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Abstract: As a key technology in wireless sensor networks (WSNs), target tracking plays an essential
role in many applications. To improve energy efficiency, clustering is widely used in tracking
to organize the network to achieve data fusion and reduce communication costs. Many existing
studies make dynamic adjustments based on static clusters to track moving targets. However, the
additional overhead caused by frequent cluster reconstruction and redundant data transmission is
rarely considered. To address this issue, we propose a tracking-anchor-based clustering method
(TACM) in this paper, in which tracking anchors are introduced to provide activation indications
for sensors according to the target position. We use the rough fuzzy C-means (RFCM) algorithm to
locate the anchors and use the membership table to activate sensors to form a cluster. Since there
are no sending, receiving, and fusing data tasks for anchors, they are lightly burdened and can
significantly reduce the frequency of being rotated. Moreover, the state of cluster members (CMs)
is scheduled using the linear 0–1 programming to reduce redundant transmissions. The simulation
results demonstrate that, compared with some existing clustering methods, the proposed TACM
effectively reduces the energy consumption when tracking a moving target, thus prolonging the
network lifetime.

Keywords: wireless sensor networks; target tracking; clustering method; energy efficiency

1. Introduction

Recently, the increased performance of radio and embedded systems and their de-
creased price have led to the widespread use of Wireless Sensor Networks (WSNs) [1–3].
WSNs commonly consist of numerous sensors in the surveillance area, and the sensing
unit of a sensor can sense environmental information (e.g., wind speed, temperature, hu-
midity, solar radiation, etc.) [4,5]. The sensing data are transferred to the sink through a
wireless communication unit in the sensor. Users can access these sensing data through
wireless communication devices, such as terminal hosts, personal computers, smart devices,
and laptops.

As one of the critical technologies of WSNs, target tracking is the basis for applications
such as military surveillance, wildlife observation, biomedical health care, and vehicle
tracking [6,7]. Generally, the main aim of target tracking in WSNs is to detect the existence
of the target and to estimate its future position based on historical data of the target
movement. In the tracking process, most of the sensors spend a significant amount of time
in a state in which they do not participate actively in communications [8]. In this case, we
can turn off the radio module of these sensors to save energy. Therefore, how to schedule
the state of the sensors in the network to achieve efficient data transmission is a crucial
issue for target tracking applications.

To deal with this problem, clustering methods are widely used as a means to facilitate
cooperative data processing and manage the resources of sensor networks [9–11]. As shown
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in Figure 1, in clustering methods, sensors are organized into clusters, and each cluster
has a cluster head (CH) and multiple cluster members (CMs). CMs send sensing data
to CH, and CH is responsible for collecting data, performing data fusion, and sending a
report toward the sink. In this way, not only can the energy consumption in the network be
reduced to achieve the purpose of prolonging the network lifetime, but also the scalability
is robust, and the network delay can be reduced.
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Figure 1. Basic cluster structure in the network.

Existing studies have designed different clustering methods for target-tracking-based
applications, among which the most representative one is forming an on-demand cluster
between static clusters [12]. As shown in Figure 2, when the target is located between static
clusters, only one on-demand cluster is activated for work, and the data can be transmitted
to one CH. The activated cluster is adaptively formed according to the position of the
moving target, and the prediction mechanism is used to calculate the target trajectory.
One of the CH will fuse the data from CMs in the on-demand cluster to provide the
system with a more accurate target position estimate. Although this structure has better
energy efficiency than traditional clustering methods, it cannot avoid periodic cluster
reconstruction caused by the reselection of CHs. The reason is that the CH not only has to
give CMs activation instructions according to the target position, but also undertakes the
task of sending, receiving, and fusing data. The death of CH means that the network needs
to update the role of the CH in time, and this short-cycle CH rotation will cause additional
communication overhead for the system.

To solve the above drawback of existing methods, we propose a novel clustering
method for target tracking, in which we abandon the static clustering structure and decen-
tralize the tasks undertaken by CHs. The main objective is to avoid the communication
overhead caused by the periodic reconstruction of the cluster structure and to prolong the
network lifetime. The major contribution of this paper is summarized as follows:

• Tracking anchors are introduced to indicate sensor activation based on the target
position. Since there is no task of sending, receiving, and fusing data, the tracking
anchor consumes little energy and therefore does not need to be reselected periodically.

• Using the rough-fuzzy C-means (RFCM) algorithm, we can determine the anchor
location, and a membership table will be built according to the sensors’ membership
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to the lower approximate and boundary region of anchors. The membership table can
help the system activate the appropriate sensor set.

• The activated sensor set temporarily forms a dynamic cluster, and the CH is selected
employing delay broadcasting. The linear 0–1 programming is used to schedule the
state of CMs to reduce the transmission of redundant data in the cluster.
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The proposed method generates a dynamic cluster with an energy-efficient topology
by decentralizing the tasks of CHs. The uniqueness of the method is that tracking anchors,
rather than CHs, are selected in the network. The tracking anchors consume little energy
and do not need to be rotated frequently. There will be only one temporarily-formed cluster
in the network at each time step, and the CH is also temporarily determined by sensor
volunteering. In this way, the tasks of the CH will be undertaken by different sensors so
that load balancing can be achieved in the network. Moreover, CMs will be scheduled into
appropriate states so that the CH will not collect redundant sensing data.

The remainder of this paper is structured as follows: Section 2 describes some related
works. The network model and the energy model are presented in Section 3. Section 4 is
dedicated to the presentation of our proposed clustering method. Section 5 provides the
simulation results. Finally, Section 6 concludes this paper.

2. Related Work

With the rapid development of WSNs, the way of the network organization has at-
tracted the attention of many scholars. However, compared with other typical network
structures, the clustering method is a more effective method to reduce the energy con-
sumption of sensor nodes and prolong the network lifetime. In this section, we provide a
description of previous works related to clustering methods for target tracking in WSNs.

Wang et al. proposed a hybrid cluster-based target tracking (HCTT) distributed
mobility management protocol to solve the boundary problem [12]. By integrating an on-
demand cluster into the static cluster structure, HCTT enabled nodes belonging to different
clusters share information, thereby ensuring smoothly target tracking and achieving a
tradeoff between energy consumption and local sensor collaboration.

In [13], Hu et al. proposed a dynamic clustering method called EEAOC, in which
the CH re-adjustment and cluster migration technique were used to activate appropriate
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clusters for continuous event monitoring via a 2-logical-overlapping clustering scheme. In
EEAOC, the cluster topology can be switched according to the target movement with low
communication overhead.

The authors in [14] proposed a dynamic clustering protocol (EEDC) for target tracking
and continuous event monitoring. In EEDC, the overlapping cluster structure was dy-
namically reconstructed to adapt to the changing location of targets, and candidate cluster
heads were selected according to rough fuzzy C-Means (RFCM) and genetic algorithm
(GA). EEDC can significantly reduce system energy consumption as compared to other
clustering protocols.

To provide a good tradeoff between energy efficiency and tracking accuracy, a convolution-
based method was presented to quantify the relationship between the cluster parameters
and the energy-quality metrics of the tracking system in [15]. The proposed method can
provide Pareto-optimal parameters to obtain the optimal energy efficiency of a cluster-based
WSN tracking system.

In [16], Feng et al. proposed a dynamic chain-based sensor collaboration (DCBC)
method for target tracking, which has a good reference value for clustering methods.
Compared to clustering, chain structures involve a large number of unnecessary nodes and
unacceptable transmission delays. Therefore, in DCBC, the authors dynamically adjusted
the network topology by pruning and adding nodes instead of re-establishing the chain
structure. The experimental results showed that DCBC can reduce and balance the average
energy consumption of the network.

Ahmad et al. proposed an energy-efficient adaptive clustering scheme (EEAC) for
target tracking with adaptive cluster size to keep minimal energy consumption while
obtaining high tracking accuracy [17]. In EEAC, the authors presented a model for the
prediction of target location and described how adaptive clusters were formed and how
CHs were selected. It was observed that EEAC required less energy consumption as
compared to other approaches.

In [18], aiming to solve the problem of collaborative tracking, Arienzo et al. laid out
a cluster-based architecture to address the limitations in computational power, battery
capacity, and communication capacities of sensors. Target tracking was formulated as a
cross-layer optimization problem for the purpose of maximizing the utility function in
the cluster. Experiments indicated that the proposed architecture can reduce the energy
consumption caused by node selection in a dynamic scenario.

Wang et al. proposed a hierarchical clustering node collaborative scheduling (HC-
NCS) protocol in [11]. In HCNCS, nodes were classified into sensing disks for sensing and
transmitting data. Node rotation was used to balance energy consumption, and cooper-
ative sensing can improve the coverage area of sensing disks. In this way, the coverage
performance of the network can be improved, and energy consumption can be balanced.

Using state prediction technology and the Particle Swarm Optimizer (PSO), Bhagat
designed a tracking mechanism to achieve coordination between nodes and continuous
target tracking in [19]. The author used state prediction technology to calculate the target
trajectories and used PSO to optimize the network topology during tracking to save
overall overhead. The experimental results indicated that the proposed method has good
performance in energy management and can effectively prolong the network lifetime.

In [20], a fault-tolerant sensor scheduling (FTSS) approach was proposed to reduce the
target loss probability for target tracking in WSNs. In FTSS, the fault-tolerant domain was
introduced, and the binary Gray Wolf Optimizer (bGWO) was used to activate the optimal
tracking node set. Experiments indicated that reducing the target loss probability by FTSS
can not only improve the tracking accuracy but also save the extra energy consumption
brought by the recovery mechanism.

A dynamic cluster task allocation scheme is proposed in [21] to perform collaborative
task allocation for target tracking in WSNs. By considering energy consumption and resid-
ual energy balance, an energy efficient model was proposed. Moreover, a tracking accuracy
model based on the area-sum principle was presented using triangulation localization.
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The two models were combined to establish a CM selection method based on the genetic
algorithm (GA) for multi-target tracking. Simulation results indicated the high energy
efficiency of the model and the validity of GA in CM selection.

In [22], Fu et al. proposed an improved algorithm, LEACH-MTC, which was based on
the LEACH protocol. First, using the extended Kalman filter (EKF), the future location of the
moving target can be obtained. After that, combining the state prediction of the target and
the performance of collaborative monitoring, an elliptical monitoring area was constructed
to align with the moving direction of the target. It was shown that LEACH-MTC could
increase the survival number of working nodes and reduce network energy consumption.

Soderlund et al. proposed a rapid and efficient clustering method in [23]. The main
aim is to achieve optimal sensor allocation for localization uncertainty reduction in target
tracking. By maximizing the expected posterior of the moving target, the derived cluster
was used as the search space for optimal sensor allocation. The proposed method was
indicated to be superior in terms of achieving greater uncertainty reduction.

Considering failures happening in target tracking applications, a novel fault-tolerant
target tracking (FTTT) protocol based on clustering was proposed in [9]. In FTTT, a
static clustering method was presented, which can facilitate the CH recovery procedure.
Moreover, redundant nodes were scheduled into a sleep state to reduce the cost of fault
tolerance. FTTT has been proven to effectively recover faulty nodes and reduce the total
energy consumption in the network.

In [24], Liao et al. proposed a clustering method for target tracking with distributed
information compression called CTCI, in which a novel cooperative positioning approach
was developed to keep the information of measurement uncertainties. Moreover, CTCI
allowed the active nodes to use information compression for energy conservation. The
Bayesian framework was utilized to provide a complete distribution of target position
estimation. Simulation results indicated that CTCI achieved a balanced performance in
terms of tracking accuracy, transmission data size, and energy consumption.

In general, almost all the clustering methods for target tracking focus on solving
the energy consumption issue. Currently, making dynamic adjustments to the classical
static cluster structure is the most effective way to track moving objects. CHs need to
schedule their CMs to perform operations such as cluster migration and on-demand cluster
formation according to the target position. However, in this way, the workload on the CHs
will be heavy, which may cause their energy to be quickly exhausted. To maintain the
structure, frequent CH rotation and cluster formation cannot be avoided in the network,
resulting in additional communication overhead. This is a common problem of existing
clustering methods which has been rarely paid attention to. Therefore, for the purpose of
improving energy efficiency, we hope to propose a novel clustering method in this paper
to decentralize the workload of CH and reduce the communication overhead caused by
frequent rotation.

3. System Model
3.1. Network Model

In this paper, the network is composed of numerous sensors as well as a sink node. N
sensor nodes are randomly deployed in a M×M monitoring area, and the sink is placed in
the center. The deployed sensor nodes are homogenous, and all have the same capabilities
and limited power source, of the same initial energy, that cannot be recharged or replaced.
Assume that the sink has no energy constraints. We make some basic assumptions as
follows [25,26]:

1. All the sensor nodes are static and do not change their location once deployed.
2. Each node can be identified by its unique ID that differs from other nodes.
3. All the sensors have knowledge of their location according to an equipped GPS.
4. The collisions during transmission are not considered in the network, and the radio

channels are symmetric.
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5. The sensing radius and communication radius of each node are rs and rc, respectively.
Set rc ≥ 2 rs to ensure that all nodes that sense the target can communicate with
each other.

6. The sensing model of the node adopts the Boolean omnidirectional model, which is
given by [27]:

P(sj, tar) =

{
1, dsj ,tar ≤ rS
0, dsj ,tar > rS

, (1)

where P(sj, tar) is the probability that sensor sj can sense the target, and dsj ,tar is the
distance from sensor sj to target. rs is the sensing radius.

3.2. Energy Model

We adopt the same radio model applied in [14,25,28] to calculate the energy consump-
tion. As shown in Figure 3, the energy consumption for transmission contains two parts:
transmitter and receiver. Once the signal is generated by the transmitter, the amplifier will
strengthen it using two different powers according to the transmission distance. Therefore,
the energy model for transmission is divided into the free space model for short-haul
communication and the multipath fading model for long-distance communication.
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The energy ETx used for each node to transmit an l bits package over communication
distance of d is given as follows [14]:

ETx(l, d) =
{

l · Eelec + l · ε f s · d2, i f d < d0
l · Eelec + l · εmp · d4, i f d ≥ d0

(2)

where Eelec denotes the energy consumption to run the transmitter or receiver circuit, ε f s
and εmp denote the amplification coefficient for the free space model and the multi-path
fading model, respectively, and d0 is a threshold distance calculated by [28]:

d0 =

√
ε f s

εmp
. (3)

The energy ERx used for receiving an l bits package can be calculated by [14]:

ERx(l) = l · Eelec . (4)
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4. The Proposed Tracking Anchor Based Clustering Method

In this section, a detailed illustration of a tracking-anchor-based clustering method
(TACM) will be given. TACM contains four phases: tracking anchor selection, node
activation, cluster formation, and state scheduling for CMs. First, the rough-fuzzy C-
means (RFCM) algorithm is used to determine the location of the tracking anchor and
the affiliation of surrounding nodes. Then the membership table is built, and the rules
for node activation are proposed. After that, the activated nodes become the tracking
node set, and the cluster head (CH) is selected by the delay broadcast mechanism. Finally,
using linear 0–1 programming, CMs are scheduled to the appropriate state to reduce
redundant transmissions.

4.1. Tracking Anchor Determination

After being deployed to the surveillance area, sensor nodes remain in the sleep state. To
activate a set of tracking nodes in advance, a certain number of tracking anchors are selected
in the network. Tracking anchors are responsible for sending scheduling instructions to
nearby nodes according to the predicted target position.

First, we determine the number of required tracking anchors. Considering that the sum
of the sensing coverage of all anchors is not less than the surveillance area, we can obtain:

Kπr2
S ≥ M×M , (5)

where K denotes the number of tracking anchors. For energy efficiency, we select as few
anchors as possible while the coverage condition is satisfied. K is given by:

K =

⌈
M×M

πr2
S

⌉
. (6)

After determining the number of anchors, the RFCM algorithm proposed in [29] is
used to perform unsupervised clustering of sensor nodes. K cluster centers obtained after
iteration can be designated as the position of tracking anchors in the network. In RFCM, N
nodes are partitioned into K clusters by minimizing the objective function JRF:

JRF =


ω1 ×A+ ω2 ×B, i f A(βi) 6= ∅, B(βi) 6= ∅

A, i f A(βi) 6= ∅, B(βi) = ∅
B, i f A(βi) = ∅, B(βi) 6= ∅

, (7)

A =
K

∑
i=1

∑
sj∈A(ai)

(µij)
m‖sj − ai‖2 , (8)

B =
K

∑
i=1

∑
sj∈B(ai)

(µij)
m‖sj − ai‖

2 , (9)

where βi denotes the cluster with the anchor ai as the center; A(βi) and B(βi) denote the
lower approximation region and boundary region of cluster βi, respectively; parameters
ω1 and ω2 correspond to the relative importance of the lower and boundary regions, and
ω1 + ω2 = 1; m is the fuzzifier, where 1 ≤ m < ∞, which is introduced to calculate the
relevance of each node to the anchors, rather than assigning it to the nearest anchor. If
the value of m is too large, good clustering cannot be obtained, and if m is too small, the
algorithm is close to the normal hard clustering C-means algorithm; µij is the probabilistic
membership of the sensor sj to anchor ai, and µij ∈ [0, 1]; ‖ · ‖ denotes the distance norm.

In the applied RFCM, each cluster consists of a clear lower approximation region and a
fuzzy boundary region, as shown in Figure 4. The tracking anchor is located at the centroid
of the cluster. There are two important properties about A(βi) and B(βi):
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Property I:
If the sensor sj ∈ A(βi), then xj /∈ A(βk), ∀k 6= i. That is, the sensor sj is contained in

βi definitely.
Property II:
If the sensor sj ∈ B(βi), then sj possibly belongs to βi and potentially belongs to

another cluster.
Sensors located in the lower approximation region and the boundary region have

different influences on the location of anchors. In RFCM, the membership value of sensors
in the lower approximation is fixed to 1, that is, µij = 1 if sj ∈ A(βi). Moreover, the
membership value of the sensors in the boundary region is calculated according to the
relative distance to the anchor:

µij = (
K

∑
k=1

(
dij

dkj
)

2
m−1

)

−1

, i f sj ∈ B(βi) , (10)

where dij and dkj denote the distance from sensor sj to anchor ai and ak, respectively.
The new position of the anchor is calculated based on the weighted average of the lower
approximation and boundary, which is given by Equation (11):

aRF
i =


λ1 × C+ λ2 ×D, i f A(βi) 6= ∅, B(βi) 6= ∅

C, i f A(βi) 6= ∅, B(βi) = ∅
D, i f A(βi) = ∅, B(βi) 6= ∅

, (11)

C =
1

|A(βi)| ∑
xj∈A(βi)

sj , (12)

D =
1
ni

∑
sj∈B(βi)

(µij)
msj , (13)

where
ni = ∑

sj∈B(βi)

(µij)
m , (14)

where |A(βi)| denotes the number of sensors in the lower approximation region. The
position of the anchor depends on the parameter λ1 and λ2, and the fuzzifier m rules their
relative influence. Since sensors in the lower approximation region definitely belong to a
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certain anchor, they are assigned a higher weight λ1 compared to λ2 of the sensors in the
boundary region. Thus, the values are given by 0 < λ2 < λ1 < 1.

The optimization process of RFCM to the objective function JRF is calculated by
Equation (11). Firstly, randomly assign K positions to anchors to form an initial popula-
tion A = {a1, a2, . . . , aK}, and the fuzzy membership values of sensors are calculated
according to (10). These anchors and sensors constitute the initial population. Then, we
sort the membership value of each sensor and obtain the highest value, which is assumed
to be µij, and the second-highest value, which is assumed to be µkj. If (µij − µkj) ≤ δ, we
have sj ∈ B(βi), sj ∈ B(βk), and the sensor sj does not belong to the lower approximation
region of any anchor. Otherwise, if (µij − µkj) > δ, then sj ∈ A(βi). The performance of
RFCM depends on the value of δ, which can be defined by Equation (15):

δ =
1
N

N

∑
j=1

(µij − µkj) . (15)

where N is the total number of sensors, and µij and µkj are the highest and second-highest
membership of the sensor sj, respectively. The value of δ represents the average difference
between the two highest memberships value of all the nodes in the network, which is
dependent on the location of the anchors and the nodes. After determining the region to
which the sensor belongs, the anchor’s position is updated according to Equation (11).

The above steps are repeated until the maximum number of iterations Imax is reached
or the anchor position and membership relationship obtained by the two iterations are

stable, that is
∣∣∣ µij(t)−µij(t−1)

µij(t−1)

∣∣∣ < ε. Both Imax and ε are used as signs to stop the iteration.

Imax can be obtained from the empirical convergence iterations of the RFCM algorithm
in the experiment. ε is the threshold of the change rate of the membership value for two
iterations, generally taking a small value, e.g., ε = 0.01. After obtaining the anchor position
and the membership relationship of sensors, there are two ways to deploy the anchor: if
the environment allows, we can use vehicles, UAVs, etc. to transport additional sensors to
the designated position as anchors. Otherwise, we make the sensor closest to the anchor
position be the anchor.

The algorithm for tracking anchor determination based on RFCM is shown below
(Algorithm 1):

Algorithm 1. Tracking Anchor Determination Based on RFCM

Input: Node Number N, Tracking Anchor Number K
Output: Tracking Anchor Locations, Node Membership
1: Parameter Initialization: Imax, Fuzzifier m, Thresholds δ and ε

2: Initialize Population A = {a1, . . . , ai, . . . , aK}
3: Repeat
4: For Each ai in A do
5: Calculate µij for K anchors and N nodes using Equation (10)
6: End for
7: If µij and µkj be the two highest membership of sj and

∣∣∣µij − µkj

∣∣∣ ≤ δ then

8: sj ∈ A(βi) and sj ∈ A(βk)
9: Else
10: sj ∈ A(βi)
11: End if
12: Modify µij considering lower and boundary regions
13: Compute new anchors as Equation (11)
14: Until I = Imax or |µ(t)− µ(t− 1)| < ε

15: For each sensor in the network do
16: Assigned as a member to the anchors with maximum µ

17: End for
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4.2. Node Activation

Activation of nodes requires scheduling instructions provided by anchors. By using
RFCM, we obtain tracking anchors, along with their lower approximation regions and
boundary regions. According to the membership relationship, we build a membership
table of the anchor for common sensors. The membership table has N rows and K columns,
which refer to N sensors and K anchors, respectively. The value of the j-th row and the
i-th column of the member table is MT(j, i), where MT(j, i) is equal to 0 or 1, indicates that
the sensor sj belongs to ai’s lower approximation region or boundary region. Furthermore,
MT(j, i) = 0 indicates that sj is far away from ai without any membership relationship.

According to the properties mentioned in Section 4.1, sensors can be divided into two
types: one belongs to the lower approximation region of an anchor. Since they do not
belong to any other anchors, they only have one ‘1′ in their rows on the membership table.
Another belongs to the boundary regions of multiple anchors, apparently with multiple
occurrences of ‘1’ in its row.

The activation rules for the sensors are given with the help of the membership table:
A sensor will be activated when it can receive the “Node Activation” messages sent by all
the anchors corresponding to the column with the value “1” in its row. Following this rule,
we specifically analyze two sensor scheduling scenarios in the tracking process:

(1) The target is located in the lower approximation region of a certain anchor. As shown
in Figure 5, only the sensors in the lower approximate region will be activated because
they have received a “Node Activation” message from the only anchor to which
they belong.
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(2) The target is located in the overlapping boundary region of multiple anchors. As
shown in Figure 6, the nodes in the lower approximation regions and the overlapping
boundary region of the two anchors will be activated. The overlapping boundary
region of the two anchors can be used as a transition region to ensure the continuity
of the tracking process.
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4.3. Cluster Formation

We consider the future-position estimation mechanism as technical support, which
is commonly used by traditional dynamic clustering algorithms [8]. As the target moves
in the surveillance area, the tracking anchors near the predicted target position will send
activation messages to sensors. The activated sensors will form a cluster. The CH will be
selected among them using a delayed broadcast message.

Assuming that the target’s next position is predicted to belong to the scheduling region
of some anchors, the sink will send an “Anchor Scheduling” message to them. Note that this
message is relayed by other anchors in the network because most sensors are sleeping. The
anchor receiving the message will broadcast a “Node Activation” message to the nodes in
its lower approximation region and boundary region, as described in Section 4.2. Activated
nodes will broadcast a “Cluster Formation” message by themselves after waiting for a
while. The sensor that broadcasts the message first becomes the CH, and the sensor that
receives the message becomes the CM. The length of delay time is related to the distance to
the target’s predicted position and the residual energy of the sensor, which can be given by:

tdelay = Tmin + (Tmax − Tmin) ∗ (η
d
e
) + Trand , (16)

where Tmin and Tmax denote the minimal and maximum delay timer values; d is the
distance from a sensor to the target; e denotes the residual energy; η is a parameter that can
nondimensionalize distance and energy and Trand is a random delay timer value, which is
set to prevent multiple sensors from becoming CHs at the same time.

In each round, the CMs send sensing data to CH. Then CH will fuse the data and
forward them to the sink. When the target moves out of the current cluster, the system
will activate the sensors to form the next tracking cluster in advance to ensure continuous
tracking of the target. This process continues until the target moves out of the monitoring
range or the network dies.
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4.4. State Scheduling for CMs

To improve the effectiveness of the network, we further schedule the working state
of the CMs in the current tracking cluster. During the tracking process, it is not necessary
for all CMs to send sensing data to CH. Therefore, we can find ways to reduce the energy
consumption caused by redundant data transmission. We first set the activated CMs to
have two working states: sensing state and sensing-transmitting state. The sensor in the
sensing state only has the sensing module turned on and will not send data to the CH. On
the other hand, the sensor in the sensing-transmitting state will sense and transmit data
to the CH. By setting redundant nodes to be in the sensing state, we can reduce energy
consumption and extend network life.

Considering tracking quality and node coverage redundancy, we transform the prob-
lem of determining the optimal working status of CMs into a linear 0-1 programming
problem. We define the variable x to represent the two working states of the CMs:

x =

{
0, sensor works in sensing state
1, sensor works in sensing− transmitting state

. (17)

Apparently, the CMs working in the sensing-transmitting state will consume more
energy than the CMs working in the sensing state because of the data transmission. To
reduce and balance energy consumption, we need to schedule as few CMs as possible to
work in the sensing-transmitting state and ensure that they are the ones with more energy
remaining. Therefore, the objective function F(x) is defined as:

F(x) =
n

∑
j=1

ejxj , (18)

where n is the number of the CMs in the cluster, and ej is the energy currently consumed
by sensor sj. We can achieve the purpose of reducing and balancing energy consumption
by minimizing F(x).

Then there are the constraints. First, it is necessary to ensure that the data transmitted
by the CMs meet the requirements of tracking quality, so the number of CMs in the sensing-
transmitting state should be greater than or equal to the minimum number required in
specific tracking applications, which is defined as n0. The constraint is given by:

n

∑
j=1

xj ≥ n0 . (19)

Moreover, in a large-scale network with randomly deployed nodes, the sensing cov-
erage of some nodes will overlap with each other. When the target sensing source is
generated in the overlapped part, multiple nodes will sense the same signal, and several
identical data packets will be transmitted to CH, resulting in data redundancy. There
will also be competition between nodes for the same communication channel, resulting in
unnecessary energy loss. Therefore, we set the second constraint to ensure that the CMs
in the sensing-transmitting state are not redundant nodes according to the center angle of
the overlapping coverage area being less than 2π, that is, φ(xj) ≤ 2π, so the constraint is
given by:

xj · φ(xj) ≤ 2π . (20)

Regarding φ(xj), according to Equation (20), the calculation is meaningful only when
the node sj is in the sensing-transmitting state, that is xj = 1. To obtain φ(xj), we first set
the sensing area of node sj as Aj. The neighbors of sj are defined as other CMs that are in
the sensing-transmitting state: N

(
xj) = {sk ∈ cluster | xk = 1, k 6= j} . If sj is a redundant

node, it needs to satisfy [30]:

Aj ⊆ ∪
sk∈N (sj)

(Ak ∩ Aj) . (21)
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The overlap of two nodes’ sensing areas can be simplified as a sector, which can be
represented by a central angle, as shown in Figure 7. Therefore, calculating the overlapping
coverage area of a node can be equivalent to calculating the sum of the central angles of the
neighbors covering the node, which is given by:

φ(xj) = ∪
sk∈N (sj)

θAk∩Aj , (22)
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According to Equations (17)–(20), we can define the linear 0–1 programming problem
to be solved as:

min F(x) =
n

∑
j=1

ejxj (23)

s.t.



n
∑

j=1
xj ≥ n0

xj · φ(xj) ≤ 2π

xj = 0 or 1

. (24)

To solve this node state scheduling problem, we adopt the implicit enumeration
method [31]. First, we find a feasible solution tentatively, that is, by selecting q CMs
to be in the sensing-transmitting state, satisfying the constraints. Then we calculate the
objective value of this feasible solution. Assuming F = Q is calculated, we will add it to
the constraints as a filtering constraint, and (24) will become:

s.t.



n
∑

j=1
xj ≥ n0

xj · φ(xj) ≤ 2π
q
∑

h=1
ehxh ≤ Q

xj = 0 or 1

. (25)
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In this way, we have four constraints and enumerate all the 2n solutions and filter out
infeasible solutions using the constraints in (25). For each solution, we substitute it into
each constraint to see if it satisfies the inequalities. If one constraint is not satisfied, the
other constraints do not have to be checked. Due to the increased constraint, the number of
computations can be reduced. During the calculation, if the objective value of a particular

solution is U , and U < Q, then we replace the third constraint in (25) with
q
∑

h=1
ehxh ≤ U .

This improvement of filter conditions can further reduce the amount of calculation. The
optimal solution can be obtained by iterating the above calculation until the value of F
cannot be smaller. The optimal solution denotes the optimal status of the CMs in the cluster.

The intra-cluster state scheduling process is described in Algorithm 2.

Algorithm 2 State Scheduling for CMs

Input: Cluster Member Number n, node in the sensing or sensing-transmitting state x = 0 or 1
Output: Optimal State of Cluster Members
1: Parameter Initialization: Consumed Energy e, Minimum Number of Nodes to Transmit n0
2: Initial Solution: Randomly selecting q CMs to be in the sensing-transmitting state, satisfying
Equation (24), and calculate the objective function value as Q using Equation (23).
3: Add F ≤ Q to the constraints, Equation (24) becomes Equation (25)
4: Enumerate 2n solutions.
5: For each solution
6: If Equation (25) is satisfied then
7: Calculate the objective value by Equation (23) to be U
8: If U < Q then
9: Set Q = U in the third constraint of Equation (25)
10: Else
11: The solution is eliminated.
12: End for
13: The value of Q cannot be smaller, and the optimal solution can be obtained, which denotes the
optimal status of CMs.

Overall, the proposed algorithm works as follows: First, using RFCM, the position of
the tracking anchors and the memberships of nodes are determined. Instead of taking on
the task of sending, receiving, and fusing data, the tracking anchors are only responsible
for broadcasting activation messages to nodes in their lower approximation and boundary
regions when a target is predicted to move nearby. Then, we will maintain a membership
table, in which we record each node’s membership to the anchors. According to the
information provided by the membership table, a node will only be activated when it
has received activation messages from all anchors to which it belongs. After that, the
nodes activated by the tracking anchors will form a dynamic cluster. The CH is selected
using a delayed broadcast related to distance and energy. To reduce redundant data
transmission, we design a sensing state and sensing-transmitting state for CMs and use
linear 0–1 programming to select the appropriate working states for CMs. Finally, the CMs
in the sensing-transmitting state will send data to the CH, and the CH will fuse the data and
forward them to the sink. The workflow of the proposed algorithm is shown in Figure 8.

In the proposed algorithm, tracking anchors play a crucial role in indicating the
activation of tracking nodes, which can be used as a substitute for traditional static CHs.
Since there is no heavy transmission task like the static CHs, the rotation period of the
tracking anchors can be longer. Thus, the communication overhead caused by cluster
structure reconstruction can be saved. Moreover, after the dynamic cluster is formed, we
set two working states for the CMs and do not require all CMs to transmit their sensing
data. In the scheduling process, we try to avoid redundant transmission within the cluster
while meeting the tracking quality requirements. As a result, the proposed algorithm can
further save energy and extend network lifetime.
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5. Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm in the WSN,
and the existing HCTT [12], EEAOC [13], and EEDC [14] algorithms are used in comparison
in the simulation experiments. In HCTT, static clusters and on-demand dynamic clusters
alternately perform the tracking tasks. By scheduling boundary nodes to form an on-
demand cluster, HCTT can solve the problem of limited sensor information sharing between
static clusters. EEAOC is a clustering algorithm with a 2-logical cluster structure. The
affiliation between nodes and different CHs will change according to the movement of
the target. In EEDC, a dynamic cluster capable of omnidirectional tracking is constructed
to cope with the random movement of the target. RFCM and GA algorithms are used to
select on-demand candidate CHs. In general, the above three comparison algorithms are
all energy efficient clustering protocols proposed for target tracking applications in WSNs.
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5.1. Simulation Setup

Simulation experiments were carried out using MATLAB 2016a (MathWorks, Natick,
MA, USA). For the convenience of comparison, we refer to [12–14] to make a comprehen-
sive experiment parameter setting. The parameters that appeared in simulations are listed
in Table 1. A wireless sensor network consisting of 200–500 homogeneous sensor nodes
randomly distributed in 500 m × 500 m square area with identical initial energies is consid-
ered. The sink is placed at the coordinate (250, 250). The sensing range and communication
range of each sensor are identically fixed to 20 m and 40 m. The size of the data packet
is 4000 bits. For the determination of the tracking anchors, the maximum iteration is 300,
and we terminate the iteration when

∣∣∣ µ(t)−µ(t−1)
µ(t−1)

∣∣∣ < ε. The quantity ε is a small value,
controlling the convergence of the membership µ. In our experiments, ε = 0.01, that is, our
results obtained converged to the 0.01 specification level for comparing the two different
methods [32,33]. The simulation lasted for 5000 time steps.

Table 1. Simulation parameters.

Parameters Value

Network Scale (m2) 500 × 500
Node Number 200–500

Sink Coordinates (m) (250, 250)
Initial Energy (J) 1

Eelec (nJ/bit ) 50
ε f s
(

pJ/bit/m2 ) 10
εmp

(
pJ/bit/m4 ) 0.0013

Data Packet Size (bit) 4000
Transmission Round (s) 0.5
Sensing Radius Rs (m) 20

Communication Radius Rc (m) 40
Maximum Iteration Imax 300
Change Rate Threshold ε 0.01

As for the target, we simulate a scenario where the target moves based on a Gauss–
Markov mobility model [34] in the surveillance area. Initially, a random speed and direction
are assigned to each target. At each time step t, the movement parameters of the target are
updated by:

vt = ηvt−1 + (1− η2)v +
√

1− η2vG
t−1 , (26)

θt = ηθt−1 + (1− η)θ +
√

1− η2θG
t−1 , (27)

where vt and θt are the current speed and direction of the target at time t; v and θ are
constants denoting the mean value of speed and direction; vG

t−1 and θG
t−1 are random

variables from a Gaussian distribution, and η ∈ (0, 1) is a parameter that is used to
vary the randomness of target motion. Therefore, the position of the target is calculated
as follows: {

xt = xt−1 + vt−1 cos(θt−1)
yt = yt−1 + vt−1 sin(θt−1)

. (28)

According to Equation (28), we can obtain the future position of the target in simulation.
Not limited to this, different target motion models and prediction methods can be used in
practical applications.

5.2. Performance Analysis

We consider multiple vital metrics to measure the energy efficiency of different clus-
tering methods for target tracking. First, we compared the residual energy of sensor nodes,
and the average results of this metric are shown in Figure 9. Moreover, Figure 10 presents
the total energy consumption during network operation. It can be seen that our proposed
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clustering method TACM displays better results in both metrics compared with other
methods. At the 1000-th time step, the average residual energy is 0.64 joules for TACM,
0.57 joules for EEDC, 0.43 joules for EEAOC, and 0.14 joules for HCTT. Moreover, the total
energy consumption is 145 joules for TACM, 169 joules for EEDC, 224 joules for EEAOC,
and 343 joules for HCTT. The energy consumption of TACM is the lowest, which is achieved
by introducing the tracking anchors to liberate nodes from the heavy workload of serving
as fixed CHs. HCTT and EEAOC make structural adjustments on the static cluster as the
target moves, so the communication overhead caused by CH rotation cannot be avoided.
Although EEDC does not require static clusters as support, the selection of candidate CHs
in an omnidirectional manner will result in energy waste, and the results show that its
energy consumption is higher than that of TACM.
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Figure 10. Experimental results for total energy consumption in the network.

In Figure 11, the number of activated sensor nodes in the network is presented, and
Table 2 gives the average values in 1000 time steps. It can be seen that the clustering
methods that do not count on static cluster structure, such as EEDC and the proposed
TACM, need to activate fewer sensors than HCTT and EEAOC in the process of target
tracking. The reason is that, in HCTT, all the nodes in the nearby static cluster need to
remain active to establish an on-demand cluster as CHs instructed while the target moves
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across clusters. In EEAOC, the logical overlapping cluster needs to be switched when
the target crosses clusters, so the node is activated to interact. Moreover, compared with
TACM, more nodes are activated in EEDC because its introduced candidate CHs need to
be activated on standby for tracking tasks.
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Table 2. Average number of activated nodes in 1000 time steps.

Clustering Methods Average Number of Activated Nodes

HCTT 21.3
EEAOC 15.6
EEDC 12.3
TACM 10.5

We calculate the energy mean square deviation of the living nodes to measure the
energy distribution in the network, and the results are shown in Figure 12. The energy
mean square deviation is 2.4483× 10−4 for TACM, 2.085× 10−4 for EEAOC, 1.7181× 10−4

for EEDC, and 1.2395× 10−4 for HCTT. It can be seen that the slope of TACM is smaller
than that of the other three methods, indicating that the load balancing performance of
TACM is the best. The reason is that the tracking anchors in TACM are only responsible for
node activation, not the task of sending and receiving data, so they have a light workload.
Moreover, CH is temporarily selected by volunteering according to the position of the target
and the residual energy of the node so that the node serving as CH will not consume too
much energy. In comparison, the CHs in EEAOC and HCTT cannot be changed in time like
TACM, resulting in significant differences in energy consumption between nodes. Although
the CH in EEDC is also temporarily selected, in the process of performing the candidate
CHs selection process, the original CH undertakes additional information collection and
calculation tasks, so the node serving as the CH will have a heavier burden than TACM.

At last, we use the network lifetime to make an overall measure of the energy efficiency
of the four clustering methods. Figure 13 shows the network lifetime with different numbers
of nodes, and (a), (b), and (c) are the simulation results measured based on metrics called
First Node Dies (FND), Half of the Nodes Die (HND), and Last Node Dies (LND). It can be
seen that the proposed TACM method shows the best performance in all three metrics. In
addition to avoiding frequent CH rotation and balancing node workload, as mentioned
earlier, TACM also schedules the transmission status of CMs in the cluster. Specifically, only
a part of the nodes that meet the tracking requirements with a miniature sensing overlap
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area between each other can transmit data. In this way, the transmission of redundant data
can be reduced, thereby further saving energy and prolonging the network lifetime.
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5.3. Threats to Validity

In this subsection, we discuss some threats to the validity of our conclusions. In the
surveillance area of the network, we use the RFCM algorithm to determine the position of
tracking anchors and the membership of nodes. Based on an ideal assumption, the anchors
can be placed directly at the calculated position using transport, which is environmentally
demanding and requires additional resources. Therefore, in the experiments, we designate
the sensor node closest to the calculated position to work as the tracking anchor. However,
due to slight changes in anchor positions, some nodes will be classified in the wrong
positions, which leads to the risk of unreasonable clustering or even isolated nodes in the
network. In future work, we will continue to improve this work to compensate for the
performance loss due to anchor position bias.

6. Conclusions

Aimed at the tracking requirements for the moving target in WSNs, we propose a
novel clustering method named TACM in this paper. Abandoning the static clusters formed
by selecting CHs in the surveillance area, we introduce tracking anchors as indicators of
sensor activation. Tracking anchors do not undertake the work of data transceiver and
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fusion so that they can avoid the overhead caused by frequent rotation. We utilize the
RFCM algorithm to determine the location of the anchors and then build a membership
table based on whether the sensor is located in the lower approximation region or boundary
region. After that, sensors are activated to form a cluster according to activation rules
and the membership table. The activated sensors will voluntarily become the CH using
a distance and energy related delay broadcast. Since the CH in TACM is determined
temporarily, there is no overload problem that exists with static CHs, and the load balance
can be guaranteed. Furthermore, we set sensing and sensing-transmitting states for CMs
in the cluster. Using linear 0–1 programming, we schedule the optimal work states for
CMs. On the premise of meeting the tracking requirement, the CMs in the sensing state
do not need to send data to the CH. In this way, the energy waste caused by redundant
transmission can be reduced. The proposed method is compared with some fundamental
and state-of-the-art existing clustering methods, and the simulation results indicate that
TACM can achieve a more efficient data transmission process and can significantly reduce
the overall energy consumption and prolong the network lifetime.
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