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ABSTRACT

Post-translational poly(ADP-ribosyl)ation has diverse
essential functions in the cellular response to
DNA damage as it contributes to avid DNA damage
detection and assembly of the cellular repair
machinery but extensive modification eventually
also induces cell death. While there are 17 human
poly(ADP-ribose) polymerase (PARP) genes, there
is only one poly(ADP-ribose) glycohydrolase (PARG)
gene encoding several PARG isoforms located in
different subcellular compartments. To investigate
the recruitment of PARG isoforms to DNA repair
sites we locally introduced DNA damage by laser
microirradiation. All PARG isoforms were recruited
to DNA damage sites except for a mitochondrial
localized PARG fragment. Using PARP knock
out cells and PARP inhibitors, we showed that
PARG recruitment was only partially dependent on
PARP-1 and PAR synthesis, indicating a second,
PAR-independent recruitment mechanism. We
found that PARG interacts with PCNA, mapped a
PCNA binding site and showed that binding to
PCNA contributes to PARG recruitment to DNA
damage sites. This dual recruitment mode of the
only nuclear PARG via the versatile loading platform
PCNA and by a PAR dependent mechanism likely
contributes to the dynamic regulation of this
posttranslational modification and ensures the tight
control of the switch between efficient DNA repair
and cell death.

INTRODUCTION

Poly(ADP-ribosyl)ation is a post-translational modifica-
tion of proteins involved in cellular processes as diverse
as DNA repair, transcription, cell division or cell death
(1). Poly(ADP-ribose) (PAR) is rapidly produced at DNA
breaks by the founding member of the PARP family
PARP-1, triggering local chromatin relaxation (2) and re-
cruitment of repair factors which have strong affinity for
PAR, such as the base excision repair/single-strand break
repair factor XRCC1 (3–6). The amount of PAR
produced, which reflects the severity of the DNA insult,
directly contributes to the cell decision to initiate either
survival- or death- programmes (7,8).
The PAR degrading enzyme poly(ADP-ribose) glyco-

hydrolase (PARG) is encoded by a single gene but is
present as multiple isoforms localized to different cellular
compartments: full-length PARG111 is nuclear, PARG102

and PARG99 are cytoplasmic, whereas shorter isoforms
(PARG60, PARG55) are targeted to the mitochondria
(9–12). In mice, depleting all PARG isoforms is embry-
onically lethal, whereas a hypomorphic mutant is viable,
but the mice are sensitive towards ionizing radiation and
alkylating agents (13,14). Using shRNA to prevent the
expression of all PARG isoforms in cells, we and others
have shown that PARG is required for efficient repair
of single- and double-strand breaks and oxidized bases
(15–17).
Using a combination of live-cell microscopy and laser

microirradiation, we and others could demonstrate the
rapid recruitment of PARP-1 and XRCC1 to DNA
damage sites and the role of PARP-1 activity in these
protein relocalizations (4,18,19). Here, we show that all
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PARG isoforms except for the mitochondrial localized
PARG fragment could be efficiently recruited to DNA
damage sites. The recruitment of PARG was only partially
dependent on PARP-1 and PAR synthesis. We identified a
functional PCNA-binding motif within the PARG
sequence and showed that binding to PCNA contributes
to PARG recruitment at sites of DNA damage. Our
results reveal that PARG is recruited to DNA damage
sites via at least two pathways, one is PAR-dependent
and the other is PCNA-dependent.

MATERIAL AND METHODS

Cell culture and transfection

Wild type, PARP-1�/� MEFs, PARP-2�/� MEFs, HeLa,
HEK293T and U2OS (clone 2-6-3) cells were cultured in
DMEM supplemented with 10% FCS and 50 mg/ml gen-
tamicin. Cells grown onm-slides (ibidi) or on gridded
coverslips were cotransfected with polyethylenimine
(Sigma). For microirradiation experiments cells were
sensitized by incubation in medium containing BrdU
(10mg/ml) for 24–48 h. NU1025 (Sigma) was added to
the cells 1 h before microirradiation at a concentration
of 200 mM. For GFP-pulldown analyses, cells grown on
Petri dishes were transfected with JetPEI (Polyplus).

Expression plasmids

The cDNA fragments encoding wild type and mutant
human PARG were generated by PCR and subcloned
into the EcoRI/SmaI sites of pEGFP-N1 (Clontech).
Sequences of oligonuclotides and plasmids are available
upon request. GFP-XRCC1, GFP-PARP-1, RFP-PCNA
and PCNA-LacI-RFP expression construct were previ-
ously described (4,20).

Live-cell microscopy, microirradiation and photobleaching
experiments

Live cell imaging, microirradiation and photobleaching
experiments were carried out with a Leica TCS SP2/
AOBS or Leica SP5/AOBS confocal laser scanning micro-
scope, each equipped with a UV-transmitting HCX PL
63�/1.4 oil objective. GFP and RFP were excited with a
488 nm Ar laser line and a 561 nm DPSS laser line, re-
spectively. The microscopes were equipped with a heated
environmental chamber set to 37�C. Confocal image series
were typically recorded with a frame size of 256� 256
pixels and a pixel size of 90 nm.
Microirradiation was carried out as previously

described (21). In brief, a preselected spot of �1 mm in
diameter within the nucleus was microirradiated for 1 s
with a 405 nm diode laser set to 50–80 mW. The laser
power was measured after passing through the objective
lens with a laser power meter (Coherent). Before and after
microirradiation confocal image series of one mid
z-section were recorded at 2 s time interval (typically six
pre-irradiation and 150 post-irradiation frames). For
evaluation of the recruitment kinetics, fluorescence
intensities at the irradiated region were corrected for

background and for total nuclear loss of fluorescence
over the time course and normalized to the pre-irradiation
value.

For FRAP analysis, a region of interest was selected
and photobleached for 300ms with all laser lines of the
Ar-laser and the 561 nm DPSS laser set to maximum
power at 100% transmission. Before and after bleaching,
confocal image series were recorded at 150ms time inter-
vals (typically 10 pre-bleach and 200 post-bleach frames).
Mean fluorescence intensities of the bleached region were
corrected for background and for total nuclear loss of
fluorescence over the time course and normalized to the
mean of the last four prebleach values.

For the quantitative evaluation of microirradiation and
photobleaching experiments, data of at least nine nuclei
were averaged and the mean curve and the standard error
of the mean calculated and displayed using Microsoft
Excel software.

Indirect immunofluorescence microscopy

Cells grown on glass coverslips were treated as described
in the legends of the figures, and fixed with ice cold
methanol/acetone for 15min (for PAR) or in ice-cold
methanol for 5min (for PCNA). Cells were permeabilized
with PBS, 0.1% tween and incubated overnight at 4�C
with primary antibodies diluted in PBS, 0.1% tween,
1mg/ml BSA: mouse monoclonals anti-PAR 10H
(IgG3k, 1:1000), anti-GFP (IgG1, 1:500, Roche) or anti-
PCNA (IgG2a, 1:200, Dianova). Secondary antibodies
used were Alexa Fluor goat anti-mouse IgG3 (568) or
IgG1 (488 or 568) (1:2000, Molecular Probes,
Invitrogen). Cells were counterstained with DAPI,
mounted using Mowiol (Roche) and observed on a
Leica DMRA2 equipped with an Orca-ER CCD camera
(Hammamatsu) and the capture software OpenLab 4.1
(Improvision). Alternatively images were taken with a
PerkinElmer UltraView Vox spinning disk microscope
equipped with a Plan-Apochromat 63� /1.4 oil objective
using Volocity software 5.0 for image capturing. DAPI,
GFP and RFP were excited with a 405, 488 and a 561 nm
DPSS laser line, respectively.

Zymogram

PARG activity gel assay was performed as described by
Amé et al. (15).

PAR-blot

32P-labelled PAR was synthetised and purified as
described by Amé et al. (22). PCNA (ENZO Life),
histone H1 (ENZO Life) and BSA (Sigma) purified recom-
binant proteins were spotted onto nitrocellulose sheet as
indicated in the figure, and the membrane was incubated
with 32P-labelled PAR for 1.5 h at 25�C. After six washes
of 10min in PBS, the membrane was autoradiographied.
Similar amounts of purified proteins were analysed by
SDS–PAGE gel electrophoresis followed by Coomassie
staining to verify the integrity and quantities of proteins
used in the assay.
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GFP-pull down assays

HEK393T cells (1.5� 107) were transfected with the
plasmids encoding GFP-tagged PARG as described in
figure legend. Thirty-six hours post-transfection, cells
were lysed in 20mM Tris–HCl pH 7.5, 120mM NaCl,
0.1% NP40, 0.5mM Pefabloc and miniCOmplete
protease inhibitor cocktail (Roche Diagnostic) for
20min on ice, centrifuged at 132 000 rpm for 20min at
+4�C and supernatant was recovered. For the experiments
including H2O2 treatment, cells were treated for 10min
with 1mM H2O2 in complete medium at 37�C, washed
twice with 1� PBS, pelleted and resuspended in 300ml
of 20mM Tris–HCl pH 7.5, 400mM NaCl, 5mM DTT,
0.1% NP40, 20% glycerol, 0.5mM Pefabloc and protease
inhibitor. After four cycles of freeze/thaw and centrifuga-
tion at 132 000 rpm for 20min at+4�C, supernatant was
dilute to reach a final concentrention of NaCl of 120mM.
Protein extracts were incubated 2.5 h at +4�C with
GFP-binder (Chromotek) on a rotating wheel. After
four washes with 20mM Tris–HCl pH 7.5, 150mM
NaCl, 0.1% NP40, 0.5mM Pefabloc, the immunopre-
cipitated proteins were solubilized in Laemmli buffer
by boiling 4min at 95�C and analysed by SDS–PAGE
electrophoresis followed by western blotting. The mem-
branes were probed with anti PCNA (PC10, DAKO, 1/
1000) then with anti-GFP (Roche, 1/1000) monoclonal
antibodies.

RESULTS AND DISCUSSION

Except the mitochondrial PARG, all PARG isoforms are
recruited to laser-induced DNA damage sites

To follow the redistribution of GFP-tagged PARG to sites
of DNA damage in living cells, we generated DNA lesions
at preselected subnuclear sites in HeLa cells using laser
microirradiation as previously described (4,21). We
found that PARG111-GFP (Figure 1A) was recruited to
DNA damage sites (Figure 1B and C), but more slowly
(maximum accumulation reached in more than 4min)
than two other central repair proteins GFP-PARP-1 and
GFP-XRCC1 [Figure 1D and E and Mortusewicz
et al. (4)]. Comparable recruitment kinetics of PARG111-
GFP could be observed in immortalized mouse embryonic
fibroblasts (MEF, Figure 1F). The cytoplasmic isoforms
PARG102 and PARG99 were shown previously to shuttle
between the cytoplasm and the nucleus, and to accumulate
in the nucleus following g-irradiation (23). Here, we could
show that both isoforms were recruited with similar
kinetics (Figure 1G and H) but accumulated less than
PARG111-GFP (maximal intensity reached, MAX Int,
reflecting the amount of protein accumulated, was
1.47±0.07 for PARG102-GFP and 1.38±0.04 for
PARG99-GFP compared to 2.22±0.11 for PARG111-
GFP, Supplementary Figure S1C and D). In contrast,
PARG461-976-GFP, which corresponds to the previously
described hPARG59 containing the regulatory segment
and the mitochondrial localization signal (11,12,24), and
thus localized to the mitochondria, was never recruited
(Figure 1I). To summarize, PARG111 and to a lesser

extend PARG102 and PARG99 but not mitochondrial
PARG461–976 accumulate at DNA damage sites in vivo.

Recruitment of PARG to DNA damage sites depends
partly on PAR synthesis

We next examined whether the recruitment of PARG was
dependent on PAR synthesized at DNA damage sites.
Treatment of MEFs with the PARP inhibitor NU1025
or KU0058948 (data not shown) slowed down (time
required for 50% of the maximum accumulation,
tMAX1/2, of 72.51±4.25 s, compared to 54.11±3.03 s
in absence of NU1025) and decreased the amount of
PARG111-GFP recruited to DNA damage sites (MAX
Int of 1.81±0.09, compared to 2.11±0.11 in absence
of NU1025, Figure 2B and C and Supplementary Figure
S1C and D). This indicates that the recruitment of
PARG111-GFP depends partly on PAR synthesized at
the damage site. However, it is apparently independent
of PARP-1 or PARP-2, since PARG111-GFP recruit-
ment is not affected in MEFs either lacking PARP-1
(Parp-1�/�, Figure 2B and C) or PARP-2 (Parp-2�/�,
Supplementary Figure S1A and B). By examining the
mobility of PARG molecules accumulated at DNA
damage sites by FRAP analyses, we found a minor
increase of PARG111-GFP mobility in the presence of
the PARP inhibitor, indicating a reduced binding of
PARG111-GFP to DNA damage sites, which could
account to some extent for the different recruitment
kinetics in the presence or absence of the PARP inhibitor
(Figure 2D). Altogether, these results indicate that the re-
cruitment of PARG only partially depends on PAR syn-
thesis, and point to the existence of a PAR-independent
recruitment mechanism.
We next aimed to unravel these PAR-dependent and

PAR-independent mechanisms for PARG recruitment
to DNA damage sites by analysing the recruitment of dif-
ferent PARG domains. Whereas the C-terminal half
of PARG (PARG478–976-GFP) was not recruited
(Figure 2G), the N-terminal half of PARG (PARG1-469-
GFP) considered to act as a putative regulatory domain
(Figure 2A) was efficiently recruited to DNA lesions, but
its recruitment was independent of PARP-1 and PAR
(Figure 2E and F). This suggests that a sequence motif
or a domain present in the N-terminal part mediates the
PAR-independent recruitment, whereas the presence of
the C-terminal part of PARG containing the catalytic
domain probably confers PAR-dependent recruitment.

PARG catalytic activity regulates PARG localization to
DNA damage sites

To assess whether PARG activity could influence its
relocalization to DNA damage sites, we followed the re-
cruitment of an inactive PARG, obtained by mutating
glutamic acids 755 and 756 to alanines (Figure 3A), ac-
cording to Patel et al. (25). Inactivity of this mutant was
verified by zymogram (Figure 3B). PARGE755,756A-GFP
showed a remarkable faster recruitment to DNA
damage sites than its wild-type counterpart (Figure 3C
and 3D, compare the green and black curves and see
Supplementary Figure S1C and D). Interestingly, its
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Figure 1. Recruitment of PARG isoforms to laser-induced DNA damage sites. (A) Schematic representation of PARG and fusion proteins used.
(B) Live cell imaging of a microirradiated HeLa cell expressing PARG111-GFP. Comparision of PARG111-GFP (C), GFP-PARP-1 (D) and
GFP-XRCC1 (E) recruitment to DNA damage sites in HeLa cells and quantitative evaluation of recruitment kinetics showing mean curves.
Recruitment of the PARG isoforms PARG111-GFP (F), PARG102-GFP (G) and PARG99-GFP (H) to laser-induced DNA damage sites in mouse
embryonic fibroblasts (MEFs). (I) The mitochondrial isoform PARG461-976-GFP shows no accumulation at microirradiated sites. Where no
recruitment can be observed, sites of irradiation are indicated by arrows. Error bars represent the standard error of the mean. Scale bar: 5mm.
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Figure 2. PAR-dependent recruitment of PARG to DNA damage sites. (A) Schematic representation of PARG and fusion proteins used. (B) Live
cell imaging of PARG111-GFP recruitment in wt MEFs (upper row), Parp-1�/� MEFs (middle row) and in wt MEFs treated with the PARP
inhibitor NU1025 (lower row). (C) Comparison of PARG111-GFP recruitment kinetics in wt MEFs (green curve), Parp-1�/� MEFs (red curve) and
wt MEFs treated with NU1025 (blue curve). (D) Quantitative evaluation of FRAP data showing mean curves. To analyse the mobility of

(continued)
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recruitment was affected in Parp-1�/� cells, but even
more dramatically in the presence of a PARP inhibitor
(Figure 3C and D, compare the green, red and blue
curves and Supplementary Figure S1C and D). The
dramatic decrease of PARGE755,756A-GFP recruitment in
presence of a PARP inhibitor can be partially attributed to
an increase of mobility, as shown by FRAP analyses
(Figure 3E), which indicates a weaker binding of
PARGE755,756A-GFP to DNA damage sites in the
absence of PAR. These results reveal the involvement of
PARP-1 and PAR in the recruitment of PARG111. The
slower recruitment kinetics of PARGE755,756A-GFP in
cells treated with a PARP inhibitor than in cells lacking
PARP-1 could result from the presence of inactive
PARP-1 molecules at the damage site that could hamper
the recruitment of PARG to the site of lesion. This hy-
pothesis is strengthened by the slightly more efficient re-
cruitment of PARGE755,756A-GFP in Parp-1�/� MEFs
treated with NU1025 than in wt MEFs treated with the
same PARP inhibitor (Figure 3D and data not shown).
Of note, the residual recruitment of PARGE755,756A-GFP
in the presence of a PARP inhibitor was comparable to
that of wild-type PARG111-GFP in similar conditions
(compare Figures 3D and 2E), confirming the existence
of a PAR-independent mechanism. Taken together,
these results highlight the important role of PAR in the
recruitment of PARG to DNA damage sites.
The dramatic differences in the recruitment of

PARGE755,756A-GFP and PARG111-GFP suggest that
the catalytic activity of PARG111-GFP could affect its ac-
cumulation at DNA damage sites, by efficiently and
promptly removing PAR produced in response to DNA
damage. We tested this hypothesis by analysing the
amount of PAR produced in H2O2-treated PARGKD

cells which lack endogenous PARG (15), transfected with
plasmids encoding shRNA-insensitive PARGE755,756A-
GFP or PARG111-GFP. PAR could be detected in
H2O2-treated and untreated PARGKD cells as previously
shown (15) and also in cells expressing PARGE755,756A-
GFP, whereas in cells expressing PARG111-GFP PAR
could never be detected (Figure 3F). Therefore, the fast
PAR degradation at DNA damage sites observed in
presence of an overexpressed active PARG masks the con-
tribution of PARP-1/PAR in its recruitment, that can only
be clearly revealed with the catalytically inactive
PARGE755,756A-GFP. Taken together, our data suggest
that there are several modes of PARG recruitment
to DNA damage sites: one PARP-1/PAR dependent
(represented by the shift of the green to the red curve in
Figure 3D), one PAR-dependent and possibly PARP-1
independent (red to blue curve in Figure 3D), and one
PAR-independent (blue curve to no recruitment in
Figure 3D) that we next aimed to analyse in more detail.

PARG interacts with PCNA through a PIP
box-containing PBD

In the course of our study, we noticed that PARG111-GFP
displayed a punctuate localization in a fraction of cells, re-
sembling replication foci. We could show that PARG111-
GFP colocalizes with co-expressed RFP-PCNA or
endogenous PCNA at each stage of S-phase (Figure 4A
and E), suggesting that PARG is present at the replication
forks throughout S-phase. In contrast, PARG102-GFP
and PARG99-GFP were never found to colocalize with
PCNA at sites of replication (data not shown), suggesting
that the first 1–83 residues of PARG are necessary for
this localization to replication foci. In order to test
whether PARG interacts with PCNA, we overexpressed
GFP-tagged PARG isoforms in HEK293T cells and
immunoprecipitated the protein complexes using anti-
GFP-coupled beads. Copurifying endogenous PCNA
was assessed by western blot (Figure 4B). PCNA was
efficiently copurified with the positive control GFP-
DNMT1 (26), but not with GFP alone. PCNA also inter-
acted with PARG111-GFP, but the interaction was
dramatically decreased, although not completely abol-
ished, with PARG102-GFP and PARG99-GFP. This dem-
onstrates that PARG interacts with PCNA and that the
very N-terminal part is involved in this interaction. This is
further confirmed by the observed interaction of PCNA
with PARG1–469-GFP, but not with PARG461–976-GFP
and PARG478–976-GFP.

We then tested whether the interaction between PARG
and PCNA was modified in response to DNA damage.
PCNA was co-immunoprecipitated with PARG-111-GFP
with comparable efficiency whether cells were treated or
not with 1mM H2O2 for 10min before lysis (Figure 4C).
However, since the overexpression of PARG-111-GFP
alters the production of H2O2-triggered PAR synthesis
as shown in Figure 3F, we performed the same experiment
with the inactive PARGE755,756A-GFP mutant. Whereas
the mutation of PARG catalytic domain had no signifi-
cant effect on binding to PCNA, the H2O2 treatment
slightly decreased the interaction between the two
proteins, suggesting that PARG activity can regulate this
interaction in response to DNA damage. However, we do
not want to conclude from these experiments that normal
endogenous PARG and PCNA interact less in response to
DNA damage, since overexpressing the inactive PARG
mutant could also have repercussions on the PAR level
of the damaged cells, by a dominant-negative effect. The
only way to really test the potential DNA-damage de-
pendent change in PARG-PCNA interaction would be
to look at complexes formed by endogenous proteins,
but the lack of specific anti PARG antibodies precludes
from such experiments.

Figure 2. Continued
PARG111-GFP at DNA damage sites in wt MEFs (green curve), Parp-1�/� MEFs (red curve) and wt MEFs treated with NU1025 (blue curve) the
microirradiated region was bleached 5min after microirradiation and the fluorescence recovery was measured. (E) Accumulation of the N-terminal
domain of PARG (PARG1–469-GFP) at laser-induced DNA damage sites. (F) Quantitative evaluation of PARG1–469-GFP recruitment kinetics in wt
MEFs (green curve), Parp-1�/� MEFs (red curve) and wt MEFs treated with NU1025 (blue curve) showing mean curves. (G) The C-terminal domain
of PARG (PARG478–976-GFP) shows no accumulation at DNA damage sites. Where no recruitment can be observed, sites of irradiation are
indicated by arrows. Error bars represent the standard error of the mean. Scale bar: 5 mm.
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Carefull examination of the PARG primary sequence
led us to identify a motif at the N-terminus resembling a
PIP (PCNA-interacting-peptide) box, 76-QKTITSW-82,
found in various PCNA binding domains (PBD)

of replication and repair associated proteins (27,28)
(Figure 4D). An N-terminal PARG construct encompass-
ing this motif (PARG1–87-GFP, Figure 4D) was able to
bind PCNA, whereas a shorter construct ending just

Figure 3. Inactive PARG is recruited with higher efficiency to laser-induced DNA damage sites. (A) Schematic representation of PARG and
PARGE755,756A-GFP. Mutated amino acid positions are indicated in red. (B) Zymogram showing the PAR-degrading capacity of the indicated
GFP-tagged PARG proteins. (C) Live cell imaging of PARGE755,756A-GFP recruitment in wt MEFs (upper row), Parp-1�/� MEFs (middle row) and
in wt MEFs treated with the PARP inhibitor NU1025 (lower row). (D) Recruitment kinetics of PARGE755,756A-GFP in wt MEFs (green curve),
Parp-1�/� MEFs (red curve) and wt MEFs treated (blue curve) or not (black curves) with NU1025. (E) Mobility of PARGE755,756A-GFP at DNA
damage sites in wt MEFs (green curve), Parp-1�/� MEFs (red curve) and wt MEFs treated with NU1025 (blue curve). (F) Immunodetection of PAR
in PARGKD cells expressing shRNA-insensitive PARGE755,756A-GFP or PARG111-GFP, at the time indicated after 10min of treatment with 0.5mM
H2O2. Error bars represent the standard error of the mean. Scale bar: 5 mm.
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Figure 4. PARG interacts with PCNA and is present at replication foci. (A) Colocalization of PARG with PCNA throughout S-phase. Spinning disk
microscopy images of wt MEFs coexpressing PARG111-GFP and RFP-PCNA in different S-phase stages. PARG111-GFP colocalizes with
RFP-PCNA at sites of replication throughout S-phase. (B) Interaction of PARG with PCNA analysed by GFP-pull down assays. The indicated
GFP-tagged proteins were overexpressed in HEK293T cells, recovered by GFP-pulldown and copurified PCNA was assessed by western blot with
anti PCNA antibodies (upper panels). The presence of GFP-tagged protein is revealed with an anti GFP antibody (lower panels). (C) Effect of H2O2

treatment on the interaction between PARG and PCNA. PARG111-GFP and PARGE755,756A-GFP overexpressing HEK293T cells were treated with
1mM H2O2 for 10min before performing a GFP-pull down assay as described in (B). The asterisk indicates mono-ubiquitinated PCNA, visible in the
input of H2O2-treated cells (1% input was loaded on the gel). (D) Schematic representation of PARG including the identified PIP box sequence
and fusion proteins used. Mutated amino acid positions are indicated in red. (E) Spinning disk microscopy images of wt MEFs expressing

(continued)
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before this motif (PARG1–75-GFP) failed to bind PCNA,
demonstrating the functionality of this sequence acting as
a PIP box (Figure 4B). Since the Gln residue Q76 has been
shown to be essential for PCNA interaction through the
PBD of several proteins (28), we mutated it to either Ala
or Glu in PARG111-GFP (Figure 4C). Both mutations im-
paired the localization of the proteins PARGQ76A-GFP
and PARGQ76E-GFP at replication foci (Figure 4E).
However, when these mutants were tested for their inter-
action with PCNA by co-immunoprecipitation in
HEK293T overexpressing cells, they both unexpectedly
still showed strong binding to PCNA (Figure 4F). This
result does not fit with the lack of colocalization of these
mutants with PCNA in vivo, as shown in Figure 4E. We
therefore propose that the interaction observed in the
immunoprecipitation assays might result from interactions
with third proteins that could reinforce the link between
PCNA and these mutants. Alternatively, we cannot
exclude that another domain of PARG participates in
the interaction with PCNA. This hypothesis is strength-
ened by the residual binding observed for PARG102-GFP
to PCNA (Figure 4B). To further test the interaction of
PARG and its PIP mutants with PCNA in vivo, we used a
fluorescent two-hybrid assay developed for the direct visu-
alization of protein–protein interactions in living cells
(20). Briefly, the fluorescent bait, consisting of PCNA
fused to LacI and RFP is tethered to a stably integrated
chromosomal lac operator array in the nucleus and inter-
action is assayed for by looking for co-localization
with GFP-tagged prey proteins at this defined spot
(Figure 4G). Using this technique, we could show that
PARG111-GFP interacts with PCNA-LacI-RFP in vivo,
whereas GFP did not (Figure 4H). Introducing a point
mutation at the conserved Gln residue within the PIP
box strongly impaired the interaction of PARGQ76A-
GFP or PARGQ76E-GFP with PCNA-LacI-RFP,
without completely abolishing it, as shown by the quanti-
tative evaluation of the enrichment of these proteins at
the lac operator array (Figure 4H and I). Taken
together, these results demonstrate that PARG interacts
with PCNA and that the PIP domain is involved in this
interaction in vivo.

PARG interaction with PCNA favours its recruitment to
DNA damage sites

Besides its essential implication in DNA replication,
PCNA is also an active player in various repair
pathways, such as mismatch repair, nucleotide excision
repair and base excision repair [see for review ref.
(27,29)]. As such, PCNA is recruited to locally introduced

DNA damage (5,18,19,30–32), although not as fast as the
scaffold BER protein XRCC1 (4). We thus wondered
whether the interaction of PARG with PCNA could
regulate the dynamics of PARG at DNA damage sites.
We compared the recruitment of the PIP-bearing fusion

protein PARG1-87-GFP with that of the PIP-lacking
fusion protein PARG1–75-GFP to laser-induced DNA
damage sites. In contrast to PARG1–75-GFP, PARG1–87-
GFP was recruited to DNA damage sites, although with
low efficiency (Figure 5A and B), indicating that PARG
can also be recruited to DNA damage sites via its inter-
action with PCNA. We then examined the recruitment of
full length PARG harbouring a mutation in the PIP box.
The Q76A (or Q76E, data not shown) mutation dimin-
ished the recruitment of PARG at DNA lesions intro-
duced in wild-type MEFs (Figure 5C and Supplementary
Figure S1E and F, MAX Int of 1.77±0.05 for
PARGQ76A-GFP compared to 2.22±0.11 s for
PARG111-GFP). These results support the involvement
of PCNA in the efficient recruitment of PARG to DNA
damage sites. Moreover, recruitment of PARGQ76A-GFP
was decreased upon PARP inhibition or in Parp-1�/� cells
(Figure 5C), though not totally abolished, pointing to
the existence of an additional mechanism for PARG
recruitment to DNA damage sites that is PCNA- and
PAR-independent. Of note, the accumulation of
PARGQ76A-GFP (or PARGQ76E-GFP, data not shown)
in the presence of a PARP inhibitor was only slightly
more affected than that of wild-type PARG111-GFP in
the same condition (Figure 5D and Supplementary
Figure S1F, MAX Int of 1.67±0.09 for PARGQ76A-
GFP in the presence of NU1025 compared to
1.81±0.09 for PARG111-GFP in the presence of
NU1025). These results suggest that the PCNA-mediated
recruitment of PARG could partly depend itself on PAR.
This is further supported by the fact that PARG1–87-GFP
accumulates more slowly in Parp-1�/� cells or in the
presence of NU1025, whereas PARG1–75-GFP is not re-
cruited at all in any condition (Figure 5A). Indeed, that
PARP-1 inhibition could partially decrease PCNA
relocalization to DNA damage sites was reported previ-
ously by Okano et al. (5) and Lan et al. (18), whereas
Godon et al. (19) made the opposite observation of an
increased accumulation of PCNA at microirradiated
sites upon chemical inhibition of PARPs, but not in cells
lacking PARP-1. These contradictory data prompted us to
look at the recruitment of PCNA in our experimental
system. We found that recruitment of Cherry-PCNA at
laser-induced DNA damages was hindered by PARP in-
hibition, but not in Parp-1�/� cells (Figure 5E and F and
Supplementary Figure SIE and F). This reminds what we

Figure 4. Continued
PARG111-GFP, PARGQ76A-GFP or PARGQ76E-GFP and stained with a mouse-monoclonal antibody against PCNA to mark sites of replication. (F)
Effect of the mutation of the PARG PIP domain on its interaction with PCNA. GFP-pull down assays with the indicated PARG constructs were
performed as in (B). (G) Schematic outline of the F2H assay (see text for details). (H) U2OS.2-6-3 cells with a stably integrated lac operator array
coexpressing PCNA-LacI-RFP (bait protein) and various GFP-tagged PARG fusions (prey proteins). Colocalization of the red PCNA-LacI-RFP
signal with a green prey signal at the lac operator array indicates interaction. (I) Quantification of the relative enrichment of PARG111-GFP,
PARGQ76A-GFP, PARGQ76E-GFP and GFP at the lac operator array. For quantification, the fluorescence signal at the lac operator array was
measured and divided by the overall fluorescence measured in the nucleus. Error bars represent the standard error of the mean. Scale bar: 5 mm.
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Figure 5. PARG interaction with PCNA contributes to its accumulation at laser-induced DNA damage sites. (A) Accumulation and recruitment
kinetics of PARG1-87-GFP to laser-induced DNA damage sites. The recruitment kinetics of PARG1-87-GFP in wt MEFs (green curve), Parp-1�/�

MEFs (red curve) and wt MEFs treated with NU1025 (blue curve) as well as the recruitment kinetics for PARG111-GFP in wt MEFs (light green)
are shown for comparison. (B) PARG1-75-GFP lacking the newly identified PIP box does not accumulate at DNA damage sites. (C) Mutation of the
newly identified PIP box of PARG (PARGQ76A-GFP) decreases PARG accumulation to DNA damage sites. Recruitment kinetics of PARGQ76A-
GFP in wt MEFs (green curve), Parp-1�/� MEFs (red curve) and wt MEFs treated with NU1025 (blue curve) as well as the recruitment kinetics for
PARG111-GFP in wt MEFs (light green) are shown for comparison. (D) Comparison of PARGQ76A-GFP (dark blue curve) and PARG111-GFP (light

(continued)
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observed for PARG111 and PARGE755,756A which were
both recruited less efficiently upon PARP inhibition than
in the absence of PARP-1 (Figures 2C and 3C). Moreover,
the NU1025 PARP inhibitor impedes more severely the
recruitment of PARGE755,756A-GFP in Parp-1+/+ cells
than it did in Parp-1�/� cells, supporting the hypothesis
that it is the presence of inactive PARP-1 molecules that
likely affects the access of PCNA and PARG to DNA
damage sites. In addition, we failed to show a direct inter-
action of recombinant PCNA with purified PAR on dot
blot assays (Figure 5G), supporting the fact that PCNA
recruitment to DNA damage sites unlikely depends on a
direct binding to PAR.

In summary, in this study we identified two modes of
recruitment for PARG to DNA damage sites. Given the
importance of PARG in the cellular response to DNA
damage through the regulation of PAR levels, it was
tempting to speculate that PARG might be targeted to
DNA damage sites by direct recognition of PARylated
proteins, like histones or PARP-1. We found that both
PAR and PARP-1 actually have an influence on PARG
recruitment, probably either by enabling PARG access to
the damage sites by the local opening of chromatin or by
serving as a docking site for PARG recruitment. Besides,
we could identify a second and unexpected mode of re-
cruitment through a PBD-mediated interaction of PARG
with PCNA. This newly identified interaction of PARG
with PCNA could have evolved to enhance the recruit-
ment efficiency of PARG to DNA damage sites. As
PCNA shows a slow and constant accumulation at
DNA damage sites and also remains associated with
repair sites for a prolonged period of time, this interaction
could also ensure that PAR levels are kept low at later
steps of repair via the constant recruitment of PARG.
Alternatively, and considering that (i) PCNA is involved
in the long-patch BER pathway (33), (ii) PARP-1 partici-
pates in the decision between short- and long-patch BER
(34), (iii) PARG interacts with PARP-1 and XRCC1 (35)
and PCNA (this study) and (iv) PAR is proposed to be a
source of energy favouring long-patch repair in conditions
of ATP shortage (36), the PCNA-dependent accumulation
of PARG at DNA damage sites identified here could also
be regarded as an additional regulatory level for
long-patch base BER.
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Cancer Comité du Haut-Rhin (to V.S.) and Nanosystems
Initiative Munich (NIM) and grants from the Deutsche
Forschungsgemeinschaft [SFB 646 and 684 (to H.L.)];
Fellowship from Association pour la Recherche sur
le Cancer (E.F.). V.S. is an ‘Equipe Labellisée Ligue
Contre le Cancer’. Funding for open access charge:
Ligue Contre le Cancer.

Conflict of interest statement. None declared.

REFERENCES
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