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Abstract: Black phosphorus (BP), a single elemental two-dimensional (2D) material with a sizable
band gap, meets several critical material requirements in the development of future nanoelectronic
applications. This work reports the ambipolar characteristics of few-layer BP, induced using 2D
transparent hexagonal boron nitride (h-BN) capping. The 2D h-BN capping have several advantages
over conventional Al2O3 capping in flexible and transparent 2D device applications. The h-BN
capping technique was used to achieve an electron mobility in the BP devices of 73 cm2V−1s−1,
thereby demonstrating n-type behavior. The ambipolar BP devices exhibited ultrafast photodetector
behavior with a very high photoresponsivity of 1980 mA/W over the ultraviolet (UV), visible, and
infrared (IR) spectral ranges. The h-BN capping process offers a feasible approach to fabricating
n-type behavior BP semiconductors and high photoresponse BP photodetectors.

Keywords: black phosphorus (BP); hexagonal boron nitride (h-BN); thin film transistors (TFTs);
n-type; photodetector

1. Introduction

Two-dimensional crystals have emerged as a class of materials that may impact future
electronic technologies, in which, BP, with a puckered structure and a one-atom-thick sheet
morphology, was recently discovered by isolating the material from layered BP crystals [1].
In order for phosphorene to be stable and, unlike graphene, to have an inherent, direct, and
appreciable band gap, it depends on the number of layers and the in-layer strain and that it
is significantly larger than the bulk value of 0.31–036 eV [2]. The direct band gap is 1.7 eV in
monophosphorene [3,4]. These properties, together with a remarkably high hole mobility
of 1000 cm2V−1s−1 and an on/off ratio of 105 at room temperature [5], make BP suitable
for semiconductor applications such as photodetectors [6], solar cells [7], and digital
electronics [8]. Recently, a BP single detector spectrometer, enabled by the strong stark effect
and the tunable light-matter interactions, showed remarkable potential in the reconstruction
of the spectra of both monochromatic and broadband light [9]. The Alberto G. Curto group
also demonstrated tunable and stable infrared emission from defect-engineered few-layer
BP [10]. However, asymmetries between the hole and electron transport characteristics in
BP devices [11,12] complicate the use of BP alone in complementary logic circuits, in which
the availability of only p-type semiconductor characterize BP devices. Thus, the need for
symmetric charge transport materials has created a serious bottleneck in complementary
metal oxide semiconductor (CMOS) application development, in which n-type transistors
are needed to reduce static power consumption in logical circuits and systems. Several
modulations have been reported, such as Al2O3 capping [13], depositing Cs2CO3 and
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MoO3 layers on top of BP [12] in order to achieve the electron- and hole-doping effect. Our
group also reported the first air-passivated ambipolar BP transistor by applying benzyl
viologen [14]. These methods modulated the surface of BP effectively but obstructed the
high photodetection performance of BP TFTs, due to blocking or destructing the surface
of BP. Nevertheless, these approaches are not suitable for high photoresponse BP TFT
applications because these protective layers render BP limited while n-type BP with high
photoresponsivity is required.

The combined method using surface charge transfer doping (HfO2 or/and MgO) and pas-
sivation (h-BN) was developed, which increases electron mobility [15]. The combined method
with BN protection and subsequent thermal annealing provides an effective strategy for a
record-long lifetime, with 80% of photoluminescence intensity remaining after 7 months [16].
Bilayer phosphorene FET devices were fabricated of a van der Waals heterostructure with BN,
which exhibits tightly bound excitons and trions with two-fold anisotropy [17]. The combined
methods can either increase electron mobility or maintain long lifetime photoluminescence,
which is unilateral and complex. However, by preventing a decrease in the photoresponse of
BP TFTs with n-type behavior, the high transparency property of h-BN becomes apparent,
which is also smooth and flat [12,18]. Moreover, 2D h-BN is highly flexible and easy to transfer
to other 2D materials using the dry transfer method [19].

In this work, we report a method for converting few-layer BP field-effect transistors
(FETs) from p-type to n-type. We report on the achievement of ambipolar characteristics in
BP devices by capping with transparent flexible h-BN. The h-BN capping suppressed the
degradation of BP upon exposure to ambient conditions, thereby transforming p-type BP to
ambipolar BP. Due to transparent h-BN capping, the photoresponsivity of the fabricated BP-
based photodetectors increased to 1980 mA/W, much higher than the photoresponsivities
reported previously [6]. Our findings demonstrate that BP with transparent h-BN capping
offers a robust material for use in transparent high-efficiency optoelectronic and logical
electronic applications.

2. Materials & Methods
2.1. Device Fabrication Process

First, we exfoliated few-layer BP flakes from bulk BP crystals using Scotch tape and
transferred them onto a highly p-type-doped silicon substrate capped with a 300 nm SiO2
layer under Ar in a glove box. The photoresist polymethyl methacrylate (PMMA) layer
was immediately spin-coated onto the samples to protect the flakes from reacting with air.
E-beam-lithograph (EBL) patterns were applied to the samples, and Ti/Au layers were
deposited (20 nm/50 nm). The samples after the lift-off step are shown in Figure 1a. A
transparent h-BN cap was also applied to BP, as shown in Figure 1a. The technique was
used to tune the BP FET behavior from p-type to ambipolar.
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2.2. Electrical Properties and Photoresponse Measurements

The electrical performances of the devices were measured using a probe station under
vacuum conditions and a semiconductor parameter analyzer (Agilent 4155C). A xenon
arc lamp connected to a monochromator with a mechanical chopper was used as a light
source during the photoresponse measurements. The photocurrent was measured using a
monochromatic light with wavelength from 200 to 800 nm and an illumination diameter of
60 µm. The power of the light was measured by an optical power meter. For our device,
the generated photocurrent can be easily observed when the light is on.

3. Results and Discussion

As we know, BP crystals are not stable at ambient conditions [2,5,11,20]. Environmen-
tal chemicals, such as H2O or O2, can easily defect BP, which is also reported by recent
theoretical studies [20]. The comparison of different areas on the same exfoliated BP flake
was explored; significant roughness develops without protection, while parts of BP under
graphene or h-BN do not show any noticeable surface changes, according to the acquired
AFM images and as confirmed by the Raman spectroscopy spectrum [13]. The passivated
area has clear Ag1, B2g and A2g peaks as expected, which rules out reactions under air.
Thus, capping BP using transparent h-BN effectively improved electron transport in BP
devices better than other techniques [12,13,21–23] by blocking acceptors derived from the
air or environment.

These effects rendered BP suitable for transparent photodetector and logical circuit
applications. An optical microscope (OM) image of few-layer BP FET capping with h-BN is
shown on the left side of Figure 1a. The right side of Figure 1a shows the Raman spectra
of an exfoliated few-layer BP where the BP signature peaks are observed at 364, 438, and
465 cm−1, corresponding to the three vibrational modes (A1

g, B2g, and A2
g) of the BP

crystal lattice [24–26], respectively. In addition, the h-BN Raman spectrum peak located
at 1370 cm−1 corresponding to the vibrational modes (E2g) is shown in the inset. In this
work, all the Raman spectra were measured after device fabrication, including the chemical
treatment steps, the electrical measurements, and the photoresponse tests, to prevent BP
devices under fabrication from being damaged by the Raman spectroscopy. Final device
structure is depicted in Figure 1b after using polydimethylsiloxane (PDMS) to stack h-BN
onto the top of the BP devices.

The output characteristics of the device (hBN1) are shown in Figure 2a. The excellent
linear Ids–Vds curve suggested good contact between the metal electrodes and the BP flakes.
Figure 2b presents the ambipolar transfer characteristics typical of h-BN-capped or pristine
p-type BP devices, in which the device performances were initially measured prior to h-BN
capping. In contrast with the clear p-type transistor behavior, the red line reveals ambipolar
characteristics, in which both electron and hole currents were observed. This transition
was attributed to effective acceptor blocking from the air and chemicals. Figure 2d shows
the equilibrium state; BP transistors always show p-type behavior. To enhance electron
transport, h-BN was used to cap the BP devices and avoid acceptor formation in the
presence of air or environmental chemicals, such as H2O or O2, as shown in the bottom
of Figure 2f. Thus, after transparent h-BN capping, the Fermi level was positioned closer
to the conduction band than it was prior to treatment, as shown in the top of Figure 2e,
indicating an improvement in the electron transportation. Ambipolar characteristics were
also obtained from the h-BN-capped BP devices (hBN2, hBN3) in Figure S1.

The Fermi level was dragged toward higher energies to the conduction band, which
enhanced electron transport and reduced hole transport. The field effect carrier mobility
(µ) was calculated according to the equation:

µ = ( 1/Cox)×
(
d Ids/d Vg

)
× (Lch/Wch)/Vds (1)

where Cox = 1.15 × 10–8 F/cm2 for 300 nm SiO2, Lch is the channel length, and Wch is
the channel width. The electron mobility in the BP devices increased to 73 cm2V−1s−1, a
record-high electron mobility, to our knowledge.



Membranes 2021, 11, 952 4 of 8Membranes 2021, 11, x FOR PEER REVIEW 4 of 8 
 

 

 
Figure 2. Electrical characteristics of h-BN-capped BP FET devices and mechanisms underlying the formation of ambipolar 
BP. (a) Output curves obtained from h-BN-capped devices, as a function of the gate bias. The inset shows an OM image 
of the device. The scale bar indicates 5 µm. (b) Transfer curves obtained from the pristine and h-BN-capped BP devices. 
(c,d) A band diagram of the pristine BP FET under flat band and equilibrium state. (e) The equilibrium state of the band 
diagram for h-BN-capped devices. (f) Schematic diagram describing the n-doping function of the h-BN capping layer on 
the BP layer. The h-BN protected the BP from acceptor adsorbates, such as water or oxygen, present in the ambient air. 

The Fermi level was dragged toward higher energies to the conduction band, which 
enhanced electron transport and reduced hole transport. The field effect carrier mobility 
(µ) was calculated according to the equation: μ =  1 C⁄ d I d V⁄ L W⁄ V⁄  (1)

where Cox = 1.15 × 10–8 F/cm2 for 300 nm SiO2, Lch is the channel length, and Wch is the 
channel width. The electron mobility in the BP devices increased to 73 cm2V–1s–1, a record-
high electron mobility, to our knowledge. 

A rapid broadband photoresponse was observed among the few-layer BP FETs, and 
this response was used in ultrafast and wide spectrum response photodetectors [6]. This 
letter describes the high-performance photodetector properties of ambipolar BP FETs. The 
photocurrent generated upon monochromatic light illumination (wavelength ranging 
from 200 to 900 nm) was measured at different Vgs values, revealing clear photocurrent 
generation as shown in Figure S2. We first measured the photoresponses widely across 

Figure 2. Electrical characteristics of h-BN-capped BP FET devices and mechanisms underlying the formation of ambipolar
BP. (a) Output curves obtained from h-BN-capped devices, as a function of the gate bias. The inset shows an OM image
of the device. The scale bar indicates 5 µm. (b) Transfer curves obtained from the pristine and h-BN-capped BP devices.
(c,d) A band diagram of the pristine BP FET under flat band and equilibrium state. (e) The equilibrium state of the band
diagram for h-BN-capped devices. (f) Schematic diagram describing the n-doping function of the h-BN capping layer on
the BP layer. The h-BN protected the BP from acceptor adsorbates, such as water or oxygen, present in the ambient air.

A rapid broadband photoresponse was observed among the few-layer BP FETs, and
this response was used in ultrafast and wide spectrum response photodetectors [6]. This
letter describes the high-performance photodetector properties of ambipolar BP FETs.
The photocurrent generated upon monochromatic light illumination (wavelength ranging
from 200 to 900 nm) was measured at different Vgs values, revealing clear photocurrent
generation as shown in Figure S2. We first measured the photoresponses widely across
the UV, visible, and IR wavelength ranges, and we evaluated two important parameters of
photodetector performance: the photoresponsivity (R) and the external quantum efficiency
(EQE). R and EQE were evaluated by calculating the respective values:

R = Iph/P, (2)

EQE = hcR/e × 100, (3)

where R is defined as the photocurrent generated per power unit of incident light across
the effective area, h is Planck’s constant, c is the speed of light, Iph is the photocurrent
|Ilight−Idark|, P is the power intensity per unit area, and e is the unit charge. Figure 3a
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shows that R and EQE reached 1980 (mA/W) and 250, respectively. The photoresponsivity
of our device was much higher than the values reported previously in BP photodetec-
tors [6], even higher than the values reported in TMDS-based photodetectors [27–32]. Our
results were comparable to those obtained from certain 2D-based p-n junctions [19,33,34].
The figures of merit of the photodetectors are compared in Table 1. Figure 3a,b show a
plot of the photocurrent as a function of the incident power under different gate voltages,
indicating the reliability of the device for photocurrent generation. After h-BN capping,
Figure 2e shows that the Fermi level was dragged upwards to the conduction band of BP,
which narrows the barrier for electron transport in the BP channel. In addition, under
the illumination, the photo-generated charge carriers in the BP channel could undergo
a thermally assisted tunneling process passing through the barrier to metal, which con-
tributes to the increase of channel current. Together with the tuned Fermi level and the
transparent property of h-BN, the photo-induced electrons could penetrate the barrier
more easily, producing the enhanced photoresponse for h-BN capping devices, as shown
in Figure 3d. That is, due to the transparent property of h-BN and the modified Fermi level
from the h-BN capping, photo-induced electrons can easily transport across the barrier.
Thus, high performance BP photo-detectors are obtained. In, addition, the time-dependent
photoresponse characteristics of the BP photodetectors under different Vds and Vg con-
ditions are shown in Figure 3c. The fast photoresponse time of BP is shown in Figure S3,
which indicates no degradation in the response time. This apparent photodetector behavior
suggests that BP is a promising material for photoelectronic applications.
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Figure 3. The application of the BP FETs in a photodetector. (a) The photoresponsivity of the BP device. (b) The photocurrent
as a function of the incident illumination power, which shows a monotonic increase in the photocurrent. (c) The pulse
photocurrent response dependent on the drain and gate bias up to 50 s. (d) The fast photocurrent response due to transparent
h-BN capping effects on the barrier at the contact junction under bias application with light illumination.



Membranes 2021, 11, 952 6 of 8

Table 1. Comparison of figures of merits for photodetectors based on 2D materials.

Material
Measurement Conditions

R (mA/W)
Resp.

Time (ms)
Spec-Tral

Range Reference
Vds (V) Vgs (V) λ (nm) P

>1L BP 1
−40

500 30 µW
10,000

<14 UV-Vis-IR This work0 510
60 753

>1L BP 0.05 0 633 60 nW 76 100 Vis-IR Ref. [21]
>1L BP 0.02 0 640 10 nW 5 1 Vis-IR Ref. [6]

1L MoS2 8 −70 561 150 pW 880 k 4000 Vis Ref. [35]
1L MoS2 1 50 532 80 µW 8 50 Vis Ref. [28]

>1L MoS2 1 −2 633 50 mW/cm2 110 >10k Vis-IR Ref. [36]
>1L WS2 1 - 458 2 mW 21m 5.3 Vis Ref. [29]
>1L GaTe 5 0 532 30 uW/cm2 10m 6 Vis Ref. [30]
>1L GaSe 5 0 254 1 mW/cm2 2800 300 UV-Vis Ref. [31]
>1L GaS 2 0 254 256 uW/cm2 4200 30 UV-Vis Ref. [32]

P is light power; R is responsivity; Resp. time means response time; UV is ultraviolet; Vis is visible; IR is infrared.

4. Conclusions

We report the fabrication of ambipolar BP devices fabricated through the novel method:
capping using transparent h-BN. Our devices exhibited ambipolar characteristics with an
electron mobility of 73 cm2V−1s−1. The ambipolar BP devices were used to demonstrate
high-performance photodetector behavior. The photoresponsivities in the devices were
found to be 1980 mA/W and no degradation in the response time was observed. This pho-
toresponsivity value exceeds the values previously reported. The mechanisms underlying
the efficient carrier transport and photoresponsivity were thought to derive from control
over the Fermi level in the BP. Our results demonstrated that the method is very effective in
enhancing electron transport in the BP transistors, and BP shows promise as a key building
block for future 2D semiconductors.
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