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Abstract
The anaerobic ammonium oxidation (anammox) bacteria can transform ammonium and nitrite to dinitrogen gas, 
and this obligate anaerobic process accounts for up to half of the global nitrogen loss in surface environments. Yet its 
origin and evolution, which may give important insights into the biogeochemistry of early Earth, remain enigmatic. 
Here, we performed a comprehensive phylogenomic and molecular clock analysis of anammox bacteria within the 
phylum Planctomycetes. After accommodating the uncertainties and factors influencing time estimates, which in-
clude implementing both a traditional cyanobacteria-based and a recently developed mitochondria-based molecular 
dating approach, we estimated a consistent origin of anammox bacteria at early Proterozoic and most likely around 
the so-called Great Oxidation Event (GOE; 2.32–2.5 Ga) which fundamentally changed global biogeochemical cycles. 
We further showed that during the origin of anammox bacteria, genes involved in oxidative stress adaptation, bio-
energetics, and anammox granules formation were recruited, which might have contributed to their survival on an 
increasingly oxic Earth. Our findings suggest the rising levels of atmospheric oxygen, which made nitrite increasingly 
available, was a potential driving force for the emergence of anammox bacteria. This is one of the first studies that 
link the GOE to the evolution of obligate anaerobic bacteria.
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Introduction
Anaerobic ammonium oxidation (anammox, NH4

+ + NO2
– 

→ N2 + 2H2O) (Broda 1977), which usually occurs in anoxic 
marine, freshwater, and wetland settings, accounts for up to 
50% of the removal of fixed nitrogen (N) in nature. Along 
with denitrification, it is recognized as an important bio-
logical process that leads to N loss from the environment 
(Oshiki et al. 2016; Stein and Klotz 2016). In wastewater 
treatment, anammox is more cost-effective and environ-
mentally friendlier than denitrification due to its lower oxy-
gen requirement for aeration [nitrite (N{+III}), instead of 
nitrate (N{+V}) is sufficient for the anammox metabolism], 
carbon-free cultivation (most denitrifying bacteria are het-
erotrophic), and its negligible emissions of greenhouse gases 
like N2O (Jetten et al. 2001; Van Dongen et al. 2001). 
Consequently, anammox bacteria have been widely used 
in wastewater treatment plants (Gao and Tao 2011; 
Okabe et al. 2011; Stein and Klotz 2016; Li, Ling et al. 
2020). Despite the environmental and industrial importance 
of these organisms, their evolutionary history and antiquity 
are poorly known, which hinders accurate reconstructions 
of the biogeochemical nitrogen cycle over geologic time.

Previous studies investigated the roles of key genes driving 
anammox, including hzsCBA (hydrazine synthase) (Dietl et al. 
2015), hdh (hydrazine dehydrogenase), hao (hydroxylamine 
oxidoreductase) (Kartal, Maalcke et al. 2011), and nxr (nitrite 
oxidoreductase) (Chicano et al. 2021). In general, the vital en-
zymes encoded by these genes either are directly involved in 
anammox or participate in replenishing electrons to the cyc-
lic electron flow (Kartal and Keltjens 2016; Hu et al. 2019). 
Furthermore, all known anammox bacteria are found within 
the phylum Planctomycetes (Wang et al. 2019). Seven candi-
date genera of anammox bacteria, namely “Candidatus 
Brocadia”, “Candidatus Kuenenia”, “Candidatus Jettenia”, 
“Candidatus Scalindua”, “Candidatus Anammoximicrobium”, 
“Candidatus Anammoxoglobus” and “Candidatus 
Bathyanammoxibiaceae” have been proposed based on 16S 
ribosomal RNA (rRNA) gene sequences (Zhang and Okabe 
2020; Zhao et al. 2022), but none of them have been success-
fully isolated into pure cultures. The habitat of anammox 
bacteria requires the simultaneous presence of reduced (am-
monia) and oxidized (nitrite) inorganic N compounds. Such 
habitats are often found at the aerobic–anaerobic interface in 
aquatic ecosystems, including the margins of oxygen min-
imum zones (OMZs) in the ocean and sediment–water 
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interfaces, where ammonium originates from the anaerobic 
degradation of organic matter and nitrite can be produced 
by aerobic ammonia oxidation (Sonthiphand et al. 2014). 
Ammonium, one of the two substrates of the anammox me-
tabolism, is thermodynamically stable and was likely present 
in moderate concentrations in the deep ocean throughout 
the Archean (Yang et al. 2019) and probably extending 
well into the Proterozoic (Stueken et al. 2016). The availability 
of nitrite, the second important substrate, is less certain. 
Geochemical data from sedimentary rocks suggest that the 
early Earth (before 3 Ga) was fully anoxic and deficient in aer-
obic ecosystems that were able to generate nitrite/nitrate 
(Stueken et al. 2015; Koehler et al. 2019; Ossa Ossa et al. 
2019). The first transient and/or localized occurrences of aer-
obic nitrogen cycling appear in the Mid- to Neoarchean 
around 2.7 Ga (Garvin et al. 2009; Godfrey and Falkowski 
2009; Homann et al. 2018; Koehler et al. 2018), but evidence 
of widespread nitrate availability does not appear until 
around 2.4 Ga, the so-called Great Oxidation Event (GOE) 
(Zerkle et al. 2017; Kipp et al. 2018; Luo et al. 2018). The 
GOE marks the rise of free molecular oxygen (O2) in the at-
mosphere above 10−5 times modern levels, and was ultimate-
ly a result of the emergence of oxygenic cyanobacteria (Lyons 
et al. 2014). Hence it is conceivable that the appearance of 
anammox was linked to the appearance of aerobic ecosys-
tems around the time of the GOE. However, it is also pos-
sible that some nitrite was provided much earlier, 
through lightning reactions in the Archean atmosphere 
(Navarro-González et al. 1998). Lightning, even in the ab-
sence of O2, can generate nitric oxide (NO) gas, which dis-
solves in water and converts into aqueous species, 
including nitrite (Kasting and Walker 1981). Some ana-
mmox bacteria are even capable of using NO rather 
than nitrite directly as a substrate (Hu et al. 2019). If these 
organisms capitalized on the lightning flux, then ana-
mmox might long pre-date the GOE.

Several tools exist for investigating the link between the 
evolution of metabolic pathways and geo-environmental 
transformations. One way to explore the evolutionary his-
tory of a specific metabolic pathway is based on organic 
biomarkers, which, however, are often affected by the 
poor preservation over geologic timescales (Hallmann 
et al. 2011). For instance, ladderanes, a type of lipids that 
is unique to anammox bacteria (Moss et al. 2018), are rare-
ly preserved to a level that can be used to date their evo-
lutionary origin. Another approach is based on nitrogen 
isotope ratios of sedimentary records (Ader et al. 2016; 
Mettam et al. 2019; Yang et al. 2019). However, the isotop-
ic fractionation factors for different metabolic pathways 
overlap widely [denitrification: –5 to –30‰; anammox: – 
16 or –24‰ (Brunner et al. 2013; Stueken et al. 2016)], 
making it difficult to single out and elucidate the evolution 
of the different redox reactions within the N cycle by this 
method (Fuchsman and Stueken 2021). Alternatively, mo-
lecular dating, which estimates the age of the last common 
ancestor (LCA) of analyzed lineages by comparing their se-
quences based on the molecular clock theory (Yang and 
Rannala 2006), provides an alternative strategy to 

investigate this issue. Briefly, it can estimate the divergence 
timescale of organisms using genetic data while account-
ing for issues like uncertainties in the calibrations and dif-
ferent evolutionary rates among lineages, thereby 
bypassing the paucity and uncertainty of biomarkers and 
other biogeochemical records. On the one hand, because 
anammox is an anaerobic reaction, it is intuitive to assume 
that anammox should originate before the GOE, perhaps 
using nitrite or NO provided by lightning reactions in 
the atmosphere (Ducluzeau et al. 2009). On the other 
hand, it is because of GOE that O2 on Earth rose perman-
ently to a concentration that is biologically meaningful, 
and as a result, (micro-)environments were created in 
the surface ocean that were rich in nitrate/nitrite pro-
duced by aerobic organisms. These redox-stratified condi-
tions may have stimulated the anammox metabolism by 
providing both nitrite and ammonium at the redoxcline. 
In this regard, it could be hypothesized that anammox 
did not arise until the GOE. Here, we ask the question 
when anammox originated. To answer this question and 
to obtain more insights into the evolution of anammox 
bacteria, we compiled an up-to-date genomic dataset of 
Planctomycetes (see supplementary text section 1; 
supplementary dataset S1.1, Supplementary Material on-
line), placed the evolution of anammox bacteria into the 
context of geological events, and investigated genomic 
changes associated with the origin of this ecologically im-
portant bacterial lineage.

Results and Discussion
Monophyletic Origins of Anammox Bacteria and 
Anammox Genes
The anammox bacteria form a monophyletic group 
within the phylum Planctomycetes in a comprehensive 
phylogenomic tree with 881 Planctomycetes genomes 
(supplementary fig. S1, Supplementary Material online). 
The anammox bacteria clade in this phylogenomic tree 
(supplementary fig. S1, Supplementary Material online) 
comprises four known genera including the early- 
branching Ca. Scalindua and Ca. Kuenenia, and the 
late-branching Ca. Jettenia and Ca. Brocadia. It also in-
cludes two novel lineages which we named “basal lin-
eage” (named as Ca. Bathyanammoxibiaceae in a 
recent study [Zhao et al. 2022]) and “hzsCBA-less lin-
eage” (supplementary fig. S1, Supplementary Material
online), both of which have relatively low genome com-
pleteness compared to the other anammox bacteria and 
are represented by metagenome-assembled genomes 
(MAGs) sampled from groundwater (see supplementary 
text section 2.1, Supplementary Material online). Note 
that the absence of hzsCBA in several genomes within the 
“hzsCBA-less lineage” might be ascribed to the loss of these 
genes in evolution or their low genome completeness 
(supplementary fig. S1, Supplementary Material online). 
Because of their shallow (late-branching) phylogenetic 
position, this uncertainty should not affect the inference 
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of the origin of anammox bacteria. Two described genera 
(Ca. Anammoximicrobium and Ca. Anammoxoglobus) do 
not have genomes available by the time of the present study 
(last accessed: April 2021), and are therefore not included in 
the phylogenomic analysis. Furthermore, using the last up-
dated set of 2,077 Planctomycetes genomes (retrieved in 
April 2021) from NCBI, we obtained a consistent topology 
of anammox bacteria phylogeny (supplementary fig. S2, 
Supplementary Material online).

We further built a 16S rRNA gene tree (supplementary 
fig. S3, Supplementary Material online) using the identified 
16S rRNA genes from genomic sequences of anammox 
bacteria and the deposited 16S rRNA gene amplicons in 
SILVA from the class Brocadiae, to which anammox bac-
teria belong (see supplementary text section 2.2, 
Supplementary Material online). Since the anammox bac-
teria with genome sequences in this 16S rRNA gene tree 
(supplementary fig. S3, Supplementary Material online) 
showed a branching order congruent with the topology 
of the phylogenomic tree (supplementary fig. S1, 
Supplementary Material online), and since the 16S rRNA 
gene tree included 913 (clustered from 20,142) sequences 
sampled from a wide array of habitats (marine, sediments, 
man-made reactor, and freshwater and terrestrial ecosys-
tems), the 16S rRNA gene phylogeny, which could better 
capture the diversity of anammox bacteria by including 
uncultured samples, likely encompasses the early- 
branching lineages of anammox bacteria. reconciliation 
(see supplementary text section 2.3, Supplementary 
Material online) of the phylogenies of the genes critical 
to the anammox reaction (hzsCBA) (Kartal, Maalcke 
et al. 2011; Harhangi et al. 2012) and the genome-based 
species phylogenies pointed to a single origin of anammox 
metabolism at the LCA of anammox bacteria 
(supplementary fig. S4, Supplementary Material online). 
The above analyses suggest that our genome datasets 
have encompassed the earliest-branching lineages and 
deep phylogenetic diversity of anammox bacteria, and in-
dicate its monophyletic origin, which agrees with previous 
studies (Schmid et al. 2003; Terada et al. 2011; Hamasaki 
et al. 2018). This result is not surprising, as a complex en-
zyme like hydrazine synthase is unlikely to have multiple 
origins, but it provides a foundation for estimating the ori-
gin of anammox metabolism by estimating the origin time 
of anammox bacteria.

The Evolutionary Origin of Anammox Bacteria 
Coincided with the Rising O2

The paucity of lineage-specific bacterial fossils makes 
dating deep-time microbial evolution very challenging. 
There are two approaches to our knowledge: the 
cyanobacteria-fossil-based approach, where cyanobacteria 
fossils were used as the only calibrations, and the 
mitochondria-based approach, which is based on mito-
chondrial endosymbiosis and can benefit from the abun-
dant eukaryotic fossils as calibrations. We first employed a 
cyanobacteria-fossil-based strategy, a widely used strategy 

in dating deep-time bacterial evolution (Sanchez-Baracaldo 
et al. 2017; Wang et al. 2020). Using the dating scheme C1 
as the major calibration (fig. 1; see supplementary text 
section 3, Supplementary Material online), we dated the ori-
gin of anammox bacteria to 2,117 Ma (95% highest posterior 
density [HPD] interval, 2,002–2,226 Ma). Furthermore, we re-
peated the analysis based on an expanded Planctomycetes 
genomes (Genome set 2; supplementary dataset S1.1, 
Supplementary Material online) and the constraint topology 
inferred with a profile mixture model (LG + C60 + G; 
Genome set 1; supplementary dataset S1.1, Supplementary 
Material online). In general, both analyses based on different 
genome sets resolved consistent topologies (supplementary 
fig. S5, Supplementary Material online) as shown in 
Figure 1. Overall, they gave similar posterior times of the 
LCA of the anammox bacteria at 2,105 Ma (95% HPD: 
1,961–2,235 Ma) or 2,005 Ma (95% HPD: 1,869–2,146 Ma).

Analyses with different combinations of calibrations 
and parameters broadly converge to similar time estimates 
(supplementary fig. S6; supplementary dataset S2.1, 
Supplementary Material online). Specifically, assigning a 
more ancient time constraint as the minimum time bound 
of the total group of oxygenic cyanobacteria, which is 
based on the biogeochemical evidence of the presence 
of O2 at nearly 3.0 Ga (Betts et al. 2018) instead of GOE 
(supplementary dataset S2.1, Supplementary Material on-
line), shifted the posterior dates of the LCA of anammox 
bacteria into the past by ∼22 My (e.g., C6 vs. C12; 
supplementary fig. S6, Supplementary Material online). 
Varying the maximum time bounds of the root by using 
4.5, 3.8, or 3.5 Ga had a minor impact (around 100 My) 
on the time estimates of anammox bacteria (e.g., compar-
ing C1, C3, and C5; supplementary fig. S6, Supplementary 
Material online). Note that the use of these different max-
imum bounds is just to test the impact of different root 
maxima on the posterior dates but does not necessarily 
mean that they are based on solid biological evidence as 
it is difficult to set a convincing maximum age of the 
root (Marshall 2019), that is, the LCA of Planctomycetes 
and Cyanobacteria (see supplemental text section 3.2, 
Supplementary Material online). Another important 
source of uncertainty in date estimates is the choice of 
the clock model (Dos Reis et al. 2016). Though the auto- 
correlated rate (AR) model was less favored than the inde-
pendent rate (IR) model based on the model comparison 
(see supplementary text section 3.3; supplementary 
dataset S2.2, Supplementary Material online), it is worth 
noting that the posterior ages estimated by the AR model 
were 1–12% younger than estimated by the IR model 
(supplementary dataset S2.1, Supplementary Material
online).

While cyanobacteria fossils are the most widely used ca-
librations (and in many times the only calibrations) in bac-
terial molecular dating studies (Battistuzzi and Hedges 
2009; Lin et al. 2017; Wang et al. 2020), there are two im-
portant issues: 1) the available cyanobacterial fossils are 
very rare and 2) cyanobacteria fossils do not provide ap-
propriate maximum calibrations (Wang and Luo 2021). 
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Hence, we also used a recently developed mitochondria- 
based dating strategy (Wang and Luo 2021) to estimate 
the origin time of anammox bacteria. This approach, based 
on mitochondria endosymbiosis, integrates mitochondrial 
lineages as a sister group to Alphaproteobacteria 
(Munoz-Gomez et al. 2022), thus taking the advantages 
of eukaryotic fossils, particularly several maximum calibra-
tions, to improve date estimates. We compiled two gene 
sets (see supplementary dataset S1.4, Supplementary 
Material online), one according to the original 24 
mitochondria-encoded genes used in (Wang and Luo 
2021) (mito24; 6,295 amino acid sites), the other being 
six (mito6; 1,238 amino acid sites) out of these 24 genes 
conserved across the bacterial tree of life (see fig. 2A and 
supplementary text section 3.5, Supplementary Material
online). These analyses showed that the posterior time 
of the LCA of anammox bacteria shifted to the present 
time by 90–500 My (fig. 2), compared with only using 
the cyanobacteria-fossil-based approach (fig. 2). Despite 
the large phylogenetic distance between mitochondrial 
lineages and anammox bacteria, the mitochondria-based 
dating strategy is still valuable by providing additional 
time constraints to the origin of anammox bacteria. For ex-
ample, the “C8 + Euk” scheme effectively constrained the 
time estimates compared to using a single maximum 
bound in C8 (fig. 2B). Furthermore, the posterior dates ob-
tained by incorporating eukaryotic fossils (“C8 + euk” and 
“C10 + euk”) displayed less variation across calibration 
schemes (C8 and C10) based on cyanobacterial fossils 
(fig. 2B). However, we observed less differences in posterior 
ages between C1 and “C1 + euk ”, as well as between C3 
and “C3 + euk” (fig. 2B). This is likely due to the use of a 
maximum constraint to Node2 in C1 and C3 (Node2 cali-
bration: 3.0–2.32 Ga) but not in C8 and C10 (Node2 cali-
bration: >2.32 Ga). In other words, the benefit of 
including time maxima from eukaryotic lineages might 
be maximized if no maximum time constraints are applied 
to bacterial lineages. Strictly speaking no appropriate max-
ima are available for cyanobacteria although some kinds of 
maxima were often imposed in previous studies on cyano-
bacteria evolution. Hence, it is important to note that, in 
our study, setting a maximum age of the total group 
cyanobacteria in some dating schemes is just to show 
the importance of having maximum ages in constraining 
the posterior ages of anammox bacteria. In general, the 
broadly consistent time estimates between analyses using 
only cyanobacterial and using both mitochondrial and 
cyanobacterial calibrations highlight an origin of anammox 
bacteria roughly around or shortly after the GOE.

Besides, there remains a possibility that there are un-
sampled or even extinct lineages of anammox bacteria 
that diverged earlier than all anammox bacteria analyzed 
in the present study. This scenario, if true, hints that the 
first anammox bacterium could have originated before 
the occurrence of the LCA of sequenced anammox bac-
teria but later than their split from the sister non- 
anammox lineage (Node X in fig. 1; up to 2,600 Ma). 
Actually, a pre-GOE origin of anammox bacteria was also 

obtained by applying a larger minimum age (3.0 Ga) 
(Crowe et al. 2013; Cardona 2019; Fournier et al. 2021) 
to the total group of oxygenic cyanobacteria based on 
only cyanobacteria fossils (C8–C13 in supplementary fig. S6, 
Supplementary Material online), or by using the 
mitochondria-based strategy (fig. 2B). Accommodating 
the above uncertainties, our analyses suggest that the ori-
gin of anammox bacteria, and hence the origin of ana-
mmox, most likely falls into the 2.7–2.0 Ga interval, or 
more generally, around the early Proterozoic. Running 
MCMCTree analysis with no sequence data showed differ-
ent distributions of time estimates for both the clade of 
anammox bacteria and the four calibration points 
(supplementary fig. S7, Supplementary Material online), 
suggesting that sequence data are informative for our mo-
lecular clock analysis. Besides, we estimated similar origin 
times of anammox at around 2.1 Ga (the AR model) or 
2.3 Ga (the IR model; see supplementary fig. S8, 
Supplementary Material online) with a denser taxon sam-
pling shown in supplementary fig. S2, Supplementary 
Material online (Genome set 2; see supplementary 
dataset S1.1, Supplementary Material online). For this ana-
lysis, we used a penalized likelihood-based dating algo-
rithm (Sanderson 2002) which is very time-efficient on 
such large phylogenomic datasets. Note that unlike 
Bayesian molecular dating software, the likelihood-based 
method we used only makes point estimations for the 
node ages (no standard deviation), thereby not allowing 
for fully appreciating the uncertainties in age estimates 
and any inference based on that. In general, the above re-
sult that two independent methods (Bayesian and 
likelihood-based) employing distinct numbers of genomes 
(2,077 vs. 85) estimates a similar origin time of anammox 
bacteria suggests that taxon sampling may not affect our 
dating analysis.

The Geochemical Context of the Origin of Anammox 
Bacteria
We speculate that the timing of the origin of the anammox 
metabolism is linked to the increasing availability of nitrite 
in surface environments, because ammonium was likely 
present in the deep anoxic ocean throughout the 
Precambrian (Stueken et al. 2016; Yang et al. 2019) and 
therefore presumably not a limiting substrate. The first 
abiotic source of nitrogen oxides on the early Earth, includ-
ing NO and nitrite, would have been lightning reactions 
between N2 and CO2 in the Archean atmosphere 
(Kasting and Walker 1981; Wong et al. 2017). A prior study 
suggested that this process led to micromolar levels of ni-
trite in seawater (Wong et al. 2017), and the supply of NO 
may have been even higher, considering that it is the initial 
reaction product of lightning (Kasting and Walker 1981; 
Wong et al. 2017). This implies the possibility of an earlier 
origin of anammox bacteria. In fact, an intriguing hypoth-
esis is that NO-dependent anammox (Hu et al. 2019) is an-
cestral to all anammox bacteria and arose before the 
appearance of significant nitrite levels with the GOE, 
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perhaps driven by the lightning source of NO. However, 
the original estimates of the lightning-derived flux of nitro-
gen oxides may have been based on perhaps unrealistically 

high amounts of CO2 (Charnay et al. 2017). Furthermore, 
to our knowledge, there has been no isotopic evidence 
in the early Archean rock record prior to 3 Ga for the 
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FIG. 2. (A) The chronogram of the Anammox lineage estimated by mitochondria-based dating analysis. The time tree was estimated based on the 
calibration set “C1 + Euk” and sequence alignments of the 24 mitochondria-encoded proteins at the amino acid level (6,295 amino acid sites). 
The vertical grey bar represents the period of the GOE from 2,500 to 2,320 Ma. The calibration constraints are marked with orange texts: the LCA 
of Planctomycetes and Cyanobacteria (Root), the total group of oxygenic Cyanobacteria (Node2), the total group of Nostocales (Node3), the 
total group of Pleurocapsales (Node4), the total group of Bangiales (crown group of red algae) (Node5), the total group of Florideophyceae 
(Node6), the total group of mosses (crown group of Embryophyta) (Node7), and the total group of eudicots (crown group of angiosperms) 
(Node8). The color strip next to the label represent the major lineages of analyzed genomes. The filled and empty squares, respectively, represent 
the presence and absence of particular genes used in molecular dating analysis. The six genes selected to comprise the mito6 gene set are re-
presented by blue squares. (B) The posterior times of anammox bacteria estimated using cyanobacteria-based and mitochondria-based dating 
analyses. The calibration sets starting with C represent the calibration sets with cyanobacterial calibrations, while those starting with Euk re-
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The detailed constraints of calibrations and time estimates are provided in supplementary dataset S2.1, Supplementary Material online.
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presence of a significant nitrite or nitrate reservoir in the 
early ocean (Stueken et al. 2015; Koehler et al. 2019; 
Ossa Ossa et al. 2019), and it is conceivable that any nitro-
gen oxides that were supplied to the ocean by lightning 
were rapidly reduced to ammonium or N2 by ferrous 
iron, possibly even abiotically (Summers and Chang 
1993; Brandes et al. 1998). Hence, although a background 
lightning flux of nitrogen oxides almost certainly existed, 
to our knowledge, there seems little evidence that it could 
supply a reliable metabolic substrate for early life. 
Furthermore, it is important to note that our phylogenetic 
results are not supportive of this hypothesis since the 
NO-utilizing anammox bacteria discovered to date are 
affiliated with phylogenetically shallow lineages from 
Ca. Kuenenia and Ca. Brocadia (fig. 1). To our knowledge, 
there have been no studies reporting the ability of using 
NO as the sole electron acceptor in any other lineages of 
anammox bacteria. Hence, if NO-dependent anammox 
would have been present in the LCA of anammox bacteria, 
it was not clear why it was lost in all other anammox bac-
teria which resulted from multiple independent losses of 
the trait, a scenario apparently not favored from an evolu-
tionary perspective (as shown by the arrows in 
supplementary fig. S2, Supplementary Material online). 
There are also anammox bacteria that are capable of using 
hydroxylamine as an oxidant; however, this molecule is a 
highly reactive compound and is usually considered as 
an intermediate in the nitrogen cycle, thereby rendering 
it a less important compound from the perspective of geo-
logical timescales. We are unaware of any non-biological 
sources of hydroxylamine. Taken together, our results are 
inconsistent with an Archean emergence of the anammox 
metabolism driven by lightning-derived nitrogen oxides. 
Instead, our results are most parsimoniously explained 
by the appearance of more significant nitrite/nitrate reser-
voirs around the time of the GOE.

The first transient appearances of nitrite/nitrate- 
dependent metabolisms are captured by the sedimentary 
nitrogen isotope record in late Mesoarchean soils at 3.2 Ga 
(Homann et al. 2018) and in Neoarchean shallow-marine 
settings at 2.7 and 2.5 Ga (Garvin et al. 2009; Godfrey 
and Falkowski 2009; Koehler et al. 2018). These observa-
tions may reflect local and/or temporally restricted oxygen 
oases (Anbar et al. 2007; Lalonde and Konhauser 2015). 
Widespread nitrite/nitrate availability is inferred for the 
Paleoproterozoic (2.4–1.8 Ga), that is, in the immediate 
aftermath of the GOE (Zerkle et al. 2017; Kipp et al. 
2018; Luo et al. 2018). Importantly, O2 is necessary, al-
though a trace amount is feasible, to extant nitrifying or-
ganisms for the oxidation of ammonium to nitrite and 
nitrate (Lehtovirta-Morley 2018; Cheng et al. 2019; 
Ranjan et al. 2019). We noticed that a recent study 
(Kraft et al. 2022) reports the ability of the model 
ammonia-oxidizing archaeal species (Nitrosopumilus 
maritimus) to continue ammonia oxidation after consum-
ing all supplied O2 by NO disproportionation to generate 
O2, but the underlying genetic pathway is not known, 
making it difficult to extrapolate this mechanism to any 

other ammonia-oxidizing organisms. Hence the rise of oxy-
gen almost certainly triggered the growth of the nitrite/ni-
trate reservoir, and therefore potentially provided one of 
the key substrates for anammox bacteria. We note that 
also NO would have become more abundant after the 
GOE, because it is an intermediate product in nitrification 
and denitrification (Stanton et al. 2018). This would put 
the possibility of NO-driven anammox back on the table. 
However, NO levels in seawater are highly variable, and 
so nitrite would likely have been a more reliable substrate. 
In any case, it would not violate our conclusion that the 
appearance of anammox in the Paleoproterozoic was 
linked to the GOE and directly or indirectly to the rise of 
marine nitrite. It has been shown that a low concentration 
of nitrite significantly decreases the rate of N removal by 
anammox bacteria in reactors (Zhang et al. 2017; Li, 
Zhuang et al. 2020). In modern OMZ in the Bay of 
Bengal, which may to some extent serve as analogs for 
the Paleoproterozoic redox-stratified ocean, the concen-
tration of nitrite, instead of ammonium, was proposed as 
the rate-limiting factor to the anammox metabolism 
(Bristow et al. 2017). These imply that the rise of nitrite, 
which is driven by the rise of O2, could have facilitated 
the appearance of anammox bacteria in the early 
Proterozoic.

In modern ocean, nitrite concentration is generally very 
low, but it reaches a primary peak (10–1000 nM) around 
the base of the photic zone and a secondary peak with 
even higher levels (at the μM level) at the core of OMZ 
(Buchwald et al. 2015; Zakem et al. 2018). Although it is 
commonly mentioned that modern OMZ resembles the 
primordial ocean (Lyons et al. 2009), we argue that the ni-
trite levels found in modern OMZ are unlikely representa-
tive of the primordial ocean before GOE. Nitrites have 
different sources in these two peaks: it is mainly derived 
from aerobic ammonia oxidation carried out primarily 
by ammonia-oxidizing archaea (AOA) in the photic zone 
but nitrate respiration in OMZ (Dalsgaard et al. 2012). 
As noted above, nitrification could have appeared by at 
least 2.7 Ga, as indicated by nitrogen isotope evidence 
for local accumulation of nitrate in surface ocean waters 
(Canfield et al. 2010; Stueken et al. 2016; Zerkle et al. 
2017). Accordingly, nitrate, the terminal product of aerob-
ic nitrification, was unlikely sufficiently available before 
GOE to fuel nitrate respiration and thus cannot drive 
the accumulation of nitrite.

A recent study inferred that the LCA of AOA dates back 
to ∼2.3 Ga and first appeared on land, driven by increasing 
O2 concentrations in the atmosphere at that time, and that 
the expansion of AOA from land to the ocean did not occur 
until nearly 1.0 Ga (Ren et al. 2019). If true, this hints at a 
dominant role of ammonia-oxidizing bacteria (AOB) in 
early ocean, before 2.3 Ga. Consistent with this idea, the 
vast majority of the early-branching lineages of anammox 
bacteria (Ca. Scalindua) and the sister Planctomycetes 
lineages of the anammox clade in the phylogenomic tree 
(fig. 1) are found in marine or groundwater habitats. 
Likewise, a recent study (Zhao et al. 2022) in silico surveyed 
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its occurrence in different environments and reported that 
the majority of them is derived from groundwater and mar-
ine ecosystems. Furthermore, in the 16S rRNA gene tree 
which represents a greater diversity than the phylogenomic 
tree, marine lineages still account for the majority of the 
earliest-branching lineages of anammox bacteria 
(supplementary fig. S3, Supplementary Material online). 
Thus, it seems likely that the LCA of anammox bacteria ori-
ginated in the marine realm where AOB thrived first. The 
above arguments, although speculative, tentatively suggest 
that the nitrite demand for anammox had been readily 
met by GOE by taking advantage of the significant amount 
of O2 newly available, which is broadly consistent with our 
molecular dating results suggesting an origin of anammox 
shortly before or after the GOE.

Genomic Changes Potentially Related to Anammox 
Metabolism and Habitat Adaptation upon the Origin 
of Anammox Bacteria
We further explored the genomic changes characterizing 
the origin of anammox bacteria (see supplementary text 
section 4, Supplementary Material online). This includes 
the gains of the aforementioned genes that directly partici-
pate in anammox, namely hzsCBA, hdh, and hao. The cur-
rent view of the anammox metabolism posits that 
electrons consumed by anammox for carbon fixation are 
replenished by the oxidation of nitrite to nitrate by nitrite 
oxidoreductase (NXR) (Kartal and Keltjens 2016), which 
was inferred to be acquired upon the origin of anammox 
bacteria (fig. 3). Moreover, multiple auxiliary genes for N 
assimilatory pathways including N regulatory protein 
(glnB), assimilatory nitrite reductase large subunit (nirB), 
transporters like amt (ammonium), nirC (nitrite), and 
NRT family proteins (nitrate/nitrite), were also gained at 
the origin of anammox bacteria (fig. 3). However, genes 
for nitrogen-related dissimilatory pathways encoding ni-
trite reduction to NO (nirK or nirS) and to ammonium 
(nrfAH), respectively, were likely acquired after the origin 
of anammox bacteria (fig. 3). Anammox occurs at the 
membrane of anammoxosome, an organelle predominant-
ly composed of a special type of lipid called ladderane, 
which helps maintain the proton motive force during 
the anammox metabolism (Moss et al. 2018). Although 
the biosynthetic pathway of ladderane is yet to be charac-
terized, a previous study (Rattray et al. 2009) predicted 34 
candidate genes responsible for the synthesis of ladderane 
lipids, four of which were potentially acquired during the 
origin of anammox bacteria (see supplementary text 
section 4.2, Supplementary Material online; fig. 3).

Anammox bacteria occur in anoxic habitats and exhibit 
low oxygen tolerance (Zhang and Okabe 2020). 
Accordingly, the likely acquired peroxidases include cyto-
chrome c peroxidase (Ccp), which could scavenge hydro-
gen peroxide in the periplasm (Van Vliet et al. 2002), 
and the most prevalent peroxidase (Johnson and Hug 
2019), thioredoxin-dependent peroxiredoxin (AhpC). 
Besides, the desulfoferrodoxin (Dfx), which functions as 

superoxide reductase (SOR) to reduce superoxide to 
hydrogen peroxide and which is broadly distributed 
among anaerobic bacteria (Johnson and Hug 2019), was 
likely acquired during the origin of anammox bacteria 
(fig. 3). Another acquired gene is fprA, which encodes 
flavo-diiron proteins that scavenge O2.

Investigating other metabolisms that were also acquired 
upon the origin of anammox bacteria allows reconstruct-
ing the coeval ecology. Our data show that sat (fig. 3), 
which encodes sulfate adenylyltransferase for assimilatory 
incorporation of sulfate into bioavailable adenylyl sulfate, 
as well as aprAB and fsr (fig. 3) encoding dissimilatory sul-
fite reductase, were acquired upon the origin of anammox 
bacteria (fig. 3). Unlike other Planctomycetes, anammox 
bacteria are generally autotrophs that use the Wood– 
Ljungdahl pathway for carbon assimilation (Kartal, 
Keltjens et al. 2011). Consequently, they potentially lost 
many genes involved in carbohydrate utilization (fig. 3). 
The metabolic loss is further strengthened by the enrich-
ment analysis where the genes predicted to be lost by 
the LCA of anammox bacteria are enriched in pathways in-
volving hydrolase activity, intramolecular oxidoreductase 
activity and carbohydrate kinase activity (fig. 3; see Data 
availability).

Additionally, iron is a vital element for HZS (Dietl et al. 
2015) and HDH (Akram et al. 2019), and in vitro studies 
revealed that increased iron concentrations can promote 
the growth of anammox bacteria (Bi et al. 2014). The an-
cient oceans are thought to have been ferruginous (high 
iron availability) according to sedimentary records of iron 
speciation across several coeval marine settings from the 
Archean through most of the Proterozoic (Poulton and 
Canfield 2011), meaning that large amounts of soluble 
iron would have been available for anammox bacteria. 
Interestingly, a series of iron-related genes to make use 
of the abundant iron from the environment were likely 
acquired upon the origin of anammox bacteria, such as 
fur, petBC, CCsAB, and ahbABCD (fig. 3). As we know, 
nearly all known iron acquisition genes were regulated 
by the gene fur (Hantke 2001). Subsequently, the ac-
quired iron could form iron-containing proteins, specific-
ally cytochrome, which are encoded or regulated by the 
acquired genes petBC, CCsAB, and ahbABCD (Kartal and 
Keltjens 2016). Furthermore, we identified that the 
gene Bfr that encodes the oligomeric protein, bacteriofer-
ritin involved in the uptake and storage of iron (Keren 
et al. 2004) was likely acquired during the origin of ana-
mmox bacteria (fig. 3), which may help to hoard iron in 
settings where iron became locally sparse, such as along 
euxinic (sulfide-rich) or oxic marine margins in the 
Paleoproterozoic (Poulton et al. 2010). A recent study 
highlights the vital role of bacterioferritin to the ana-
mmox regulation (Peng et al. 2022). It is thought that 
the appearance of euxinic margins around the time of 
the GOE trapped iron that upwelled from the deep 
ocean, leading to the demise of iron oxide deposits 
(i.e., banded iron formations) (Konhauser et al. 2017). 
Our results tentatively support this model, if the 
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microenvironments that those primordial anammox bac-
teria colonized were located near the euxinic–oxic inter-
face where nitrite and ammonium were available, while 
upwelled iron was titrated out of the water column by 
freely dissolved hydrogen sulfide.

Taken together, the timelines and corresponding gen-
omic changes of anammox bacteria provide implications 
for the physiological characteristics of descendant 
anammox bacteria and the origin of other nitrogen- 
transforming pathways in the context of an estimated 
evolutionary timeline of anammox bacteria. For example, 

genomic data reveal that canonical denitrification genes 
radiated across the tree of life after the GOE (Parsons 
et al. 2021), and the gains (supplementary fig. S9, 
Supplementary Material online) of genes nrfAH for dissimi-
latory nitrate reduction to ammonium at the 
late-branching lineages (Ca. Brocadia and Ca. Jettenia) at 
around 800 Ma (fig. 1) are consistent with the scenario 
when the nitrite/nitrate availability was increased by the 
Neoproterozoic Oxygenation Event (Ader et al. 2014). 
The time estimate and genomic changes of the anammox 
bacteria have gone some way towards enhancing the 
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FIG. 3. The phyletic pattern of ecologically relevant genes in the comparison between anammox bacteria and non-anammox bacteria. Solid cir-
cles at the nodes indicate the ultrafast bootstrap values in 1,000 bootstrapped replicates. Note that copy number difference is not indicated since 
most genes displayed here are present as a single copy in genome except a few exceptions like hao (see supplementary dataset S1.5, 
Supplementary Material online for the table summarizing the copy number of each gene). The phylogenomic tree on the left was constructed 
with 887 genomic sequences described in supplementary text section 2.1. Those Planctomycetes genomes not used for comparative genomics 
analyses are collapsed into grey triangles, and the numbers of collapsed genomes are labeled next to the triangles. The target group and reference 
group for comparative genomic analysis are within an orange or blue box, separately. For each genome, the genome completeness estimated by 
CheckM is visualized with a color strip and labeled besides leaf nodes. The right next color strip represents the type of genomic sequences used in 
our study including MAGs and whole-genome sequencing (WGS) from either enriched culture sample or isolate. The filled and empty circles, 
respectively, represent the presence and absence of particular genes in corresponding genomes. For gene clusters, only genomes with at least half 
of the members of the gene cluster are indicated by a filled circle. The classifications of annotated genes are labeled above the gene names. 
hzsCBA, hydrazine synthase subunits C, B, and A; hdh, hydrazine dehydrogenase; hao, hydroxylamine dehydrogenase; nxrAB, nitrite oxidoreduc-
tase subunits A and B; nirK, copper-containing and NO-forming nitrite reductase; nirS, cytochrome NO-forming nitrite reductase; nrfAH, 
ammonia-forming nitrite reductase subunits A and H; glnB, nitrogen regulatory protein P-II; nirC, nitrite transporter; NRT, nitrate/nitrite trans-
porter; amt, ammonium transporter; kuste2805, 3603, 3605–3606, proposed genes relative to the synthetic pathways for ladderane at Rattray 
et al. (2009); cbiG, cobalt-precorrin 5A hydrolase; cbiD, cobalt-precorrin-5B(C1)-methyltransferase; cbiOMQ, cobalt/nickel transport system; 
AhpC, peroxiredoxin; Ccp, cytochrome c peroxidase; dfx, superoxide reductase; fprA, H2O-forming enzyme flavoprotein; CcsAB, cytochrome c 
maturation systems; petB, Cytochrome b subunit of the bc complex; petC, Rieske Fe-S protein; ahbABCD, heme biosynthesis; sat, sulfate ade-
nylyltransferase; aprAB, adenylylsulfate reductase, subunits A and B; fsr, sulfite reductase (coenzyme F420); higB-1, toxin; higA-1, antitoxin; 
mnhABCDEG, multicomponent Na+/H+ antiporter; fdhAB, formate dehydrogenase subunits A and B; nuo(A-N), NADH-quinone oxidoreductase; 
ndh(A-N), NAD(P)H-quinone oxidoreductase; nqrABCDEF, Na+-transporting NADH:ubiquinone oxidoreductase; rnfABCDEG, Na+-translocating 
ferredoxin:NAD+ oxidoreductase; atp(A-H), F-type H+-transporting ATPase; lacAZ, beta-galactosidase; melA, galA, alpha-galactosidase; ebgA, 
beta-galactosidase; galK, galactokinase;, fructokinase; fruK, 1-phosphofructokinase; rhaB, rhamnulokinase; rbsK, ribokinase; araB, 
L-ribulokinase; xylB, xylulokinase; kdgK, 2-dehydro-3-deoxygluconokinase; GALK2, N-acetylgalactosamine kinase; cah, cephalosporin-C deacety-
lase; argE, acetylornithine deacetylase; nagA; N-acetylglucosamine-6-phosphate deacetylase; HDAC11, histone deacetylase 11.
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understanding of the physiological characteristics of mod-
ern anammox bacteria and the historical N cycle.

We further explored the sources of the genes acquired by 
anammox bacteria discussed above. The majority of them 
formed a monophyletic lineage (supplementary fig. S10, 
Supplementary Material online). We classified the evolu-
tionary sources of these genes into the following three types: 
horizontal gene transfer (HGT), ancient duplication, and de 
novo birth. A significant proportion of genes were clustered 
with other Planctomycetes. These genes might be vertically 
descended from ancestral planctomycetes or horizontally 
transferred from other Planctomycetes lineages to ana-
mmox bacteria which, we temporarily classified as 
within-Planctomycetes HGT. Moreover, a majority of the 
remaining genes seemed to be gained by HGT from a differ-
ent phylum (supplementary text section 4.4; supplementary 
fig. S10, Supplementary Material online). Particularly, 
Firmicutes, Proteobacteria, and Euryarchaeota are the three 
most important donor lineages of these horizontally trans-
ferred genes (supplementary fig. S10, Supplementary 
Material online). This highlights the role of HGT in enhan-
cing nitrogen assimilation and helping establish the ana-
mmox pathway in the origin of anammox bacteria. Note 
also that the inference could be affected by the limited reso-
lution of gene phylogenies, for example, gene cbiD from ana-
mmox bacteria is clustered with a small group of Firmicutes, 
but most Firmicutes branched somewhere else. Thus, cau-
tion needs to be taken when interpreting the result.

Caveats and Concluding Remarks
In the present study, we link an estimated evolutionary 
timeline of anammox and geological context of early 
Earth on a simplified view that nitrite-dependent ana-
mmox is ancestral to anammox bacteria. However, there 
are several limitations. First, dating the bacterial evolution 
has many challenges, which, among others, include the 
paucity of appropriate fossils, and a long evolutionary dis-
tance between anammox bacteria and cyanobacteria 
(Wang and Luo 2021). In addition to the traditional 
cyanobacteria-based approach, our study takes the advan-
tages of eukaryotic fossils by implementing a recently de-
veloped mitochondria-based approach to provide more 
robust time estimates (Wang and Luo 2021). 
Nevertheless, due to the large evolutionary distance be-
tween mitochondrial lineages and Planctomycetes, we ap-
plied only six mitochondria-encoded orthologs shared by 
both mitochondrial lineages and Planctomycetes. 
Moreover, it is worth pointing out the metabolism called 
feammox, a process where ferric instead of nitrite is taken 
as the electron acceptor for ammonia oxidation. Both 
feammox and anammox can anaerobically convert ammo-
nia into dinitrogen (Li et al. 2018), but the former process is 
supposed to be carried out by Acidimicrobiaceae from the 
Actinobacteria phylum (Wan et al. 2022; Zhu et al. 2021) 
and under anaerobic environments (Yang et al. 2021). 
Likewise, a recent experimental study (Shaw et al. 2020) 
proposed extant anammox bacteria as electroactive 

organisms and suggested the feasibility to utilize graphene 
oxides and man-made metallic electrodes mimicking me-
tal oxides as the electron acceptor. However, the lack of 
detailed molecular mechanism hampers the inference of 
its evolutionary history. In any case, metal oxides such as 
Fe2O3 or MnO2 also became more abundant in the 
Neoarchean to Paleoproterozoic, that is, around the time 
of the GOE (Johnson et al. 2016; Konhauser et al. 2017), 
and hence even if these oxides were used as substrates 
for anammox, it would not violate our overall conclusion 
that the GOE played a primary role in driving the evolution 
of this metabolic pathway. However, it is also worth noting 
that metal oxides are solids and thus require extracellular 
electron transfer (Shaw et al. 2020). An entirely intracellu-
lar metabolism, using dissolved nitrite, may be more likely 
to evolve first, especially given that oxygen became bio-
available in the ocean around the same time (see above).

Another important aspect to highlight about our ap-
proach is that, our analysis began with inferring the LCA of 
anammox bacteria based on the presence of hzsCBA, a com-
mon strategy in phylogenetic studies. It is important to note 
that such an enzyme complex encoded by multiple genes 
might originate in different genomic backgrounds and were 
presented together in a suitable genomic background later 
in evolution. This scenario, if true, indicates that the appear-
ance of any single subunit of hzsCBA genes, which could not 
perform hydrazine synthesis, should pre-date the LCA of ana-
mmox bacteria. Nevertheless, the alternative hypothesis 
would not affect our inference and following analysis since 
we only focus on the inferred ancestor of extant anammox 
bacteria, a strategy commonly used in modern phylogenetic 
analysis. These alternative possibilities, although not affecting 
the molecular clock analysis, should be carefully considered 
when making inference based on our estimated evolutionary 
timeline of anammox bacteria.

Here, using molecular dating and comparative genom-
ics approaches, we link the emergence of an obligate an-
aerobic bacterial group, which drives the loss of fixed N 
in many environments, to the rise of O2, and highlight their 
evolutionary responses to major environmental distur-
bances. Apparently, the GOE opened novel niches for 
the origin and subsequent expansion of diverse aerobic 
prokaryotes such as AOA and AOB, which in turn facili-
tated the origin of other bacterial lineages, including 
some anaerobes like the anammox bacteria, by providing 
the resources for their energy conservation. Our results 
open up the possibility that a significant proportion of 
the Proterozoic nitrite budget was consumed by anammox 
bacteria, and that the sedimentary nitrogen isotope record 
might be influenced by their activity. Our findings may 
have implications for Proterozoic climate, because N2O 
has previously been invoked as an important greenhouse 
gas at that time (Buick 2007), but a relatively higher con-
tribution of anammox bacteria to the marine nitrogen cy-
cle may have hampered N2O production (Li, Ling et al. 
2020). Finally, our study suggests that the impacts of the 
GOE go well beyond aerobic prokaryotes. We therefore 
conclude that molecular dating is a likely feasible approach 
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to complement isotopic evidence for resolving the time-
line of biological evolution and for providing additional 
constraints on climate models of the distant past.

Materials and Methods
Overall, we compiled two genome sets and one 16S rRNA 
gene set in our study (supplementary dataset S1.1, 
Supplementary Material online). A phylogenomic tree 
(supplementary fig. S1, Supplementary Material online) was 
generated based on the concatenated alignment of 120 ubi-
quitous proteins (bac120; supplementary dataset S1.3, 
Supplementary Material online) proposed for tree inference 
by the Genome Taxonomy Database (Parks et al. 2017). All 
published genomic sequences (952 in total) affiliated with 
the phylum Planctomycetes in NCBI Genbank up to 
December 2019 were retrieved (supplementary dataset S1.2, 
Supplementary Material online). To further examine whether 
the patterns obtained with this Planctomycetes dataset hold 
the same, we further constructed an expanded set of 
Planctomycetes genomes by retrieving a total of 2,077 
Planctomycetes genomes released by April 2021 at 
Genbank (supplementary fig. S2, Supplementary Material on-
line; see Data availability). Key anammox genes hzsCBA and 
hdh were identified against manually curated reference se-
quences by BLASTP. For each gene, identified protein se-
quences were aligned using MAFFT (v7.222) (Katoh and 
Standley 2013) and the alignments were refined by trimAl 
(v1.4) (Capella-Gutierrez et al. 2009). All phylogenies were 
constructed by IQ-tree (v1.6.2) (Nguyen et al. 2015) with sub-
stitution models automatically selected by ModelFinder 
(Kalyaanamoorthy et al. 2017) and branch support assessed 
with 1,000 ultrafast bootstrap replicates. Note that the con-
straint topologies for dating analysis (fig. 1; supplementary 
fig. S5, Supplementary Material online) were inferred with 
the profile mixture model (LG + C60 + G) which better ac-
commodates across-site heterogeneity in deep-time evolu-
tion. Following manual curation, four well-recognized 
genera and two separate lineages of anammox bacteria 
were highlighted with different colors, and the presence 
of key genes were annotated with filled symbols beside 
the labels (supplementary fig. S1, Supplementary Material
online). Furthermore, the phylogenomic tree was generated 
with similar methods using 16S rRNA genes identified from 
downloaded genomes and those retrieved from the SILVA 
database (supplementary fig. S3; supplementary dataset 
S1.3, Supplementary Material online). All trees (including 
phylogenomic and 16S trees) in our study were visualized 
with iTOL (Letunic and Bork 2019). The specific parameters 
of the above analysis are shown in supplementary text 
section 2, Supplementary Material online.

Molecular dating analysis was carried out using the pro-
gram MCMCTree from the PAML package (4.9j) (Yang 
2007). In our study, 13 calibration sets constructed with 
different time constraints of the root and three calibration 
nodes within the cyanobacteria lineage were used (see 
supplemental text section 3.2, Supplementary Material on-
line). The topology constraint for dating analysis was 

generated using 85 genomes, which were sampled from 
the phylogenomic tree of phylum Planctomycetes (see 
supplemental text section 3.1, Supplementary Material on-
line), and the model LG + C20 + F + G under posterior 
mean site frequency (PMSF) approximation (Wang et al. 
2018). To perform dating analysis, clock models and differ-
ent calibration sets were compared in 26 schemes (see 
supplemental text section 3; supplementary dataset S2.1, 
Supplementary Material online) (Dos Reis et al. 2016; 
Reis et al. 2018). For each scheme, the approximate likeli-
hood method (Dos Reis and Yang 2011) of MCMCTree 
were conducted in duplicate with identical iteration para-
meters (burn-in: 10,000; sample frequency: 20; number 
of sample: 20,000). The convergence of each scheme 
was evaluated by comparing the posterior dates of two 
independent runs (see Data availability). With the updated 
genome set 2 (supplementary dataset S1.1, Supplementary 
Material online), we repeated the taxon sampling process 
and generated an alternative phylogeny for dating analysis 
(supplementary fig. S5, Supplementary Material online) 
using LG + C20 + F + G model (C20: 20 classes of site- 
specific amino acid profiles) under PMSF approximations. 
Similarly, we also generated another phylogeny for dating 
analysis using the same genome set as used in Figure 1 but 
with the profile mixture model (LG + C60 + G) which uses 
60 classes of amino acid profiles (Le et al. 2008). Note that 
the missing parameter + F would not significantly change 
the results since it only adds another profile amino acid 
calculated from the original data. These two dating ana-
lyses were conducted with the dating scheme C1 (IR mod-
el). Moreover, we performed likelihood-based dating 
analyses (Sanderson 2002) (supplementary fig. S8, 
Supplementary Material online) using the phylogenomic 
tree (supplementary fig. S2, Supplementary Material on-
line) and the calibration C1 (see Data availability) imple-
mented in ape (Paradis and Schliep 2019).

The phylogenetic differences between gene trees and the 
species tree were reconciliated by GeneRax (Morel et al. 
2020) with unrooted gene tree as input and automatically 
optimized duplication, transfer, loss (DTL) rates. For each 
gene identified from the genome set 2 (supplementary 
dataset S1.1, Supplementary Material online), we used a 
species tree comprised by all anammox bacteria pruned 
from the phylogenomic tree (supplementary fig. S2, 
Supplementary Material online) as the reference. We used 
recommended parameters including SPR strategy, undated 
DTL model and a maximum radius of five.

For comparative genomics analysis, the protein-coding 
sequences were annotated against KEGG (Kanehisa and 
Goto 2000), CDD (Lu et al. 2020), InterPro (Mitchell et al. 
2019), Pfam (El-Gebali et al. 2019), TIGRFAM (Haft et al. 
2001) and TCDB (Saier et al. 2016), individually (see 
supplemental text section 4, Supplementary Material on-
line). Following annotations, the potentially gained/lost 
genes between groups (anammox bacteria vs. non- 
anammox bacteria; an anammox bacterial genus vs. all 
other anammox bacteria) were statistically tested using 
two-sided fisher’s exact tests. Finally, the resulting P-values 
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were corrected with the Benjamini–Hochberg FDR (false 
discovery rate) procedure. Specifically, genes with corrected 
P-values smaller than 0.05 and with larger ratio in the study 
group were defined as gained genes, and genes with cor-
rected P-values smaller than 0.05 and with smaller ratio in 
the study group were defined as potentially lost genes. 
Those potentially gained/lost genes were summarized for 
their detailed functions (see Data availability).

Supplementary Material
Supplementary data are available at Molecular Biology And 
Evolution online.
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