between frequency of monocyte
subsets and age at T1D diagnosis and T1D duration in T1D individuals respectively.
HD, healthy controls. Correlations were determined using the Spearman’s
correlation coefficients. The results were from 68 autoantibody-positive T1D
individuals and 68 age-matched autoantibody-negative healthy controls. Spearman
correlation was performed for these correlations. A p value below 0.05 indicates a
significant difference between groups.
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