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SUMMARY

Many non-coding transcripts (ncRNA) generated by
RNA polymerase II in S. cerevisiae are terminated
by the Nrd1-Nab3-Sen1 complex. However, Sen1
helicase levels are surprisingly low compared with
Nrd1 and Nab3, raising questions regarding how
ncRNA can be terminated in an efficient and timely
manner. We show that Sen1 levels increase during
the S and G2 phases of the cell cycle, leading to
increased termination activity of NNS. Overexpres-
sion of Sen1 or failure to modulate its abundance by
ubiquitin-proteasome-mediated degradation greatly
decreases cell fitness. Sen1 toxicity is suppressed
by mutations in other termination factors, and NET-
seq analysis shows that its overexpression leads to
a decrease in ncRNA production and altered mRNA
termination. We conclude that Sen1 levels are care-
fully regulated to prevent aberrant termination. We
suggest that ncRNA levels and coding gene tran-
scription termination are modulated by Sen1 to fulfill
critical cell cycle-specific functions.

INTRODUCTION

Genome-wide studies have unearthed a vast array of non-

coding RNAs (ncRNAs) and aberrant transcripts that are mostly

unstable and degraded in proximity to their transcription site

(Jacquier, 2009; Wyers et al., 2005). Many of these transcripts

arise through opportunistic transcription initiation events from

nucleosome-depleted regions (NDRs) or result from failed 30

end processing of coding transcripts (Pelechano et al., 2013;

Rondón et al., 2009).

In S. cerevisiae, a large fraction of ncRNA is terminated by

a specialized mechanism employing Nrd1-Nab3-Sen1 (NNS),

which is distinct from the polyadenylation-coupled termination

mechanism used for mRNA (Steinmetz et al., 2001). At ncRNAs,
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Nrd1-Nab3 heterodimers associate with the RNA polymerase II

(Pol II) C-terminal domain (CTD), positioned to recognize short

RNA sequence elements (GUA(A/G) for Nrd1 and UCUU(G) for

Nab3) (Carroll et al., 2004, 2007; Porrua et al., 2012) and to recruit

the superfamily I helicase Sen1. Sen1 consequently disengages

Pol II from the DNA template (Martin-Tumasz and Brow, 2015;

Porrua and Libri, 2013). By remaining bound to RNA, Nrd1 can

recruit the exosome to degrade many NNS terminated tran-

scripts (Vanácová et al., 2005; Vasiljeva and Buratowski, 2006;

Wyers et al., 2005). Overall, RNA degradation mutants have

allowed detection of at least 6,000 ncRNAs in baker’s yeast

(Mischo and Proudfoot, 2013), but functions have only been

assigned to a fraction of these.

The 30 end processing and termination of mRNA in

S. cerevisiae requires the multi-protein cleavage and polyadeny-

lation factor (CPF), comprised of three sub-complexes. Cleav-

age factors IA and IB (CFIA/B) recognize the RNA sequences

specifying polyadenylation, leading to recruitment of CPF, which

cleaves the pre-mRNA at the poly(A) site (PAS) and initiates

polyadenylation. Cleavage generates a new uncapped 50 RNA
end onto which the exonuclease Rat1 loads to degrade the

downstream transcript and release elongating Pol II (Fong

et al., 2015; Kim et al., 2004; West et al., 2004).

Both termination pathways are connected through APT (asso-

ciated with Pta1), a sub-complex associated with about half of

the cellular CPF pool. APT is thought to modulate CPF activity

and is required for the termination of many NNS substrates (re-

viewed in Mischo and Proudfoot, 2013). In addition to ncRNA

termination, NNS also regulates the expression of some 42–305

mRNA genes by attenuation (Arigo et al., 2006; Creamer et al.,

2011; Jamonnaket al., 2011;Schulz et al., 2013). Finally, onhighly

transcribed mRNA genes, NNS acts as a ‘‘failsafe’’ termination

pathway for Pol II molecules that read through a PAS (Rondón

et al., 2009;Webb et al., 2014). Overall, NNS restricts inadvertent

transcription and controls gene expression through termination.

The cellular abundance of Nrd1 and Nab3 is estimated some-

what above that of RNA Pol II (Nrd1, 550–20,000; Nab3, 2,000–

6,000; Pol II, 600–1,000) (Chong et al., 2015; Ghaemmaghami

et al., 2003; Kulak et al., 2014; Newman et al., 2006). In contrast,

the levels of Sen1, the enzymatic component of NNS, are well
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Sen1 Protein Levels Fluctuate throughout the Cell Cycle

(A) Cells were aF-arrested and released into the cell cycle for the indicated time (see FACS analysis, right). Levels of C-terminally tagged Sen1-Myc (9E11), Sic1,

and Pgk1 were analyzed by immunoblotting (left).

(B) RNA analysis of SEN1 and sCR1. RNA was prepared from cells grown as in (A) (see FACS analysis, right), and 10 mg was separated on a 1% agarose gel for

RNA blotting (left).

(C) Sen1 expression in drug-arrested cells. Cells grown in yeast extract, peptone, and dextrose (YPD) were arrested in G1 (5 mg/mL aF), S phase (200 mM

hydroxyurea [HU]), or prometaphase (PM, 15 mg/mL nocodazole, see FACS analysis, right). Extract equivalent to 0.53 107 cells (Nrd1) or 23 107 cells (TBP, Sic1,

Nab3, and Sen1 [antibody against the N terminus]) was analyzed by immunoblotting (left).

(D) Sen1 expression in elutriated cells. Cells grown in YPD were separated by elutriating centrifugation and analyzed by FACS. Extracts prepared from fractions

with G1, S, and G2 DNA content were analyzed by immunoblotting for Sen1-Myc (9E11), TBP, and Sic1. Quantification of three independent elutriations

normalized to G1 levels with SEM is shown below.

(E) RNA blot analysis of SNR13 and SNR13::TRS31 RNA. Wild-type, pcf11-9, ssu72-2, and sen1-1 cells grown in YPD at a permissive temperature (25�C),
were arrested with aF or nocodazole and shifted to a non-permissive temperature (37�C) for 30 min. nrd1-102 cells were grown in YPD at 30�C before arrest

(legend continued on next page)
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below Nrd1-Nab3 (64–500). This low copy number may suggest

that Sen1 shuttles between various Nrd1-Nab3 heterodimers

already bound to nascent RNA, effectively awaiting Sen1 to

complete transcription termination. In addition, Sen1 may have

functions outside of NNS because SEN1 mutation results in

aberrant nucleolar organization, genome instability, and replica-

tion defects (Alzu et al., 2012; Mischo et al., 2011; Ursic et al.,

1995, 2004).

Given such widespread cellular demand for Sen1 action, it

appears surprising that its levels are kept low by proteasomal

degradation (DeMarini et al., 1995). We therefore speculated

that Sen1 levels might be adjusted to cellular demand, which

might increase at certain points during the cell cycle; for

example, when transcription encounters replication in S phase.

To test this hypothesis, we monitored Sen1 abundance

throughout the cell cycle and found that it increases in the

S and G2 phases. We show that the ubiquitin-proteasome

system degrades Sen1 preferentially during G1.

Cell cycle-specific E3 ubiquitin ligases of the ubiquitin-pro-

teasome system ensure directional flow through the cell cycle

(Finley et al., 2012; Sivakumar and Gorbsky, 2015) by marking

ubiquitin-proteasome system substrates for timely degrada-

tion. During metaphase, the multi-subunit ubiquitin ligase

anaphase-promoting complex (APC) binds its adaptor Cdc20

to degrade Pds1/Securin. This triggers anaphase and APC

association with its alternative adaptor Cdh1. APCCdh1 regu-

lates entry into S phase by keeping S phase cyclins low.

Although APC can have substrates with functions outside of

cell cycle control (Menzel et al., 2014; Ostapenko et al.,

2012), G1-specific degradation of a general transcription termi-

nation factor required in all phases of the cell cycle is unex-

pected. We find that, when Sen1 degradation is perturbed,

ncRNA abundance and mRNA termination efficiency are sub-

stantially affected, and cell death is provoked. This argues

that control of Sen1 levels and RNA termination throughout

the cell cycle are critical.

RESULTS

Sen1 Protein Levels and Activity Fluctuate throughout
the Cell Cycle
To monitor Sen1 abundance over the cell cycle, cells expressing

C-terminally Myc-tagged Sen1 were synchronized by alpha-fac-

tor (aF) arrest in late G1. After release, samples were taken every

15 min over a 2-hr time course and processed for immunoblot-

ting and fluorescence-activated cell sorting (FACS) analysis (Fig-

ure 1A). In whole-cell extracts, Sen1 levels are reduced in G1 and

increase toward S/G2, a pattern opposite to the G1-expressed

Cdc28 inhibitor Sic1. This 10-fold difference in protein levels

relative to aF arrest (Figure S1A) is primarily post-transcriptional

because SEN1 mRNA increases less than 2-fold in G2

(Figure 1B).
with aF or nocodazole. 15 mg RNA was separated on a 1% agarose gel and ana

the SNR13::TRS31 termination readthrough transcript (schematized above). T

normalized to the G1 value (y axis, SEM). Statistical significance of the differe

**p < 0.01.
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We excluded the possibility that Sen1 reduction in G1 reflects

C-terminal partial proteolysis by monitoring Sen1 levels with an

antibody raised against its N terminus (Figure 1C). In drug-

arrested cells, Sen1 abundance decreases in G1 (aF) and in-

creases in prometaphase (PM) after nocodazole arrest. The G1

depletion is specific to Sen1 because neither Nrd1 nor Nab3

levels fluctuate markedly throughout the cell cycle. Again, the

levels of SEN1mRNA isolated from arrested cells remain similar

(Figure S1B).

Finally, to discount that aF treatment artifactually causes Sen1

reduction, SEN1-Myc-tagged cells were elutriated to separate

cells with G1, S, or G2 phase DNA content (Figure 1D). Although

constant levels of SEN1 mRNA are seen in all stages (Fig-

ure S1C), Sen1 protein levels are reduced 3-fold in G1 cells.

If Sen1 is limiting within NNS, thenwe speculated that NNS ac-

tivitymight be higher duringG2whenSen1 levels rise. To test this

hypothesis, wemonitored termination ofSNR13, whose termina-

tion depends onNNS, APT, and theCF1A subunit Pcf11 (Grzech-

nik et al., 2015; Nedea et al., 2003; Steinmetz and Brow, 2003;

Steinmetz et al., 2001). When wild-type termination fails, the

SNR13 transcript is extended to the PAS of the downstream

TRS31 gene, forming a stable bi-cistronic RNA that allows quan-

tification of transcription readthrough. Comparing SNR13 tran-

scripts in G1- and PM-arrested cells (Figure 1E), we observed

no readthrough in a wild-type strain but saw marked differences

in the sensitized background of temperature-sensitive mutations

in Pcf11 or theAPT component Ssu72. Both ssu72-2 andpcf11-9

strains (at permissive and non-permissive temperatures) show

significantly less readthrough during mitotic arrest, when Sen1

protein levels are higher. A similar effect is seen in an nrd1-102

mutant. In contrast, when Sen1 itself is compromised by the

sen1-1 mutation, termination is equally defective during G1 and

PM, suggesting that limiting Sen1 in G1 causes reduced termina-

tion efficiency at SNR13.

In summary, we conclude that Sen1 protein levels vary

throughout the cell cycle and that this variation affects transcrip-

tion termination efficiency at SNR13.

Sen1 Is Degraded by the Ubiquitin-Proteasome System
To determine whether Sen1 protein levels change through

differential protein degradation, we performed a translation

shutoff experiment. A plasmid-encoded, C-terminally Myc-

tagged SEN1 under control of the galactose-inducible GAL1

promoter (pGSen1Myc) was expressed for 1 hr in G1- or PM-

arrested cells prior to translation inhibition with cycloheximide

(CHX) (Figure S2A). In G1-arrested cells, most Sen1 is lost

6 min after translational shutoff (Figure 2A). In contrast, higher

levels of Sen1 accumulate in mitosis-arrested cells, and these

remain high when CHX is added. This suggests that Sen1 is

unstable during G1.

The majority of regulated protein turnover in eukaryotic cells

is mediated by the ubiquitin-proteasome system (reviewed in
lyzed by RNA blotting (left) against SNR13 to detect the mature snoRNA and

he readthrough-to-snoRNA ratio for three to four biological replicates was

nce between G1 and PM was calculated using Students’ t test. *p < 0.05,
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Figure 2. Sen1 Is Ubiquitylated and Degraded by the Proteasome
(A) Sen1 stability differs in G1- and PM-arrested cells. pGSen1Myc-transformed cells (bar1D) were grown in raffinose-containing medium and arrested with

0.15 mg/mL aF or 15 mg/mL nocodazole. Sen1-Myc expression was induced by addition of 2% galactose for 15 min, followed by transcription repression

by addition of 2% glucose and translation inhibition after 1 hr by addition of 1 mg/mL CHX. Whole-cell extracts from the indicated time points were assayed for

Sen1-Myc levels; quantification (average of n = 3 and SEM) is graphed below. See Figure S2A for FACS analysis.

(B) Sen1 degradation in G1 depends on proteasome function. Sen1-Myc cells (bar1D, pdr5D) were aF-arrested and treated with 1 mg/mL CHX. The culture was

split in half and treated with DMSO (lanes 2–6) or 140 mM MG-132 and 20 mM MG-262 (lanes 7–10). See Figure S2B for FACS analysis. Graph: average of n = 3

with SEM.

(C) Sen1 is stabilized in the APCmutant cdc27-A. pGSen1Myc-transformed cdc27-A and CDC27 cells were aF-arrested in raffinose at 23�C and shifted to 37�C,
and Sen1-Myc expression was induced with 2% galactose for 15 min, after which 2% glucose was added. CHX was added after 30 min, and residual Sen1 was

analyzed as before. Graph: average of n = 3 CDC27 and n = 4 cdc27-A with SEM. See Figure S2D for FACS analysis.

(D) Sen1 is stabilized in metaphase-arrested cells. A galactose-inducible, non-cleavable Pds1 (Pds1Db1D) was integrated into Sen1-Myc cells. After aF arrest in

raffinose, Pds1Db1D cells were released into galactose-containing medium, and CHX was added after 80 min., when most cells were arrested in metaphase

(lanes 8–14). This was compared with Sen1-Myc wild-type cells, aF-arrested, and maintained in galactose for 80 min (lanes 1–7). Quantification (average and

SEM, n = 4–5) is shown at the bottom. See Figure S2E for FACS analysis.
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Finley et al., 2012). To test whether the proteasome is respon-

sible for Sen1 degradation in G1, we measured the half-life of

endogenous Sen1-Myc in the presence of the proteasome inhib-

itors MG-132 and MG-262 (Gaczynska and Osmulski, 2005; Fig-

ures 2B and S2B). We note that, in aF-arrested cells, endoge-

nous Sen1 is degraded with somewhat slower kinetics than the

plasmid-encoded Sen1 (compare Figure 2A with Figure 2B).

However, upon proteasome inhibition, polyubiquitin accumu-

lates, and Sen1 degradation is clearly prevented.

Sen1 Degradation Is Initiated through APC-Mediated
Ubiquitylation
G1-specific degradation of proteins is often initiated through

APCCdh1. In the temperature-sensitive APC subunit mutant

cdc27-A, Sen1 expressed from pGSen1Myc at non-permissive

temperatures is noticeably stabilized after CHX treatment,

arguing that Sen1 is an APC substrate (Figures 2C and S2D).

Similarly, protein steady-state abundance increases modestly

in the cdc16-123 temperature-sensitive mutant of APC (Fig-

ure S2C). In early mitosis, APC recognizes substrates through

the alternative adaptor Cdc20, and this activity initiates chromo-

some segregation through degradation of Pds1. Because APC is

inhibited by nocodazole activation of the spindle attachment

checkpoint (SAC; Sivakumar and Gorbsky, 2015), we wished

to exclude that Sen1 stabilization by nocodazole was caused

by APC inhibition. To this end, we arrested cells in mitosis by ar-

tificially stabilizing Pds1 to prevent chromosome segregation

(Figures 2D and S2E). In the presence of active APC in mostly

metaphase-arrested cells, endogenous Sen1 remains stabilized,

albeit to a lesser extent than seen in APC inhibited cells (Fig-

ure 2A). We conclude that APC is responsible for Sen1 degrada-

tion during G1 and contributes to its modest turnover in early

mitosis.

Levels of Sen1 Protein Affect Viability
The APC adaptors Cdc20 and Cdh1 recognize distinct amino

acid (aa) motifs in their respective substrates, which aids tempo-

ral separation of substrate degradation. However, neither the

destruction box (D-box) sequence (RXXLXXXXN, Cdc20) nor

the lysine, glutamic acid, asparagine (KEN)-box (RxxxxxKEN,

Cdh1) are unambiguously defined, and many substrates carry

shortened, combined, or even alternative motifs (Sivakumar

and Gorbsky, 2015). We reasoned that abrogating APC-medi-

ated Sen1 turnover should allow us to study the biological signif-

icance of Sen1 degradation and therefore examined its aa

sequence for potential minimal APC degradation motifs (RxxL

and RxxxxxKEN). Although we found no APC recognition motifs

within aa 552–659, deletion of which had earlier been shown to

increase Sen1 levels (DeMarini et al., 1995), we did find a cluster

of two potential D-boxes and a KEN box within aa 480–493 (Fig-

ures 3A and S3A). Deletion of 40 aa, including these boxes (aa

459–498), led to marked stabilization of the protein expressed

from pGSen1Myc-459-498D in G1 (Figures 3B and S3B). How-

ever, alanine substitution of KENwithin this box failed to stabilize

the protein. Unfortunately, other alanine substitutions lead to

protein destabilization, making it difficult to further dissect the

aa requirement for Sen1 degradation within this region and test

whether D-boxes contributed to Sen1 destabilization. Conse-
316 Molecular Cell 70, 312–326, April 19, 2018
quently, our analysis supports the view that Sen1 degradation

depends on aa that resemble APC motifs but does not allow

us to conclude unequivocally whether Sen1 acts solely as an

APCCdh1 substrate.

To study the phenotype of slowed Sen1 turnover, we sought

to replace genomic Sen1 with the Sen1-459-498D allele in a

plasmid shuffle assay. Because SEN1 is essential, sen1D cells

die when an empty vector is shuffled but survive when the shuffle

vector carries wild-type SEN1 (Figure 3C). Surprisingly, cells are

still extremely sick when expressing only Sen1-459-498D pro-

tein, suggesting a correlation between Sen1 protein stabilization

in G1 and reduced cell fitness. Alanine substitution of the

potential degradation motifs evoked mild growth retardation,

indicating that these APC-like motifs may contribute to the regu-

lation of Sen1 (Figure S3C).

We verified that the various mutant alleles retained Sen1 func-

tion by testing their ability to complement the temperature sensi-

tivity of the sen1-1mutant (Figure S3D) and found that the Sen1-

459-498D allele was still functional as a termination factor,

capable of suppressing the sen1-1 transcription termination

defect in various genomic loci (Figures 3D and S3E).

Altogether, our data suggest that Sen1 is a substrate for ubiq-

uitin-proteasome system-mediated degradation, preferentially

during G1, and that interference with this regulation reduces

cell viability.

Toxicity of Sen1 Overexpression Is Related to Its
Termination Function
Given the reduced viability of sen1-459-498D cells, we sought

a more amenable approach for studying the phenotype

of increased Sen1 concentration in G1. Performing CHX

chases in aF-arrested cells, we previously observed that pro-

longed expression from the multi-copy galactose-inducible

pGSen1Myc led to Sen1 stabilization, perhaps by overwhelming

the proteasome. To observe the long-term consequences of

persistent Sen1 expression, we compared growth when expres-

sion from pGSen1Myc was induced or repressed. Although cells

grew on repressive glucose, they were unable to grow on galac-

tose medium (Figure 4A). Even in sen1-1 cells, which die when

the mutant Sen1 is destabilized at non-permissive temperatures

(see Figure 4A, bottom, 37�C), expressing pGSen1Myc on

galactose is toxic. In contrast, on glucose, where the pGAL1

on pGSen1Myc is repressed, the low ‘‘leaky’’ expression level

of wild-type Sen1 complements the sen1-1 temperature sensi-

tivity. Importantly, both low- and high-level expression can

suppress the sen1-1 termination defect at SNR13 and SNR33

(Figures 4B and S4A), suggesting that minute amounts of Sen1

are sufficient to provide a sen1-1 strain with adequate Sen1 func-

tion but also that toxicity is not caused by a dominant-negative

effect of plasmid-expressed Sen1. Overall, these results suggest

that there is a window of optimal Sen1 concentration range,

outside of which cells die. Taking our half-life measurements

into account, we predict that sensitivity to increased Sen1 levels

mainly arises during the G1 phase of the cell cycle.

In an attempt to understand the observed toxicity of Sen1

expression, we considered two different but not mutually exclu-

sive models. According to the sequestration model (Figure 4Ci),

excess Sen1 titrates some interaction partner, resulting in the
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Figure 3. A 40-aa Region within Sen1 Contributes to Its Instability in G1

(A) Schematic model of Sen1 domain organization. LeuZipper, a putative leucine zipper; NLS, nuclear localization sequence; Glc7, Glc7 binding motif.

(B) Deletion of aa 459–498 leads to Sen1 stabilization. 1 mg/mL CHX was added to aF-arrested wild-type cells (bar1D) transformed with pGSen1Myc variants

Sen1, Sen-459-498D, or Sen1-KEN-A as described in Figure 2A. The 60-min time points in the center and at the right are from a separate gel. Bottom graph:

n = 4–5, SEM. The asterisk denotes a Myc-responsive band possibly stemming from an internal promoter within Sen1, whose degradation is unchanged.

(C) RNA blot analysis (1%agarose) of 15 mgRNA isolated fromSEN1 or sen1-1 cells transformedwith vector, pGSen1Myc (Sen1), or Sen1-458-498D and induced

with galactose for 3 hr at a permissive temperature prior to a 30-min shift to a non-permissive temperature. RNA blots were probed against SNR13 orNRD1 (top).

Bottom: quantification normalized to sen1-1 vector readthrough (n = 3, SEM).

(D) Plasmid shuffle assay to test for the ability of query constructs to support viability. A centromericURA3 plasmid carrying SEN1 (pRS416 ± 700Sen1) maintains

the viability of a sen1D strain. Transformation with a query plasmid (vector, Sen1, Sen1-459-498D, or Sen1-D1-KEN-D2-A) and selection against the URA3

plasmid (with 5-fluorouracil [5-FOA]) leaves the query plasmid to complement the loss of SEN1. Five-fold serial dilutions. Selection medium: W, tryptophan;

L, leucine; U, uracil.
partner’s insufficient activity. Alternatively, increased Sen1 activ-

ity (particularly during G1) could impair proper cellular func-

tion. For example, excessive termination might disrupt gene

expression (Figure 4Cii). To test for the sequestration model,

pGSen1Myc was expressed in genetic backgrounds that would

abolish interaction with potential interaction partners (Fig-

ure S4B). Deletion of RNT1 or RAD2, two non-essential Sen1

interaction partners, did not alleviate the toxicity of Sen1 expres-

sion (Ursic et al., 2004), nor did deletion of SRS2, which is

synthetic lethal with sen1-1 (Mischo et al., 2011). Similarly, point

mutations in Sen1 residues that abrogate interaction with the

essential proteins Rpb1 (R302W; Chinchilla et al., 2012) or

Glc7 (F2003A; Nedea et al., 2008) remained toxic when ex-

pressed from galactose-inducible plasmids (Figure S4C).
To test the ‘‘excess activity model,’’ we reasoned that if higher

cellular Sen1 levels caused excessive and cytotoxic transcrip-

tion termination, then such overactivity might be offset, and

therefore tolerated, in transcription termination mutants (Fig-

ure 4Cii). Accordingly, a collection of mutant strains (either

deletion of non-essential genes or temperature-sensitive point

mutants for essential genes) was challenged with pGSen1Myc

(Figures 4D and 4E and S4D–S4G).

Three different outcomes were observed for the tested collec-

tion of mutant strains. First, as observed for sen1-1 (Figure 4A),

leakyGAL1 promoter expression of Sen1 on glucose suppresses

the temperature sensitivity of the NNS and CFI mutants nab3-11,

pcf11-9, and pcf11-13 (Figures S4D and S4E), which specifically

disrupt NNS termination (Kim et al., 2006; Steinmetz et al., 2001).
Molecular Cell 70, 312–326, April 19, 2018 317
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Figure 4. Sen1 High Copy Expression Is Toxic

(A) Sen1 expression from the multi-copy pGSen1Myc plasmid in SEN1 and sen1-1 cells. 5-fold serial dilutions were grown on selective medium with either

glucose (repressing) or galactose (inducing) as the carbon source at 25�C (permissive temperature) or 37�C (non-permissive temperature).

(B) RNA blot analysis of SNR13. RNA was extracted from SEN1 or sen1-1 cells transformed with vector or pGSen1Myc. Cells were grown at 25�C in raffinose,

expression was induced for 3 hr with 2% galactose or repressed with 2% glucose, and cells were shifted to a non-permissive temperature for 30 min. 20 mg RNA

was separated on a 1% agarose gel, and the RNA blot was probed against SNR13.

(Ci) Sequestration model. Sen1-interacting proteins are titrated away from other cellular functions (function A).

(Cii) Excess activity model. Cells with elevated Sen1 die because transcription termination occurs prematurely. Transcription termination mutants tolerate

elevated Sen1 levels by shifting the termination window back closer to the wild-type termination site.

(D) Serial 5-fold dilutions of several termination factor mutants transformed with vector or pGSen1Myc.

(E) Summary of phenotypes associated with Sen1 high copy expression in various termination mutants. +, yes; �, no; NA, non-applicable.

(F) Immunoblot of samples taken from Pcf11-hemagglutinin (HA) wild-type cells transformed with vector or pGSen1Myc and induced for the indicated times with

2% galactose.

318 Molecular Cell 70, 312–326, April 19, 2018
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Figure 5. Sen1 High Copy Expression Suppresses Termination Defects in APT Mutants

(A) Serial 5-fold dilutions of wild-type, ref2D, or pta1-1 cells transformedwith vector, pGSen1Myc, or two catalytically inactive point mutants of Sen1 in theWalker

A and B motifs (pGSM-K1363A and pGSM-D1590A).

(B) Immunoblot analysis of whole-cell extracts from cells induced with 2% galactose to express the indicated constructs. Because of different growth rates, the

induction time was varied for the wild-type-ref2D (6 hr) and the wild-type-pta1-1 (13 hr) pair.

(C) RNA blot analysis of SNR33 in REF2 or ref2D cells. 20 mg RNA was separated on a 1% agarose gel and normalized to the SNR33::YCR015c/SNR33 signal in

the ref2D vector samples.

(D) RNA blot analysis of SNR33 in PTA1 or pta1-1 cells, performed as in (C).
Nonetheless, sensitivity to pGAL1-induced Sen1 expression on

galactose persists. Second, with other CFI, NNS, and CPF mu-

tants, higher-level Sen1 expression is toxic (Figures 4D and 4E

andS4D–S4G), and low-level Sen1 fails to suppress temperature

sensitivity.

Strikingly, several mutants in the CPF-associated APT com-

plex withstand galactose-induced Sen1 expression (ref2D,

pta1-1, ssu72-2, or swd2D [at 30�C]; Figure S4G). Although

APT is critical for NNS termination, different mutations show

varying substrate specificity, possibly explaining why glc7 and

syc1mutants are still sensitive to Sen1 induction. Also tolerating

Sen1 expression was the CPF subunit mpe1-1 (Figure S4F),

which shows some NNS transcription termination defects

(M. Kim, personal communication). We excluded the trivial pos-

sibility that induction of pGSen1Myc altered the expression of

other termination factors by observing Nrd1 and Pcf11 levels

(Figure 4F). Over 24 hr induction of pGSen1Myc, neither Pcf11

nor Nrd1 steady-state levels change. Importantly, the overall

levels of Sen1 remain low, arguing that induction of Sen1-Myc
is countered by lowering overall Sen1 expression. Similarly, we

rejected the possibility that Sen1-Myc expression is impaired

in two APT mutants that tolerate pGSen1Myc induction.

Although the slow mutant growth required longer induction

times, after 6 and 13 hr, respectively, Sen1 expression was equal

in wild-type and ref2D or pta1-1 mutants (Figure 5B). Therefore,

from this candidate approach, we conclude that Sen1 overex-

pression toxicity is specifically suppressed by mutations in

APT. In light of our two models, these data support the notion

that Sen1 overexpression can be toxic because of increased

transcription termination activity, which can be offset in cells

with decreased APT (Figure 4Cii).

To provide direct evidence for this hypothesis, we tested

whether Sen1 plasmid expression can suppress the accumula-

tion of read-throughSNR33::YCR015CRNA in APTmutants (Fig-

ures 5C and 5D). When pGSen1Myc is induced in either ref2D or

pta1-1 cells, readthrough transcription is suppressed by 60%.

Suppression requires Sen1 activity because point mutants in

helicase domain I (K1363A in the Walker A motif, essential for
Molecular Cell 70, 312–326, April 19, 2018 319



NTP binding) or helicase domain II (D1590A in theWalker Bmotif,

essential for Mg2+binding) fail to alleviate the ref2D and pta1-1

termination defects (Figures 5C and 5D). Both mutant proteins

are dominant-negative, as can be seen by accumulation of read-

through transcripts in the wild-type. Furthermore, cells continu-

ally expressing these catalytically dead proteins die even when

APT is mutated (Figure 5A), likely explaining their lower steady-

state levels observed by immunoblot (Figure 5B).

Sen1 Increases Termination Efficiency
A further prediction from the excess activity model is that

galactose-induced Sen1 expression in wild-type cells should

lead to premature termination. To identify transcripts that

were affected by Sen1-Myc expression genome-wide, we em-

ployed native elongating transcript sequencing (NET-seq)

(Churchman and Weissman, 2012). Because NET-seq maps

nascent transcripts, its readout is independent of transcript sta-

bility and can therefore detect changes in stable and unstable

ncRNA that require Sen1 for termination. We isolated duplicate

samples for NET-seq in pGSen1Myc- or vector-transformed

cells after 3 hr of induction, where substantial Sen1 expression

was visible in the NET-seq strain but cells are still viable (Fig-

ures S5Ai–S5Aiii).

Comparison of total NET-seq reads within transcription units

reveals that this short Sen1 induction leads to a marked reduc-

tion of Pol II-associated transcripts at cryptic unstable tran-

scripts (CUTs), stable unannotated transcripts (SUTs) (1.5- to

2-fold), and, to a lesser extent, at coding genes (Figure 6A).

Individual snapshots of YER145c, CUT116, and SUT803 exem-

plify these changes (Figure 6B). This decrease in nascent tran-

scription could indicate that Sen1-overexpressing cells die

because of an overall reduction in steady-state levels of these

RNA classes. However, RNA blots for some of the most

affected coding and several strongly affected essential genes

showed that mRNA levels remain largely unchanged even after

24 hr of Sen1 induction (e.g., Ssu72; Figure S5B). Thus,

although Sen1 expression affects nascent RNA production,

mRNA steady-state levels may be less affected because of

‘‘buffering’’ of RNA degradation, which can obscure changes

in transcription rates (Sun et al., 2013). This result importantly

suggests that reduced mRNA levels are unlikely to cause

Sen1 toxicity.

Given the fluctuations in Sen1 levels over the cell cycle, we

asked whether genes whose expression changes during the

cell cycle correlate with genes affected by Sen1 overexpression.

Therefore, NET-seq was performed on asynchronous, G1- and

PM-arrested cells. Surprisingly, mean NET-seq signals are

reduced almost 2-fold in G1-arrested cells compared with asyn-

chronous or mitosis-arrested cells (Figures 6C and S5Ci–S5Ciii).

In fact, many transcripts reduced in G1 are also reduced by Sen1

overexpression, with essential and NNS-terminated genes being

significantly overrepresented (Figure 6D). However, RNA blot

analysis of RNA isolated from G1 arrested cells overexpressing

Sen1 again failed to show effects on the steady-state level of

several essential or NNS attenuated genes (data not shown).

These results indicate that increased Sen1 levels during S/G2

do not lead to an overall reduction in nascent transcripts or

mRNA levels.
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To deepen our analysis, we analyzed the distribution of NET-

seq reads across genes to see how Sen1 overexpression affects

transcriptional elongation and termination. Aggregate plots of

reads along transcription units, normalized to Pol II levels, allow

comparison of profile changes between different samples. At

CUTs, which are terminated by the NNS pathway, Sen1 overex-

pression reduced transcribing Pol II around the 30 end of the tran-

scription unit (Figure 7Aii). This result suggests that NNS termina-

tion becomesmore efficient with increased Sen1, supporting our

conclusion that Sen1 can be the limiting factor in this pathway

(Figures 4 and S4). Heatmaps of normalized Pol II density for in-

dividual CUTs (Figure 7B) show both a reduction of overall Pol II

density and a specific reduction at CUT 30 ends when Sen1 is

plasmid-expressed. In contrast, aggregate plots and heatmaps

of SUTs show a more homogeneous picture (Figures S6A and

S6B). In agreement with the total read analysis, CUTs and

SUTs in G1-arrested cells show an overall Pol II signal reduction

but no distribution changes compared with asynchronous or

mitosis-arrested cells (Figures 7B and S6B).

Finally, aggregate profiles of coding genes differ markedly

between samples (Figure 7C). First, within the gene body,

pGSen1Myc cells accumulate more Pol II in 30 regions upstream

of the PAS (Figure 7Cii) and relatively fewer signals around the

TSS (Figure 7Ci). A moving average analysis that identifies pause

sites in individual genes shows that pGSen1Myc samples are

more likely to pause further downstream within the gene body

(Figure 7Di). Half of the pause positions in both vector and

pGSen1Myc cells carry the motif GGTG (with T being the 30 end
of theRNA; Figure 7Dii). Pol II pausing canoccur transiently during

transcriptionor indicate aPol IImolecule in theprocessof termina-

tion (Hyman and Moore, 1993; Larson et al., 2011; Park et al.,

2004). To testwhether pausingwas associatedwithNNS termina-

tion, we examined RNA outside of the Pol II footprint for Nrd1 and

Nab3motifs.However,motif searchandmotif enrichment tools fail

to identify Nrd1 or Nab3motifs within 40 nt upstream of the pause

site (Figure S7C; Bailey et al., 2009; Carroll et al., 2004, 2007;

Creamer et al., 2011). Thus, under our experimental conditions,

Pol II has a propensity to pause at the sequence GGTG, with no

correlation to Nrd1-Nab3 sites further upstream.

The second effect of pGSen1Myc expression apparent in the

coding gene aggregate analysis is a drop in Pol II density after

the PAS (Figure 7Cii), suggestive of globally increased termina-

tion efficiency. To test the termination efficiency of individual

genes, a termination ratio was calculated as the ratio of reads

50–100 nt upstream divided by 100–50 nt downstream of the

PAS. Genes with overlapping transcription units 100 nt down-

stream of the PAS on the same strand were excluded from this

analysis. Sen1 overexpression clearly increases termination effi-

ciency (average termination coefficient = 2.545 compared with

Vector = 1.935). Individual traces of highly expressed genes,

like small nucleolar RNAs (snoRNAs) (NNS pathway) and ribo-

somal genes (poly(A) pathway and failsafe), exemplify increased

termination efficiency (Figure 7E).

Similar to Sen1-overexpressing cells, asynchronous or noco-

dazole-arrested cells have significantly higher termination coef-

ficients than G1-arrested cells (Figure 7F). Thus, the higher levels

of Sen1 in G2/M (asynchronous and mitosis-arrested cells) may

induce more efficient termination.
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Figure 6. Summary of NET-Seq Results

Shown is a NETseq analysis of cells that were asynchronous, aF- or nocodazole-arrested, or induced with 2% galactose for 3 hr to express vector or

pGSen1Myc (Sen1).

(A) NET-seq values in reads per million (RPM) of two biological repeats for coding mRNA (gray, rep1 n = 6554, rep2 n = 6601), CUTs (blue, n = 922 and 925), and

SUTs (red, n = 835 and 843) in Sen1 or vector, represented as scatterplots. Right: cumulative distribution of the fold decrease in expression for coding genes,

CUTs, and SUTs after Sen1 induction.

(B) Genome browser view (igv; http://software.broadinstitute.org/software/igv/) for individual examples depicting lower Pol II reads in Sen1 samples: YER145c,

CUT116, and SUT803 (based on rep1).

(C) RPM values for coding genes (rep1 n = 6,539, rep2,3 n = 6,620), CUTs (n = 924), and SUTs (rep1 n = 834, rep2,3 n = 845) in G1-arrested versus asynchronous

cells, depicted as scatterplot.

(D) Scatterplots of fold changes comparing Sen1/vector with G1/asynchronous. Shown are coding genes (gray), CUTs (blue), and SUTs (red). Among coding

genes that are lower-expressed in G1 and Sen1 cells, essential genes (p = 2.23 10�16) and NNS-terminated genes (p = 0.043, Fisher’s exact test) are significantly

overrepresented (based on rep1).
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Figure 7. Sen1 Affects Pol II Pausing and Termination Position

(A) Aggregate plot of all CUTswith a reads per kilobase of transcript permillionmapped reads (RPKM) > 10 (n = 925) anchored at the transcription start site (TSS, i)

or the annotated transcription end site (TES, ii). The shadow denotes a 95% confidence interval.

(B) Heatmap of NET-seq reads (RPM) for all CUTs in vector, Sen1 (pGSen1Myc), asynchronous, and G1-arrested cells.

(C) Aggregate plot of all coding genes with an RPKM > 10 and more than 1,000 nt (n = 2792), anchored at the TSS (i) or the poly(A) site (ii); vector (black),

Sen1 (green).

(Di) Ratio of Pol II pause intensity on gene bodies compared with promoter-proximal 300 bp in vector and Sen1 cells. Also see STAR Methods.

(legend continued on next page)
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In summary, NET-seq analysis shows that Sen1 overex-

pression distorts the transcription levels of CUTs and SUTs

and increases the termination efficiency of CUTs and mRNA.

Increased termination efficiency is also observed outside of

G1, which may be correlated with higher Sen1 protein levels.

Overall, this provides a biological rationale for keeping Sen1

levels low because excess Sen1 acts to trigger inappropriate

or premature termination.

DISCUSSION

We show in this study that Sen1 protein levels are regulated

through the cell cycle. Ubiquitin-proteasome system-mediated

degradation decreases protein levels 3- to 10-fold in G1 relative

to other cell cycle stages (Figures 1, 2, and 3). Limiting Sen1

levels appears to be essential to the cell because manipulation

of this regulation through overexpression or deletion of Sen1

degradation sequences results in greatly reduced cell viability.

Notably, increased levels of Sen1 have direct consequences for

general Pol II occupancy and termination efficiency/position, as

shown by NET-seq (Figures 6 and 7) and RNA steady

state analysis (Figure 1E). Genetic experiments indicate that

Sen1 toxicity results from excess termination activity (Figures

4 and 5).

Sen1, Nrd1, and Nab3 are required for termination of many

common ncRNA or attenuated mRNA transcripts, genetically

justifying the model of an NNS complex. Biochemical studies

suggest that the whole NNS termination complex includes

Pol II, cap binding complex, Rnt1 (RNase III), the exosome,

and the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex (Vasil-

jeva and Buratowski, 2006). However, average cellular Sen1

levels are notably lower than those of Nrd1 andNab3, suggesting

that Sen1 could be rate-limiting in the NNS pathway. Although

they do not co-purify with NNS, NNS-mediated termination

also requires Pcf11 and APT, both components of the CPF/CF

mRNA termination complex. Importantly, Sen1 has been shown

to terminate Pol II in vitro without additional factors (Porrua and

Libri, 2013). Therefore, it remains unclear whether all of these

components act during every NNS termination event or whether

different subsets of factors can be combined opportunistically to

carry out the mechanistic steps needed to ensure efficient Pol II

termination.

We sought to determine whether the abundance of Sen1 reg-

ulates NNS efficiency or might instead affect NNS-independent

functions of Sen1. Our data support both possibilities. NNS

termination is more efficient when Sen1 is more abundant; over-

all transcription at NNS-terminated CUTs is strongly affected,

and a subset of mutants that reduce NNS termination sup-

presses Sen1 toxicity. On the other hand, 30% of mRNA-encod-

ing genes are terminated more than 2-fold more efficiently when
(Dii) 15 nt up and downstream of non-overlapping pause sites were searched for

(MEME) (Bailey et al., 2009). The identified motif occurred in both samples (vector

sites, p = 2.7 3 10�672).

(E) Individual gene examples from vector and Sen1 samples showing SNR33, SN

(F) Boxplot for the termination ratio of the indicated samples. The termination ratio

nt downstream of the TES site. 5,702 coding genes that show no overlap with othe

end were included in the analysis. The p values represent Student’s t test.
Sen1 concentration is high. These do not contain known Nrd1/

Nab3 binding sites, nor do they belong to a particular function

or pathway (gene ontology [GO] analysis). Similarly, genes that

show increased occurrence of pause sites in their body do not

classify into any GO term. Consequently, the lethality of

increased Sen1 levels cannot be definitively connected to any

particular RNA but may result from cumulative effects on many

essential mRNAs as well as the overall reduction in ncRNAs (Fig-

ures 6D and 7D).

For both Sen1 (NNS)- and Rat1 (PAS)-mediated termination

mechanisms, pausing of Pol II can promote termination, presum-

ably by providing time for the ‘‘displacing’’ enzyme to track along

the RNA and catch the elongation complex (Mischo and Proud-

foot, 2013). Thus, Rpb1 mutants with slowed elongation or con-

ditions that increase Pol II pausing partially suppress the termi-

nation and growth defects of hypomorphic sen1 mutants

(Hazelbaker et al., 2013). We therefore propose that Sen1 is re-

cruited to and acts on paused Pol II. At many sites, recruitment

occurs via Nrd1/Nab3 binding to nascent RNA and the Pol II

CTD (Chinchilla et al., 2012; Conrad et al., 2000). But if RNA is

accessible, then Sen1 may also terminate Pol II paused by other

protein-DNA roadblocks, damaged DNA, or intrinsic DNA se-

quences. In view of the toxicity of Sen1 overexpression, it is

conceivable that its access to paused Pol II has to be kept in

check by regulating its activity or reducing the available amounts

of protein. This would explain why Sen1 levels have to be higher

during G2, where two sister chromatids are present and general

transcriptional activity may be higher (Figure 6). The human

Sen1 homolog Senataxin does not change in concentration

throughout the cell cycle but alters in cellular localization,

possibly also regulating its site of action in a cell cycle-depen-

dent fashion (Y€uce and West, 2013).

Finally, Sen1, but not Nrd1 and Nab3, is required to prevent

collisions between replication forks and transcribing polymer-

ases (Alzu et al., 2012). This observation further suggests that

Sen1 can act independently of NNS and could explain why

Sen1 is required to maintain genome stability; at paused Pol II,

the dwell time of RNA at the site of negatively supercoiled DNA

upstream of Pol II is higher, increasing the probability of forming

R-loops. Thus, R-loop removal may be a side effect of Sen1

termination activity.

Future studies will aim to further dissect the action of Sen1 in

different phases of the cell cycle. Moreover, given the drastic ef-

fects of Sen1 expression on Pol II chromatin occupancy, it is

conceivable that other environmental stimuli may control Sen1

abundance. NNS action is coupled to the nutritional state of cells

(Darby et al., 2012), and together with the control of Sen1 action

described in this work, opens the fascinating possibility of

adjusting transcription termination or, more generally, ncRNA

abundance to environmental cues and stimuli.
motif enrichment using multiple expectation maximization for motif elicitation

: 563 of 1,077 pause sites, p = 2.13 10�639; Sen1: 708 of 1,237 identified pause

R13, RPS31, and RPL8A. The RPM scale in the igv plot is indicated.

is determined by taking the ratio of reads from 100–50 nt upstream and 50–100

r transcripts 100 nt downstream of the transcript isoform-sequencing (TIF)-seq
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Myc (9E11) House production LRI 9E11

anti-Sen1 - (raised against N-terminal stretch of Sen1) This study

anti-TBP Buratowsi and Zhou (1992)

anti-Nrd1 Steinmetz and Brow, (1998)

anti-Nab3 (2F12) Wilson et al., (1994); kind gift

from Jeff Corden

2F12

anti-Sic1 kind gift from John Diffley

Anti-FLAG M2 affinity gel Sigma-Aldrich Cat# A2220

RRID: AB10063035

Chemicals, Peptides, and Recombinant Proteins

Alpha-Factor House production LRI

3x FLAG Peptide Sigma-Aldrich Cat#F4799

Cycloheximide Sigma-Aldrich C7698

Nocodazole Sigma-Aldrich M1404

MG-132 MERCK 474790

MG-262 Stratech A8179-APE

Deposited Data

Raw data deposition at Mendeley This study Mendeley:

https://doi.org/10.17632/bsrvhwgs5j.1

Raw Sequencing data This study GEO: GSE86419

Experimental Models: Organisms/Strains

BMA64 (MATa ura3-1 Dtrp1 ade2-1 leu2-3,112 his3-11,15) Chanfreau et al., (1998) (YF1342)

Brr5-1 (YSN399; MATa his3D200 leu2D1 ura3-52

brr5-1ade2-100 lys2-801 (amber))

Noble and Guthrie, (1996) (HY431/YF1437)

BY4741 (MATa his3D1 leu2D0 ura3D0 met15D0) Euroscarf (FY44)

BYSHM (MATa his3D1 leu2D0 ura3D0 met15D0

SEN1::His*6-TEV-Myc*18::URA3)

This study (HY202)

BYSHM Pdr5D (MATa his3D1 leu2D0 ura3D0 met15D0

SEN1::His*6-TEV-Myc*18::URA3 pdr5D::KanMX)

This study (HY270)

cdc16-123 ((W303) MATa his3-11,15 leu2-3,112 trp1-1

ura3-1 can1-100 cdc16-123)

L. Drury/J. Diffley (FY59)

cdc27-A (MATa bar1::hisG, cdc27-A, ura3, leu2, trp1,

his3, ade2 (backcrossed to W303 four times))

A. Amon (HY500/ YF2412)

Cft2-1/Ydh1D (MATa his3D1 leu2D0 ura3D0 met15D0

ydh1D::KanMX [pAK21 = ydh1-1 LEU2 CEN])

Kyburz et al., (2003) (HY403/YF2367)

Fip1-1 (LM94; MATa leu2-3,112 trp1- ura3-52 his4- fip1D::LEU2

[pIA23 = fip1-1 (L99F Q216Stop) TRP1 CEN])

Preker et al., (1995) (HY397/YF2360)

Glc7-5 (MATa his3-11,15 leu2-3,112 ura3-1 ade2-1 can1-100

ssd1-d2 glc7D::LEU2 trp1::glc7-5::TRP1)

Andrews and Stark, (2000) (HY406/YF2369)

Mpe1-1 ((W303-1B) MATa his3-11,15 leu2-3,112 trp1-1 ura3-1

ade2-1 mpe1-1 (F9S, Q268K, K337F, K354STOP))

Vo et al., (2001) (HY430/YF1982)

Nab3-11 (YPN103; (W303-1B) MATa his3-11,15 leu2-3,112

trp1-1 ura3-1 ade2- can1-100 nab3-11)

Conrad et al., (2000) (HY371/YF1471)

nrd1-101 (YJC1282; BY4741 (S288C) MATa his3D1 leu2D0

ura3D0 met15D0 nrd1-101::HA)

Jeff Corden (HY127/YF2347)

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

nrd1-102 ([nrd1 (V379G)]; (S288C) MATa leu2D1

trp1D63 ura3-52 nrd1-102 [nrd1 (V379G)])

Minkyu Kim (HY479/YSB2079)

Pcf11-13 ((W303, RAD5+) MATa his3-11,15 leu2-3,112 trp1-1

ura3-1 ade2-1 can1-100 pcf11D::TRP1 [pNOPL-pcf11-13

(pcf11-13 (D68A,S69A,I170A), LEU2 CEN/ARS)])

This study (HY312)

Pcf11-2 (NA65; (W303-1B) MATa his3-11,15 leu2-3,112

trp1D ura3-1 ade2-1 pcf11-2 (E232G, D280G, C424R,

S538G, F562S, S579P))

Amrani et al., (1997) (HY366/YF1434)

Pcf11-9 (NA67; (W303-1B) MATa his3-11,15 leu2-3,112

trp1D ura3-1 ade2-1 pcf11-9 (A66D, S190P, R198G, R227G,

E354V, K435V))

Amrani et al., (1997) (HY305/YF1435)

PFS2 (MO12; (W303-1B) his3-11,15 leu2-3,112 trp1D ura3-1

ade2-1 pfs2D::TRP1 [pFL36-PFS2 = PFS2 LEU2 CEN])

Ohnacker et al., (2000) (HY407/YF2370)

Pfs2-1 (MO17; (W303-1B) his3-11,15 leu2-3,112

trp1D ura3-1 ade2-1 pfs2D::TRP1 [pFL36-pfs2-1 = pfs2-1

LEU2 CEN])

Ohnacker et al., (2000) (HY408/YF2371)

Pta1-1 (P0C8-23d; MATa leu2D1 trp1D101 ura3-52

pta1-1 ade2-1 lys2-)

O’Connor and Peebles, (1992) (HY379/YF175)

Rad2D ((S288C) MATa his3D1 leu2D0 ura3D0

met15D0 rad2D::KanMX)

Winzeler et al., (1999) (YF2230)

Ref2D ((S288C) MATa his3D1 leu2D0 ura3D0 met15D0

ref2D::KanMX)

Winzeler et al., (1999) (HY361/YF1996)

rnt1D W303) (MATa his3-11,15 leu2-3,112 Dtrp1 ura3-1

ade2-1 rnt1D::HIS3)

Chanfreau et al., (1998) (HY163/YF1343)

Shuffle strain ((BY4743; S288C) ura3D0 leu2D0

trp1D::LEU2/KanR his3D1 met15D0 sen1D::KanMX

[pRS416 +-700 Sen1])

This study (HY459/YSB3181)

Srs2D (BY4741 (S288C) MATa his3D1 leu2D0 ura3D0

met15D0 srs2D::KanMX)

Winzeler et al., (1999) YF2355

Ssu72-2 (MATa ura3-52 leu2-3,112 his3D200 ssu72-2 (R129A)) Pappas and Hampsey (2000) (HY378/YF1374)

Swd2D pRS414 D2 (MATa ura3D0 leu2D0 his3D1 met15D0

swd2D::KanMX [pRS414 +-700 Sen1 D2])

This study (HY446)

Syc1D ((S288C) MATa his3D1 leu2D0 ura3D0 met15D0

syc1D::KanMX)

Winzeler et al., (1999) (HY365/ YF2354)

W303 RAD5+ ((W303) MATa his3-11,15 leu2-3,112 trp1-1

ura3-1 ade2-1 can1-100)

Andres Aguilera (HY307/YF2329)

W303-1A (MATa his3-11,15 leu2-3,112 trp1-1 ura3-52 can1-100) Andres Aguilera (FY1)

W303bar1D ((W303) MATa his3-11,15 leu2-3,112 trp1-1

ura3-52 ade2-1 can1-100 bar1::HYG)

Mischo et al., (2011) (HY115/YF2348)

WF1ASHM (MATa leu2-3,112 trp1-1 ura3-1

SEN1::His6::TEV::Myc9::TRP1)

This study (HY185)

WF1ASHM Pds1DbD (WF1ASHM with p258 (Pds1Ddb) integrated.) This study (HY509)

WF1B (Mata ura3-1 leu2-3,112 trp1-1 his3-11,15 can1-100 sen1-1) Mischo et al., (2011) (HY71/YF2349)

WF1D (MATa ade2 his3-11,15 leu2-3,112 trp1-1 ura3 sen1-1) Mischo et al., (2011) (HY73)

YTH1 (YT2; MATa his3- leu2- trp1D ura3- ade2- yth1D::TRP1

[YCplac11-YTH1 = YTH1 LEU2 CEN])

Tacahashi et al., (2003) (HY400/YF2364)

Yth1 DC2 (YT5; MATa his3- leu2- trp1D ura3- ade2-

yth1D::TRP1 [YCplac11-yth1DC2 = yth1DC2 (amino acids

1-147 present) LEU2 CEN])

Tacahashi et al., (2003) (HY402/YF2366)

Oligonucleotides

sCR1 up (GGCTGTAATGGCTTTCTGGTG) This study N/A

sCR1 dw (CACAATGTGCGAGTAAATCCTG) This study N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

hm331 Sen1 Pst1 30 6369 (CATCATCTGCAGCTCGAAGAACCAC

CGGATAAAAC)

This study N/A

SB#1309 SNR13-60 (TTATAAATGGCATCTCAAATCGTC) This study N/A

SB#1310 SNR13+124 to end (GGTCAGATAAAAGTAAAAAAA

GGTAGC)

This study N/A

hm427 SNR 13 30 SacII MboI (GTCACCGCGGGATCGGATGGT

GATAGTACTCCCTGTC)

This study N/A

SB#1319 snr33 Pro-up (CGGAACGGTACATAAGAATAGAAGAG) This study N/A

SB#1322 snR33 3UTR low +288 (TAAAGAAAACGATAAGA

ACTAACC)

This study N/A

hm527 Sen1Opt F2003A F (GGTAAGAAAAAGAACAACAAGCA

CGTGTGCGCCTCCGATGATGTTTCTTCATTCC)

This study N/A

hm529 Sen1Opt R302W F (CGTTGTTTCTCAATTCTGGTCTTG

GTTATTGCCAGTTTTCAAC)

This study N/A

hm510 Sopt K1363A R (CGATAATACCCAAAATAGTCTTAGTG

GCGCCAGTACCTGGTGGACCTTG)

This study N/A

hm514 Sopt D1590A R (CGGTGCATTGACAAGCTTCAGCGAT

AATAACGGTATCGAAC)

This study N/A

hm472 S D1 30 (CATTTATAATAAACAGATGCGC) This study N/A

hm492 Sopt D4 R (GGCAATAATTCTCAAGAAAGCCATG) This study N/A

hm493 Sopt D5 F 1494 (TTCGAAACTGTCTTGTTGACCAAGAC) This study N/A

hm480 D4 R 1374 IIA (GGCTATTATACGCAGGAACGCC) This study N/A

hm477 S D5 F 1494 (TTTGAAACAGTACTGTTGACTAAAAC) This study N/A

hm539 F2003A introd Pml1 (GGTAAAAAGAAAAATAACAAACA

CGTGTGTGCTTCGGATGATGTTAGTTTCATACC)

This study N/A

hm473 S D2 F 2067 (AATACATTTGACGTTGAGGGTAGAC) This study N/A

hm550 ssu72 50 53+ (CAACAATCGTTCAATGGAATCGC) This study N/A

hm551 ssu72 30 311 (CTTTCTTGCCATTTTTCAGGTGC) This study N/A

SB#1623 Nrd1 ORF0-down (CTTATGTTCAAGTTTAAAGGAGGAC) This study N/A

SB#1640 Nrd1 1aa-up(+1) (ATGCAGCAGGACGACGATTTTCAA) This study N/A

SB#3861 SEN1 - Dbox1mut R (AGTCGCCACAGCTGCCAACAAG

GCAGTTGCTGAATT)

This study N/A

SB#3856 2 SEN1 - KEN WT F (ATTAAGGAAAATGAAAGGGCAA

TGCTTTATAAGAATGATG)

This study N/A

SB#3860 3 SEN1 - Dbox1wt R (AGTCAACACAGCCCTCAACAA

GGCAGTTGCTGAATT)

This study N/A

SB#3859 4 SEN1 - KEN-AAA+Dbox2mut F (ATTGCAGCGGCCG

AAGCGGCAATGGCGTATAAGAATGATGAATTTGAA)

This study N/A

SB#3858 5 SEN1 - Dbox2mut F (ATTAAGGAAAATGAAGCGGC

AATGGCGTATAAGAATGATGAATTTGAA)

This study N/A

SB#3857 6 SEN1 - KEN-AAA F (ATTGCAGCGGCCGAAAGGGC

AATGCTTTATAAGAATGATGAATTTG)

This study N/A

Recombinant DNA (see also Table S1)

pYMHHM Genescript

pGSen1Myc Geneart

pGSM-F2003A This study

pGSM-R302W This study

pGSM-K1363A This study

pGSM-D1590A This study

pGSen1Myc-459-498D This study

pRS416 +-700 Sen1 This study

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pRS414 +-700 Sen1 This study

pRS414 +-700 Sen1 459-498D This study

pRS414 +-700 Sen1 D2 This study

pRS414 +-700 Sen1-KEN A This study

pRS414+-700 Sen1-Dbox2 A This study

pRS414+-700 Sen1-Dbox1 Dbox2 A This study

pRS414+-700 Sen1-Dbox1 KEN A This study

pRS414+-700 Sen1-KEN Dbox 2 A This study

pRS414+-700 Sen1-Dbox1 KEN Dbox 2 A This study

pRS414+-700 Sen1-D485-505 This study

P258 This study

Software and Algorithms

TopHat2 Kim et al. (2013)

HTSeq package Anders et al., (2015)

deepTools Ramı́rez et al. (2014)

FIMO Grant et al. (2011)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hannah

Mischo (Hannah.Mischo@path.ox.ac.uk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains
Strains are listed in the Key Resources Table and were derivatives of either W303 (MATa his3-11,15 leu2-3,112 Dtrp1 ura3-1 ade2-1

can1-100) or BY4741 (MATa his3D1 leu2D0 ura3D0 met15D0).

Cell growth and arrest
Cells were cultivated in YPD (10% yeast extract, 20% bacterial peptone, 2% glucose) or minimal media as indicated in the text.

Unless otherwise noted, cells were cultivated at 30�C, or at 25�C for temperature sensitive strains. Prior to galactose induction, cells

were grown in 2% raffinose in minimal selective media, to which 2% galactose was added for indicated times.

Elutriation
3x1010 cells were condensed from 2 L to 40mL inmedia without carbon source and sonicated for 10 s. at 30%. Cells were loaded into

the elutriation chamber and separated at 2700 to 1400 rpm.

aFactor arrest and release
Cells were grown to a density of 1.5 �2.5x 107 cells/ml in minimal complete media or YPD, pH adjusted to 3.9 with HCl and cells

arrested by two additions of 5 mg/ml aF at 0 and 60 min. Arrest was confirmed by microscopic observation after 90 to 120 min.

Release from arrest was achieved by two washes with medium.

aF/HU/Nocodazole arrest
BAR1 deleted strains were arrested at 0.5 �1x 107 cells/ml without acidification by addition of 0.15 mg/ml aF for 90-120 min. BAR1

carrying strains were arrested after acidification of the media to pH 3.9 with twice 5 mg/ml aF (60 and 60 min., 120 min total).

Cells were arrested at densities of 1x 107 cells in S-phase with hydroxyurea (SIGMA, H8627) added to 0.2 M or in G2/M with

15 mg/ml nocodazole (SIGMA, M1404) in DMSO for 90 min to 2hrs, as judged by eye and depending on the growth rate of the strain.

Arrest at 25�C for temperature sensitive strains was usually achieved after 3-3.5 hr.

Plasmid shuffle experiment
HY459 (shuffle strain sen1D, carrying trp1::LEU2 and pRS416+-700Sen1) is transformed with centromeric plasmids pRS414,

pRS414 +-700 Sen1 and its derivatives (see Key Resources Table). Transformants are selected on –WLU plates to select for query
e4 Molecular Cell 70, 312–326.e1–e7, April 19, 2018
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plasmid (-W), pRS416 +-700 Sen1 wild-type plasmid (-U) and LEU (-L), to ensure that the trp1::LEU2 disruption is not popped out.

After growth for 20 hr in liquid media, cells are spotted as five-fold serial dilutions onto –WLU plates to monitor general growth and

5-FOA containing plates to shuffle out the wild-type plasmid pRS416 +-700Sen1 and leave the query plasmid as only copy.

Spotting experiments
Overnight cultures are diluted to 4x 107 cells/ml (Figures 4, 5, S3C, and S3D) or 0.5x 107 cells/ml (Figure 4A) and spotted as 3 ml spots

in 1:5 serial dilutions. Temperature sensitive strains were grown at 25� (permissive), 30� (semi-permissive) or 37�C (non-permissive

temperature) as indicated in the figures.

Fluorescent activated cell sorting (FACS)
0.6x 107 cells were fixed in 70% ethanol at �20�C until further processing. Ethanol was removed and RNA digested with 20 mg/ml

RNase A in 50mMTris pH 8.0 for 90min at 37�C. RNase A was removed and cells resuspended in 1mg/ml Pepsin 0.5MHCl in dH2O

to digest cell walls for 30 min at 37�C. Cells were pelleted and then resuspended in 50 mM Tris pH 8.0. Typically 6x 105 cells were

stained with 0.5 mM Sytox� green (Molecular Probes S7020), briefly sonicated and analyzed in a FACS Calibur (BD).

METHOD DETAILS

Protein analysis
Whole cell extract analysis

NaOH lysis 7x 107 cells are pelleted, washed in water, lysed in 100 mM NaOH for 3 min. at room temperature (RT), cooled on ice for

30 s, and spun for 50 at 13000 rpm for 5min. Protein pellets are resuspended in 50 ml SDS loading dye (0.06MTris pH 6.8, 5%glycerol,

2% SDS, 4% bME, 0.0025% BPB) and ca 0.75x 107 cells loaded per lane (Kushnirov, 2000).

TCA whole cell extract

Washed cells were resuspended in 10%TCA, combinedwith an equal volume of glass beads, and broken in aMagNA-lyser (ROCHE)

at 6000 rpm for 15 s. Beads were washed with 500-1000 ml 10% TCA and spun for 5 min at 9000 rpm. Air-dried protein pellets were

resuspended in 50-120 ml TCA loading dye (1x SDS Laemmli dye, 0.4M Tris pH 11).

Cycloheximide (CHX) shutoff for plasmid expressed Sen1

pGSen1Myc transformed cells were grown in selective media with 2% raffinose to a density of 3x 107 cells/ml and then arrested with

aFactor or nocodazole. Upon arrest, tagged Sen1 expression was induced with 2% galactose for 15 min, then further transcription

was repressed with 2% glucose for 45 min, and the chase started 60 min after galactose induction by addition of 1 mg/ml cyclohex-

imide (50 mg/ml in DMSO) to the medium. 5 mL time points were spun, washed, flash frozen in liquid nitrogen and processed to

extract using TCA. Approximately 2x107 cells/lane were loaded onto a two-percentage (15 /11%)-SDS-polyacrylamide gel.

pGSen1Myc transformed cdc27-A or wild-type cells (both bar1D), were grown in selective media with 2% raffinose to a density of

0.5x 107 cells/ml at 23�C and arrested with aF (0.15 mg/ml). Upon arrest cells were shifted to 37�C and concomitantly pGSen1Myc

expression induced by addition of 2% galactose for 15min. Transcription was then repressed with 2% glucose while keeping cells at

37�C for a further 15 min. A 6 mL aliquot of cells was taken after a total of 30 min. at 37�C for time 0 and immediately 1 mg/ml CHX

added. All further time points were taken from cells maintained at 37�Cas 6mL aliquots. Each aliquot was processed and analyzed as

indicated above.

CHX shutoff of endogenous Sen1

SEN1-Myc cells at 0.7x107 cells/ml were arrested with 5 mg/ml aF, and upon arrest split in half. Deletion of the general drug exporter

PDR5makes this strain sensitive to the uptake of both inhibitors (Golin et al., 2007). Both inocculeswere exposed to 1mg/ml CHX and

in addition, one received 0.57% DMSO, the other 140 mMMG-132 (MERCK) and 20 mM MG-262 (Stratech). Approximately 0.3x107

cells were loaded in each lane and separated on a 15/11% SDS-PAGE gel.

SEN1-Myc or SEN1-Myc Pds1Db1D cells were grown in raffinose to a density of 0.6x107 cells/ml, arrested with 5 mg/ml aF and

either (SEN1-Myc Pds1Db1D), washed twice with YP, resuspended to a density of 0.3x107 cells/ml in the presence of 2% galactose

and 50 mg/ml Pronase. Cells typically released and arrested in metaphase after 80min., at which point, the culture was condensed

back to 0.6x107 cells/ml and time point 0 (6 ml) was taken. 1 mg/ml CHX was added to the remaining cultures and 6 mL time points

taken at indicated time points. aF arrested SEN1-Myc cells were incubated with additional aF andmaintained in 2%galactose for 80’

before they were treated with CHX in parallel with the metaphase arrested culture.

RNA analysis
RNAwas extracted from typically 6x 108 cells/ml by addition of 400 mL AE buffer (50mMsodium acetate pH 5.0, 10mMEDTA pH 8.0),

50 ml 10%SDS and 500 ml phenol:chloroform:isoamylalcohol (PCA, 25:24:1, pH4.5) for a period of 5 min at 65�C. The aqueous phase
was extracted twice with PCA and ethanol precipitated.

RNA Blot

RNA was separated on 1% agarose gels in MOPS and transferred by capillary force in 20 x SSC. Probes were generated by strand

specific PCR with primers indicated using 32Pa-dATP and hybridized in phosphate hybridization buffer at 65�C (0.3 M phosphate

buffer pH 7, 7% SDS, 0.01 g/ml BSA and 1 mM EDTA pH 8.0) and probes washed from membranes with 2 x SSC (150 mM NaCl,
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15 mM sodium citrate), 0.1% SDS. Probes were generated by strand-specific labeling of a PCR product (primer pairs in brackets, 30

cycles) with the antisense (reverse) primer to generate a single stranded, internally labeled probe (one NTP replaced with labeled

NTP, 30 cycles): NRD1: PCR (SB1640- SB1623), labeling: SB1623. SNR13: PCR(SB1309-hm427), labeling, hm427 or SB1310.

SNR33: PCR(SB1319-1322), label with SB1322 . Sen1: BamH1 fragment out of pRS416 +-700 Sen1, label with hm331. sCR1:

PCR with (sCR1 up and down), label with sCR1 down. Ssu72: PCR: hm550, 551, labeling hm551.

NET-seq
W303 bar1D Rpb3::Flag cells were grown in minimal complete medium and harvested at a density of 5x107 cells/ml (asynchronous

sample, 1320ml) or arrested with 0.15 mg/ml aF (5x107 cells/ml for 2.5 hr) or 15 mg/ml nocodazole (3x107 cells/ml for 2 hr.). For Vector

and Sen1 samples,W303 bar1DRpb3::Flag cells were transformedwith pGSen1Myc or pYMHHM, grown in selectiveminimal media

in raffinose and induced for 3hrs with 2% galactose. Cells were harvested through filtration and frozen biomass disrupted in a mixer

mill for 15 min at 15 Hz in 5 3-min intervals.

NET-seq conditions, immunoprecipitations, isolation of nascent RNA, and library construction were carried out as previously

described (Churchman and Weissman, 2012), with the following modifications. Ligation of adapters was done directly to the 30

end of isolated nascent RNA. A random hexamer sequence was added to the linker to improve ligation efficiency and allow for

the removal of any library biases generated from the RT step as described inMayer et al. (Mayer et al., 2015). After library construction

the size distribution of the library was determined by using a 2100 Bioanalyzer (Agilent) and library concentrations were determined

by Qubit 2.0 fluorometer (Invitrogen). 30 end sequencing of all samples was carried out on an Illumina NextSeq 500 with a read length

of 75.

Sequencing data alignment
NET-seq reads were aligned as follows. The adaptor sequence (ATCTCGTATGCCGTCTTCTGCTTG) was removed from all reads

using cutadapt with the following parameters: -O 3 -m 1–length-tag ‘length = ‘. Raw fastq files were filtered using PrinSeq (http://

prinseq.sourceforge.net/) with the following parameters: -no_qual_header -min_len 7 -min_qual_mean 20 -trim_right 1 -trim_ns_right

1 -trim_qual_right 20 -trim_qual_type mean -trim_qual_window 5 -trim_qual_step 1. Random hexamer linker sequences (the first

6 nucleotides at the 50 end of the read) were removed using custom python scripts but remained associated with the read and reads

were then aligned to the SacCer3 genome obtained from the Saccharomyces Genome Database using the TopHat2 aligner with

the following parameters:–read-mismatches 3–read-gap-length 2–read-edit-dist 3–min-anchor-length 8–splice-mismatches

1–min-intron-length 50–max-intron-length 1200–max-insertion-length 3–max-deletion-length 3–num-threads 4–max-multihits

100–library-type fr-firststrand–segment-mismatches 3–no-coverage-search–segment-length 20–min-coverage-intron 50–max-

coverage-intron 100000–min-segment-intron 50–max-segment-intron 500000–b2-sensitive. To avoid any bias toward favoring

annotated regions the alignment was performed without providing a transcriptome. Reverse transcription mispriming events are

identified and removed where molecular barcode sequences correspond exactly to the genomic sequence adjacent to the aligned

read. For NET-seq only the position corresponding to the 50 end of the sequencing read (after removal of the barcode), which

corresponds to the 30 end of the nascent RNA fragment, is recorded with a custom python script using HTSeq package (Anders

et al., 2015).

Gene expression analysis
For gene expression analysis each dataset was first normalized by the number of 106 uniquely mapped reads. The reads per gene per

million mapped reads (RPM) were calculated for genes that were expressed in at least one of the samples being compared. To allow

comparison of genes that were expressed in only one sample genes with 0 reads were given a pseudo-count of 0.1. Gene expression

was then compared by plotting the log2 RPM for each sample. Annotations for coding genes were derived from Pelechano et al.

(2013) by taking the major transcript isoform for each gene. CUT and SUT annotations obtained from Xu et al. (2009). Cumulative

distribution functions for differences in gene expression were calculated by taking the log2 ratio of expression for each gene in

one sample compared to another.

Average profile analysis around the TSS and polyadenylation site ‘aggregrate plots’
NET-seq reads around the TSS and polyadenylation sites are calculated for non-overlapping genes in 1bp bins using the deepTools

program (Ramı́rez et al., 2014). Annotation for TSS and pA sites were derived from (Pelechano et al., 2013) by taking the major tran-

script isoform for each gene. The TSS and pA average profiles were calculated using non-overlapping protein coding genes with an

RPKMgreater than 10 in the empty vector NET-seq data and that are at least 500 bp long (N = 2792). TSS and 30 end profiles for CUTs

and SUTs were calculated using all annotated CUTs and SUTs from Xu et al. (Xu et al., 2009). Data for each plot are normalized as

follows. First, each NET-seq library is normalized by the number of million uniquely mapped reads. NET-seq data for each gene used

in the average profile is then normalized by summing the total number of reads for that gene and dividing by the length of the window

analyzed. Each position is then normalized by average density value for that gene, thereby equalising the contribution from lowly

and highly expressed genes. For TSS analysis this length is 1100 and for pA analysis 550. After each gene is normalized the average

profile and 95% confidence interval are calculated, using a 25 base pair sliding window, which results in average Pol II density.
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Pausing analysis
Pause detection in the NET-seq data was determined as described in Churchman and Weissman (2011). Briefly, the a site was

considered a pause if the Pol II density at that nucleotide was at least three standard deviations above the mean of a sliding window

of 200 bp around that position. To be considered for pause analysis a position must have at least four normalized reads when NET-

seq data are normalized by106 uniquely mapped reads. Pause sites were determined for the same subset of genes used to calculate

the average Pol II profiles. To compare the pause density of regions near the promoter versus the gene body region the sum of the

pause density in the first 300 bp downstream of the TSS (promoter region) was compared to the sumof the pause density from 300 bp

downstreamof the TSS to the pA site of that gene (body). The ratio of pause density in the gene bodywas then compared to the pause

density near the promoter.

Termination efficiency
NET-seq reads for a region ± 100bp around pA sites were quantified for all genesR 200bp long and no overlap with other transcripts

at least 100 nt of TIF-seq end on same strand. Termination ratios (�100 to-50 upstream/50 to 100 downstream read count) were then

plotted as boxplot using R.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data was quantified using ImageJ or AIDA image analysis software and normalized to an internal control. Details to statistical

methods including number of replicates (n) are specified in the figure legends. Significance was calculated using Student’s t test,

Fisher’s exact test and MEME (multiple expectation maximization for motif elicitation).

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and processed NET-seq data reported in this paper is GEO: GSE86419. The raw data reported in

this paper has been deposited to Mendeley: https://doi.org/10.17632/bsrvhwgs5j.1
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